Search for ALP through $B \rightarrow Ka'$ $(a' \rightarrow \gamma \gamma)$ Decay

Sungjin Cho sjcho93@yonsei.ac.kr

Yonsei University

Jan 7th, 2021

Contents

- KEKB and Belle Experiment
- Event Generation
- Skimming Strategy
- mva with FBDT
- Koppenberg $\pi^0\eta$ Probability
- Peaking background veto
- Setting analysis region
- Optimizing FBDT
- $\blacksquare B \to X_s \gamma \text{ veto}$
- Signal extraction with PDF Fitting
- Calculate expected UL of BF
- Result
- Conclusion and Plan

KEKB and Belle Experiment

KEKB and Belle Experiment

- Belle Experiment :
- 8 GeV HER, 3.5 GeV LER head-on colliding
- Energy set to generate Υ(4S) (10.58 GeV)
- Υ(4S) decays into BB pair (5.28 GeV)
- from 1999 to 2010, 710 *fb*⁻¹ integrated luminocity collected, corresponding to 772 million *BB* pair
- Have several layers of detectors
- SVD, CDC, TOF, ACC, Csl, KLM
- Now upgraded Belle II experiment with SuperKEKB is under operation

SuperKEKB and Belle II Experiment

Event generation

- **a**' stands for Axion-Like-Particle (ALP)
- $\blacksquare B^0 \to K^0 a' \, (a' \to \gamma \gamma)$
- $B^+ \rightarrow K^+ a' (a' \rightarrow \gamma \gamma)$ (What we show in this talk)
- $\blacksquare B^0 \to K^0 a' (a' \to \gamma \gamma)$
- $\blacksquare B^+ \to K^+ a' (a' \to \gamma \gamma)$
- a': Spin-less pseudoscarlar particle
- a': Decay into $\gamma\gamma$ 100%
- $M_{a'}$: 0.1 ~ 1.0 GeV (0.05 GeV interval)
- $M_{a'}$: 1.0 ~ 3.0 GeV (0.1 GeV interval)
- Each signal MC sample contains 100K events,

- Background data skimemd to include all K mode
- B2BII applied : allow using
 Belle I data in Belle 2 Analysis
 Framework (BASF2)
- B2BII conditions : BELLE2_RELEASE = release-05-01-06

Partilce List	Selection Criteria	Partilce List	Selection Criteria
Charged track	<i>d</i> 0∥ < 3.0 cm	<i>K</i> *	$0.7 < m_{K^*} < 1.1 \; { m GeV}$
	z0 < 4.0 cm		$K^0 \rightarrow K^0 p i^0$
	eIDBelle < 0.9		$K^0 \rightarrow K^+ p i^-$
	muIDBelle < 0.9 or muIDBelleQuality = 0		$K^+ \rightarrow K^0 p i^+$
K^+	$\mathscr{L}(K\pi) > 0.6$		$K^+ \to K^+ p i^0$
	$\mathscr{L}(Kp) > 0.4$	ALP	$0.102 > M_{a'} \ M_{a'} > 0.166 \text{ GeV} (\pi^0 \text{ mass reg})$
π^+	$\mathcal{L}(\pi K) > 0.4$		$0.480 > M_{a'} M_{a'} > 0.584 \text{ GeV} (\eta \text{ mass region})$
	$\mathscr{L}(\pi p) > 0.7$		$0.866 > M_{a'} M_{a'} > 0.997 \text{ GeV} (\eta' \text{ mass region})$
γ	$E_{\gamma} > 50 \text{ MeV}$	В	$M_{bc} > 5,26 {\rm GeV}$
	0.5 < goodBelleGamma < 1.5		$-0.6 < \Delta E < 0.3 \text{ GeV}$
π^0	pi0:mdst		$B^0 \rightarrow K^0 a'$
K_{S}^{0}	goodBelleKShort		$B^+ \to K^+ a'$
5	vertex kFit		$B^0 \rightarrow K^0 a'$
	ksnbStandard = 1 (nisKs)		$B^+ \to K^+ a'$

Selection Criteria	Description
<i>d</i> 0	Signed distance to the point of closest approach (POCA) in the $r-\phi$ plane
<i>z</i> 0	z coordinate of the POCA
eIDBelle	Belle electron likelihood
muIDBelle	Belle muon likelihood
muIDBelleQuality	muIDBelle quaility flag
$\mathscr{L}(ij)$	Belle atcPID $\mathcal{L}_i / (\mathcal{L}_i + \mathcal{L}_i)$
goodBelleGamma	dependent energy selection for Belle data and MC (50/100/150 MeV)
goodBelleKShort	0.468 < M < 0.528 GeV,Vertex fit not failed
$M_{a'}$ cut	$3 \times RMS$ of π^0, η, η' mass distribution
"M _{bc}	$\sqrt{(E_{\text{beam}}/2)^2 - \vec{p}_B^2}$
	Beam constraint mass for signal side B
ΔE	$(E_{\text{beam}}/2) - E_B$

- TMVA not works well with B2BII dataset
- -> apply BASF2 mva
- training for each sigMC data leads MVA to select signal-like mass region :
- so generate SigMC with various a' mass (0.01~4.5 GeV, 10MeV interval) to use as MVA training sample.
- peaking background mass region has removed.
- 100,000 evts from uniSig MC sample used as Sig training sample
- 50,000 evts from each CHM and UDS stream 01 used as Bkg training sample
- Pre-MVA Cuts :

Precut	Conditions
Mbc	5.2~
deltaE	-0.6~0.3
Easy	~0.9
kopp Prob	~0.8

 $\blacksquare \quad Easy = \frac{|E\gamma_0 - E\gamma_1|}{E\gamma_0 + E\gamma_1}$

Saga-Yonsei Workshop XVII

universal Sig

FBDT

Variable	Description
thrustOm	Magnitude of the ROE thrust axis
cosTBTO	Cosine of angle between thrust axis of the signal B and thrust axis of ROE
cosTBz	Cosine of angle between thrust axis of the signal B and z-axis
et	Transverse energy
mm2	Missing mass squeared
R2	Reduced Fox-Wolfram moment R2
KSFW (14)	Kakuno-Super-Fox-Wolfram
CleoCone (9)	variables based on the sum of the absolute values of the momenta of all particles within thrust axis 9 concentric cones

Koppenberg $\pi^0\eta$ Probability

- Use Koppenberg method to exculde π⁰, η dauther candidates.
- Calculate the photon's probability for being daugther of π⁰ or η
- $\blacksquare \ \mathscr{P}_{\pi/\eta}(\gamma_i) = \max(P_{\pi/\eta}(\gamma_i,\gamma_j))$
- γ_j : every γ from mdst_gamma table
- if $(E_i < 1.5 \text{ and } E_j < 1.5 \text{ GeV})$ then $\mathscr{P} = -0.1$
- veto γ which has $\mathscr{P}_{\pi/\eta} > 0.8$

A1600 gamma π^0/η Probability

Peaking background veto

- \blacksquare π^0, η, η' are 3 major gamma pair generating SM background.
- to reject designated mass region, each MC samples are generated
- and upper/lower rms for each sample's A0_M($M_{a'}$) value are calculated.
- peaking background veto region is from $3 \times rms^L$ to $3 \times rms^R$ • $rms_{\pi^0}^L = \sqrt{\frac{\sum (M_{a'} - M_{\pi^0})^2}{N_{evt}}}$ when $M_{a'} > M_{\pi^0}$ • $rms_{\pi^0}^R = \sqrt{\frac{\sum (M_{a'} - M_{\pi^0})^2}{N_{aut}}}$ when $M_{a'} < M_{\pi^0}$

0.0 0.95 1.05

Analysis Region

× 1940 170

- 0.7 ~ 1.2 window is not very effective with low a' mass
- also not very logical selection
- **a** calculate σ for each a' mass sig MC

precut	Condition
a' mcPDG	matched
<i>Mbc</i>	5.27~ (GeV)
ΔE	-0.2 ~ 0.1 (GeV)
M _a ,	0.5 ~ 1.2

•
$$rms^{L} = \sqrt{\frac{\sum (M_{a'} - ref_{-}Mass)^{2}}{N_{evt}}}$$
 when $M_{a'} > ref_{-}Mass$
• $rms^{R} = \sqrt{\frac{\sum (M_{a'} - ref_{-}Mass)^{2}}{N_{evt}}}$ when $M_{a'} < ref_{-}Mass$
• Main Band : 2.5 rms^{L} to 2.5 rms^{R}
• Side Band : main band width

Optimizing Punzi FoM

- Punzi FoM maximized around 0.95
- unify Punzi FoM cut 0.95 for all mass region
- Fom calc :

Precut	Conditions		
Mbc	> 5.27 (GeV)		
ΔE	-0.2 ~ 0.1 (GeV)		
kopp Prob	< 0.8		
Easy	< 0.9		

Punzi FoM =
$$\frac{\epsilon_{sig}}{\sigma/2 + N_{bkg}} (\sigma:3)$$

$M_{a'}$ 1600 MeV representive.

$B \rightarrow X_s \gamma$ veto

- major of rare B Background
- from $E_{\gamma_0}: E_{\gamma_1}$ distribution
 - $E_{\gamma_0} < 2.0 \mid\mid E_{\gamma_1} > (mass/2.5) \text{ GeV}$
- Not carefully optimized cut value
- But Extremely powerfull to veto $B \rightarrow X_s \gamma$
- 1.2 GeV, 2.4 GeV representive

Background Distibution

continuum is major source of bkg.

■ $B\bar{B}$ and ulv events are almost suppressed.

bkg	remaining
chg	23.2
mix	6.2
chm	179.8
uds	266.6
charged rare	18.66
mixed rare	13.74
charged ulnu	0.1
mixed ulnu	0

$M_{a'}$ 2000 MeV representive.

Fitting and applying PDF

type	A0_M	Mbc
Signal	СВ	СВ
Generic	exponential	BGArgus
Special	exponential	CB

■ fitting for each a' mass region are performed.

Saga-Yonsei Workshop XVII

Profile Likelihood

Profile Likelihood Ratio and Posterior for nSig

- Profile Likelihood Calculator
- 95 C.L Expected U.L. = $\frac{N_{Sig}^{95yield}}{\epsilon_{sig} \times N_{BB}}$ $\bullet N_{Sig}^{95yield}$ $= N_{PLC_output}$ pass_cuts ϵ_{sig} J^{sig}gen • $N_{BB} = 772 \times 10^6$

 $M_{a'}$ 2000 MeV representive.

						Expected	Expected
$M_{a'}$ (GeV)	$\epsilon_{sig}(\%)$	N_{bkg}	N_{sig}	N_{sig}/σ	95CL	B.F	U.L
1.5	12.6	437.31 ± 48.4	1.72 ± 4.48	0.38	12.2	1.75E-08	1.23E-07
2.0	13.2	507.87 ± 39.6	0.73 ± 4.34	0.17	10.9	0.72E-08	1.07E-07
2.5	9.0	358.53 ± 20.5	-2.28 ± 3.43	0.66	6.35	-3.26E-08	0.91E-07
3.0	1.9	245.52 ± 14.3	10.0 ± 5.20	1.92	21.7	6.78E-07	1.47E-06

conclusion

- koppenberg π^0/η applied.
- FBDT trained and applied
- Analysis region decided.
- SigMC generated, full bkg stream skimmed.
- FBDT optimized with Punzi FoM
- Fitting done on remaining bkg/sig MC
- Sig Yield value and expected U.L calculated
- plan
 - Try 3D fit
 - new π^0 , η veto

 $\underline{B}^+ \rightarrow \overline{K}^+ \eta_c$

SM BF	Value
$BF(B^+ \to K^+ \eta_c)$	0.001030
$BF(\eta_c \to \gamma \gamma)$	0.0003
$BF(B^+ \to K^+ \eta_c (\eta_c \to \gamma \gamma))$	3.09E-7
$BF(B^+ \to K^+ \eta_c (\eta_c \to \gamma \gamma))$	$2.2^{+0.09}_{-0.07}$ E-7

B⁺ → K⁺η_c(η_c → γγ) from Decay.dec
 last BF from 2008 J.Wicht Belle paper