$B \rightarrow KA'A'$

Yongkyu Kim

List of Contents

- Introduction
- Particle Selections
- Used Variables
- Signal Extraction
- $\Delta m_{A'}$ cut determination
- Signal Efficiency
- Expected Upper limit of Branching Fraction
- Control Sample Study

Introduction

In previous research, theorists expected this decay to connect real matter world and dark world. (Multilepton signature of a hidden sector in rare B decays)

Final States			
$B^+ \to K^+ e^+ e^- e^+ e^-$	$B^0 \to K^0 e^+ e^- e^+ e^-$	$B^+ \to K^{*+} e^+ e^- e^+ e^-$	$B^0 \rightarrow K^{*0} e^+ e^- e^+ e^-$
$B^+ \to K^+ e^+ e^- \mu^+ \mu^-$	$B^0 \to K^0 e^+ e^- \mu^+ \mu^-$	$B^+ \to K^{*+} e^+ e^- \mu^+ \mu^-$	$B^0 \to K^{*0} e^+ e^- \mu^+ \mu^-$
$B^+ \to K^+ \mu^+ \mu^- \mu^+ \mu^-$	$B^0 \to K^0 \mu^+ \mu^- \mu^+ \mu^-$	$B^+ \to K^{*+} \mu^+ \mu^- \mu^+ \mu^-$	$B^0 \to K^{*0} \mu^+ \mu^- \mu^+ \mu^-$

Particle Selection

- Charged track selection : dr < 2 cm, dz < 5 cm.
- e^{\pm} selection : $\mathcal{L}_e > 0.9$, $\mathcal{L}_e > \mathcal{L}_{\mu}$, Bremsstrahlung reconstructed($\angle < 0.05$)
- μ^{\pm} selection : $\mathcal{L}_{\mu} > 0.9$, $\mathcal{L}_{\mu} > \mathcal{L}_{e}$
- K^{\pm} selection : $\mathcal{L}_{K/\pi} > 0.6$, $\mathcal{L}_{P/K} > 0.4$
- π^{\pm} selection : $\mathcal{L}_{K/\pi} < 0.4$, $\mathcal{L}_{P/\pi} < 0.4$
- *K*⁰_{*S*} selection : From *Mdst_vee*2 table, *nisKsfinder* standard cut applied.
- γ selection : Endcap : $E_{\gamma} > 0.15$ GeV Barrel : $E_{\gamma} > 0.05$ GeV good gamma selection applied.
- π^0 selection : From $Mdst_pi0$, 0.1 < $m_{\pi^0} < 0.14$ (GeV), $p_{\pi^0} > 0.1$ (GeV)

- Kaon Reconstruction
 - K^{*0} : From $K^{*0} \to K^+\pi^-$ and $K^{*0} \to K^0_S\pi^0$, $0.8 < M_{K^{*0}} < 1.0$ (GeV)
 - K^{*+} : From $K^{*+} \to K_S^0 \pi^+$ and $K^{*+} \to K^+ \pi^0$, $0.8 < M_{K^{*+}} < 1.0$ (GeV)
- Dark photon reconstruction
 - We chose the $\Delta m_{A'}$ neutral lepton pairs as our dark photon. To reduce effect of $c\bar{c}$ background, we used $m_{A'_W}$ (Wrong paired dark photon mass)
 - Low mass veto : there was many backgrounds by arbitrary low mass leptons.
 - $c\bar{c}$ veto : we vetoed 2.8 < $m_{A'_W}$ < 3.15, 3.55 < $m_{A'_W}$ < 3.7 (GeV).
 - $\phi(1020)$ veto : Didn't observed anything on MC. We only vetoed 10MeV region centered at 1.02 GeV.
- Best B selection : Least $|\Delta E|$

Used Variables

- M_{BC} : Beam constrained Mass
- ΔE : Energy difference
- $\Delta m_{A'}$: difference between two dark photon masses
- *E*_{Asym} : Energy Asymmetry between dark photon's daughter
- $m_{A'}$: mass of dark photon
- $m_{A'_W}$: mass of wrong paired dark-photon
- R_2 : Ratio of 2nd Fox-Wolfram Moment

Signal Extraction

 $-0.2 < \Delta E < 0.1$

 $M_{BC} > 5.26$

 $\Delta m_{A'} < 0.1 \label{eq:main_alpha}$ More cut applied later

Signal Extraction

$\Delta m_{A'}$ cut determination

Background is almost flat. Figure of merit punzi fluctuates hard due to lack of background. (O(1))Signal 95% cut applied to some points, And interpolated it with dark photon mass

Final States	$0.6~{ m GeV}$	$1.1 \mathrm{GeV}$	$1.6 \mathrm{GeV}$	Final States	$0.6~{ m GeV}$	$1.1 \mathrm{GeV}$	$1.6~{\rm GeV}$
$K^0 e^+ e^- e^+ e^-$	0.062	0.068	0.078	$K^+e^+e^-e^+e^-$	0.060	0.068	0.080
$K^0 e^+ e^- \mu^+ \mu^-$	0.056	0.064	0.074	$K^+e^+e^-\mu^+\mu^-$	0.054	0.062	0.074
$K^0\mu^+\mu^-\mu^+\mu^-$	0.016	0.020	0.030	$K^+\mu^+\mu^-\mu^+\mu^-$	0.014	0.020	0.030
$K^{*0}e^+e^-e^+e^-$	0.062	0.068	0.078	$K^{*+}e^{+}e^{-}e^{+}e^{-}$	0.064	0.068	0.078
$K^{*0}e^+e^-\mu^+\mu^-$	0.058	0.064	0.076	$K^{*+}e^+e^-\mu^+\mu^-$	0.056	0.062	0.072
$K^{*0}\mu^+\mu^-\mu^+\mu^-$	0.016	0.024	0.030	$K^{*+}\mu^+\mu^-\mu^+\mu^-$	0.020	0.028	0.030

Signal Efficiency

$B \to K^{(*)}A'A'$							
Final state	$m_{A'}$	N_{sig}	ϵ_{sig} (%)	Final state	$m_{A'}$	N_{sig}	ϵ_{sig} (%)
$K^0 e^+ e^- e^+ e^-$	0.6	19105	1.91~%	$K^{*0}e^+e^-e^+e^-$	0.6	30223	3.02~%
	1.1	26294	2.63~%		1.1	43106	4.31~%
	1.6	31092	3.11~%		1.6	59251	5.93~%
$K^0 e^+ e^- \mu^+ \mu^-$	0.6	8276	0.83~%	$K^{*0}e^+e^-\mu^+\mu^-$	0.6	12155	1.22~%
	1.1	10849	1.08~%		1.1	16424	1.64~%
	1.6	19767	1.98~%		1.6	35476	3.55~%
$K^{0}\mu^{+}\mu^{-}\mu^{+}\mu^{-}$	0.6	2570	0.25~%	$K^{*0}\mu^+\mu^-\mu^+\mu^-$	0.6	3492	0.35~%
	1.1	3675	0.37~%		1.1	4916	0.49~%
	1.6	11243	1.24~%		1.6	19547	1.95~%
$K^+e^+e^-e^+e^-$	0.6	48357	4.84 %	$K^{*+}e^{+}e^{-}e^{+}e^{-}$	0.6	23297	2.33~%
	1.1	69404	6.94~%		1.1	33910	3.39~%
	1.6	92550	9.25~%		1.6	47480	4.75~%
$K^+e^+e^-\mu^+\mu^-$	0.6	22829	2.28~%	$K^{*+}e^+e^-\mu^+\mu^-$	0.6	9446	0.94~%
	1.1	31023	3.10~%		1.1	12875	1.29~%
	1.6	60488	6.05~%		1.6	28393	2.84~%
$K^+\mu^+\mu^-\mu^+\mu^-$	0.6	8010	0.80~%	$K^{*+}\mu^{+}\mu^{-}\mu^{+}\mu^{-}$	0.6	2742	0.27~%
	1.1	11281	1.13~%		1.1	4020	0.40~%
	1.6	34310	3.43~%		1.6	15530	1.55~%

Expected Upper limit of Branching Fraction

Mode	N_{bkg}	σ_{bkg}	ϵ_{sig}	U.L of ${\mathcal B}$
$K^0e^+e^-e^+e^-$	0.32	0.19	2.62%	2.13×10^{-7}
$K^0 e^+ e^- \mu^+ \mu^-$	0.10	0.10	1.08%	5.57×10^{-7}
$K^0\mu^+\mu^-\mu^+\mu^-$	0.00	0.00	0.36%	1.67×10^{-6}
$K^{*0}e^+e^-e^+e^-$	2.19	0.63	4.12%	1.78×10^{-7}
$K^{*0}e^+e^-\mu^+\mu^-$	2.73	0.73	1.54%	4.03×10^{-7}
$K^{*0}\mu^+\mu^-\mu^+\mu^-$	0.60	0.24	0.46%	1.11×10^{-6}
$K^+e^+e^-e^+e^-$	0.30	0.17	6.94%	7.70×10^{-8}
$K^+e^+e^-\mu^+\mu^-$	1.20	0.35	3.10%	2.02×10^{-7}
$K^+\mu^+\mu^-\mu^+\mu^-$	0.30	0.17	1.13%	4.73×10^{-7}
$K^{*+}e^+e^-e^+e^-$	1.43	0.57	1.40%	4.29×10^{-7}
$K^{*+}e^+e^-\mu^+\mu^-$	1.00	0.32	0.51%	1.28×10^{-6}
\mathcal{K} 21+ μ + μ -	0.10	0.10	0.14%	4.12×190₫ -Yo

Most N_{BKG} is in O(1). Expected upper limit of branching fraction is calculated using polelim. We set N_{obs} as least same or bigger integer.

Most Expected upper limit of branching fraction is less than $10^{-7} \sim 10^{-6}$

Control sample study. $B^+ \rightarrow D^0 \overline{D^0} K^+$

- $M_{bc} > 5.22$ ($M_{bc} > 5.27$) Inside () : cut of $B \rightarrow KA'A'$, if cut is different
- $|\Delta E| < 0.05$ ($|\Delta E| < 0.1),$ Best B selection using Least $|\Delta E|$.
- $|\Delta M_{A'}| < 0.0698$ Best A' selection., (Mass dependent value.)
- $R_2 < 0.4$
- $E_{Asym} < 0.8$
- $|M_{A'} 1.865| < 0.02$. (0.1 with mass dependent value.)
- Ands vetos.

Many decay in our control sample.

N _{obs}	PDG	ϵ	$\overline{N_{MC}}$	B.F(Ds->DK)
$B^+ \to D^0 \overline{D^0} K^+$	278.29	0.155	238.97	Control sample
$B^+ \to {D_{s2}^*}^+ (2573) \overline{D^0}$	1.34	0.136	26.65	$(8 \pm 15) \times 10^{-6}$
$B^+ \to {D_{s1}^*}^+ (2700) \overline{D^0}$	104.70	0.151	49.40	$(5.6 \pm 1.8) \times 10^{-4}$
$B^+ \to K^+ \psi(3770)$	31.20	0.168	53.39	$(1.5 \pm 0.5) \times 10^{-4}$
$B^+ \to K^+ \psi(4040)$			0.16	$< 1.3 \times 10^{-4^{*}}$
$B^+ \to K^+ \psi(4160)$	16.25	0.164	36.46	$(8 \pm 5) \times 10^{-5}$
$B^+ \to K^+ X(3872)$			1.98	$< 6.0 \times 10^{-5}$
Sum	431.80		407.00	

Shape difference between MC and DATA

With free argus parameter.

Saga-Yonsei

So...

- Shape difference is quite big.
- Background is huge.
- N_{sig} difference ~1.5 σ between data and MC
- Changed our control sample decay mode.
- $B^+ \to J/\psi \phi K^+$ where $J/\psi \to l^+ l^-, \phi \to K^+ K^-$

Selections

- $M_{BC} > 5.22$ As we use fit, M_{BC} are loosen
- $-0.2 < \Delta E < 0.1$
- $\left| \Delta M_{J/\psi\phi} (3.1 1.020) \right| < 0.0701$
- $E_{Asym} < 0.8$ Energy asymmetry of leptons and Kaons
- $|M_{J/\psi} 3.1| < 0.03$ These masses are narrower due to BG
- $|M_{\phi} 1.020| < 0.03$ <0.1 for $B \to KA'A'$
- $R_2 < 0.4$
- Best $J/\psi\phi$ pair selection : Least $|\Delta M_{J/\psi\phi} (3.1 1.020)|$
- Best B selection : Least $|\Delta E|$

Fitting result using MC

SigMC : CB GenMC : CB+Argus

Expected $N_{sig} \sim 254.9$ using DECAY.DEC

Expected $N_{sig} \sim 251.9$ using PDG value.

Although I did not applied systematics, $R = \frac{N_{Data}}{N_{MC}} \sim 0.9$ expected, deduced from experience. (2% for each track)

Consistent with our expected values.

Saga-Yonsei

But we still have problems

- Slight shift on M_{BC} peak.
- Slight shift of Argus endpoint

Plan & Summary

- Control sample study is ongoing using $B^+ \rightarrow J/\psi \phi K^+$.
- Try to find the reason why I have difference between MC and DATA

Backup

Major Variables Distribution on SigBox

cont'd

10000

5000

5.28

1M signal MC for each decay. Same constant used.

10000

5000

Saga-Yonsei

5.28

Background Dalitz Plot

Dalitz plot have each axis for each D meson.

M_{KD}^2

charged	mixed
10 stream	10 stream
charm	uds
6 stream	6 stream

D_s resonance

N _{obs}	PDG	DECAY.DEC	B.F(Ds->DK)
$B^+ \to {D_{s2}^*}^+ (2573) \overline{D^0}$	1.34	26.65	$(8 \pm 15) \times 10^{-6}$
$B^+ \to {D_{s1}^*}^+ (2700) \overline{D^0}$	104.70	49.40	$(5.6 \pm 1.8) \times 10^{-4}$

- D_{s2}^{*} + (2.5724)= D_{s2}^{*} (2573)
- $D_sj+(2700)=D_{s1}^*(2700)^+$
- Each number from 1 corresponds to charged, mixed, charm, uds
- Used 10 stream of BB, 6 stream of qq.
- Not scaled.
- loose gen_hep matched

1M signal.

Dalitz plot have each axis for each D meson. M_{KD}^2

Charmonium Resonance

N _{obs}	PDG	DECAY.DEC	B.F (B->cc->DD)
$B^+ \to K^+ \psi(3770)$	31.20	53.39	$(1.5 \pm 0.5) \times 10^{-4}$
$B^+ \to K^+ \psi(4040)$		0.16	$< 1.3 \times 10^{-4^{*}}$
$B^+ \to K^+ \psi(4160)$	16.25	36.46	$(8 \pm 5) \times 10^{-5}$
$B^+ \to K^+ X(3872)$		1.98	$< 6.0 \times 10^{-5}$

- Used 10 stream of BB, 6 stream of qq.
- Not scaled.
- loose gen_hep matched
 - * cc->DD is not included

2021-01-07

