

Simulation study on dual-readout calorimeter for future e⁺e⁻ colliders

Kyuyeong Hwang (Yonsei Univ.)

On behalf of the Korea Dual-Readout Calorimeter team

The 17th Saga-Yonsei partnership program on High-Energy Physics 2021. 01. 22

1 Introduction

Future e⁺e⁻ Collider

Motivation of future collider

- Currently, detector experiment achieved high precision measurements.
- With this precision, observing higgs physics and BSM which is on priority.
 - Higgs factory (HZ) : 10⁶
 - EW & Top factory : 5x10¹² (Z), 10⁸ (WW), 10⁶ (tt)
 - Flavour factory : 5x10¹² (Z->bb, cc, tautau)
 - QED, QCD, BSM, etc

Programs in two phases

Phase 1: FCC-ee (Z, W, H, tt) as Higgs, EW and top factory ↔ CEPC

Phase 2: FCC-hh (~100 TeV) as natural continuation at energy frontier (ion and eh options) \leftrightarrow SPPC

Kyuyeong Hwang (Yonsei Univ.)

2021.01.22

Future e⁺e⁻ Collider

FCC-ee CEPC **FCC Roadmap** Key Tech. R&D Pre-Studies Construction Data Taking 2040 first **Engineering Design** 2037 FCC roadmap 2030 collisions machine Higgs start tunnel 7 2016.6 R&D funded by MOST installation construction 2018.5 1st Workshop outside of China 2018.11 Release of CDR 2028 approval 2019 – acc. TDR proc. Started, R&DD 2026/7 Site selection, engineering design, Tunnel and infrastructure construction **ESPPU** -SPPC technology & system verification Acc. components mass production; Installation, 2025/26 alignment, calibration, and commissioning feasibility 2014 FCC 2020 CEPCstudy kickoff proof 2013.9 Project kick-off meeting ESPPU **2020 FCCIS** 2018 FCC CDR 2015.3 Release of Pre-CDR 2013 kickoff **ESPPU** 2018.2 1st 10 T SC dipole magnet 2012 Higgs discovery announced 20 T SC dipole magnet R&D with Nb₃Sn+HTS or HTS 2011 circular Higgs factory proposal 15 T SC dipole magnet & HTS cable R&D FCC Physics and Experiments General meeting Patrick Janot 7 28 Sep 2020 HTS Magnet R&D Program 200 The international workshop on the high energy Circular Electron Positron Collider Luminosity [ab⁻¹] 26-28 Oct 2020 XinChou Lou Z pole ww HZ Top × 10 × 10 × 10 150 Operation \sqrt{s} Total $\int L$ L per IP Event Years $(10^{34} \,\mathrm{cm}^{-2} \mathrm{s}^{-1})$ $(ab^{-1}, 2 IPs)$ (GeV) mode yields 100 1×10^{6} 240 3 7 5.6 Η 91.2 7×10^{11} Z32 (*) 2 16 50 2×10^7 (†) W^+W^- 158 - 17210 2.60 9 10 11 12 13 14 15 З 2 5 6 7 8 4 Years

Kyuyeong Hwang (Yonsei Univ.)

2021.01.22

SPPC

(pp/ep/eA)

IDEA Detector

Conceptual design of IDEA detector

- IDEA detector has been proposed in conceptual design report(CDR) of both FCC-ee & CEPC.
- Dual-Readout calorimeter is included in the IDEA detector concept which can detect both EM & hadronic particles.

What Is The Dual-Readout Calorimeter

- Non-gaussian EM fluctuations are a major factor that makes it difficult to measure energy of hadron shower.
- f_{EM} can be measured by implemented two different type of fibers with different h/e responses in a calorimeter.

- Dual-readout calorimeter offers high-quality energy measurement for both EM particles and hadronic particles.
- Outstanding energy resolution can be achieved by measuring EM component and correcting hadron energy event by event.

GEANT4 Simulation Set-up

Geometry Setup

- Cover up to $|\cos \theta| < 0.996(|\eta| < 3.0)$
- All Cu tower with a depth of $2500 \text{mm}(\sim 10 \lambda_{int})$.
- O(1000) Fibers implemented per a tower.

Scintillation(S) fiber : Polystyrene(PS) (Kuraray SCSF-78) Cerenkov(C) fiber : PMMA (Eska SK40)

- High granularity SiPM array (Hamamatsu S13615-1025N)
 - \rightarrow This high-granularity design allows good position resolution.

40mm **1**

2.5M

Rear end of

a tower

1mm

96mm

Side view of 0th tower (2500mm)

GEANT4 Simulation Set-up

Kyuyeong Hwang (Yonsei Univ.)

2021.01.22

② Calibration

Calibration

- 20 GeV electron beams are used for calibration to each tower from 0th to 91st.
- ① Calculating equalization constants
 - From MC truth energy deposition and # of hit, get equalization constants in dimension of energy per p.e.

Calibration

2 Reconstructing energy of each event based on equalization constant.

• Reconstructed energy does not match to 20GeV. Scale factor can moderate this inconsistency.

 $\ensuremath{\textcircled{}}$ Measuring scale factor.

Scale factor =
$$\begin{cases} Scint: 19.72/20 = 0.986\\ Ceren: 19.06/20 = 0.953 \end{cases}$$

2021. 01. 22

Calibration

④ Calibration constant can be measured from equalization constants and scale factors.

Calibration constant = eq.constant/Scale Factor

Result is very stable, which means calibration is done as expected.

③ Energy resolution

EM Energy Resolution

- EM energy resolution is measured with different 8 energy points electron and scaled with $1/\sqrt{E}$.
- Stochastic & constant term of energy resolution can be obtained by linear fitting.

1.020 $\mu/E=1$ C: $0.182/\sqrt{E}+0.007$ 0.10 $S: 0.130/\sqrt{E} + 0.015$ 1.015 S $C+S: 0.113/\sqrt{E}+0.003$ C+S 1.010 Measured E/Beam E 0.08 1.005 σ/E 0.06 ±1% 1.0000.995 0.04 0.990 0.020.985 0.980 0.00 2040 60 80 100 0.40 0.35 0.300.25 0.20 0.15 0.10 0.45 $1/\sqrt{E} [GeV^{-1/2}]$ E [GeV]

EM Energy Resolution

EM Energy Linearity

- Stochastic term for EM energy resolution is ~11%.
- Measured EM energy satisfies linearity within 1% level at both scintillation and Cerenkov channels.

Hadronic Energy Resolution

- Hadronic energy resolution is measured with 8 different energy single pion beams.
- Two chi values(0.221 and 0.291) are used for DR correction.

- Stochastic term for hadronic energy resolution is ~21%.
- Energy resolution differs with chi values.

Jet Energy Resolution

- Jet energy resolution is measured with 4 different energy u quar. (50, 70, 90, 110 GeV)
- Jet is reconstructed with anti-kt algorithm(R=0.8) and chi value for DR correction is 0.221.

- Missing energy from neutrino and neutron during simulatation makes resolution worse.
- Only events are used for jet energy resolution measurement whose Gen. lv. Jet has an energy over 90% of generated jet.

Jet Energy Resolution

Jet Energy Resolution

- Stochastic term for jet energy resolution is $\sim 26\%$.
- Measured jet energies follow linearity well.

④ Position resolution

Beam setup & position reconstruction method

- 10, 20, 40, 60, 80, 100 GeV electron events are used.
- Beam is parallel to the 0th tower axis and has about 20mrad angle respect to the 1st tower
- 4cm(z) by 1cm(y) beam spot, covers from the center of 0th tower to the center of 1st tower with 1cm width.
- Position reconstruction
 - Center-of-gravity method is used. $\vec{x}_{reco} = \frac{\sum_i E_i \times \bar{x}_i}{\sum_i E_i}$, i = # of SiPM
 - Reconstructs the center of gravity of the energies E_i measured by numerous SiPMs.

Property of *z*_{reco} *vs z*_{gen}

•

Correction to *z*_{*reco*}

- The position resolution is given by the vertical width of the band in $z_{reco} vs z_{gen}$ plot.
- In fig.**A**, z_{reco} corresponding to z_{gen} ; 15 mm < z_{gen} < 25 mm, shows large increase of its value.
 - Comes from the structural property of the calorimeter
- Applying the correction equation to z_{reco} makes the band in fig.**A** straight
 - $z_{corr} = p_o + p_1 z_{reco} + p_2 (z_{reco} p_3)^2 \tan^{-1} (p_4 (z_{reco} p_5))$
- After correction, fig.**B** shows $z_{corr} vs z_{gen}$ having slope of 45°.

Obtaining resolution

- To obtain resolution
 - [fig.**B**] distribution $z_{corr} vs z_{gen}$; σ from Gaussian fit is the resolution
 - [fig.C] Same are done for each channel S (red)and C (blue)

Resolutions as a function of $1/\sqrt{E}$

2021.01.22

Summary

Dual-readout calorimeter

- Dual-readout calorimeter is a component of IDEA detector, which is proposed to CDR of FCC-ee and CEPC.
- By measuring EM fraction and correcting energy event by event, high quality energy resolution can be achievable.

Calibration

	Scintillation	Cerenkov
Calibration constant	0.89 <i>MeV/p.e</i> .	0.0136 GeV/p.e.

Calibration constant is stable for all tower in barrel region.

Study on energy r	esolution energy resolu	tion := $\frac{\sigma}{E} = \frac{\text{stocahstic term}}{\sqrt{E}} \oplus \text{constant term}$	
	EM (electron)	Hadron (single pion)	Jet (u quark jet)
Stochastic term	~11%	~21%	~26%

Position resolution

Position resolution is measured with 4.2mm of stochastic term.

Back up

Peculiarity seen in *z*_{reco} *vs z*_{gen}

- fig.C
 - Responses of a and b in fig.B are different.
 - Case a: signals concentrated near the hit fiber compared to case b

- At the border of towers
 - Case **a** shows z_{reco} similar to z_{gen} since the energy is deposited near the hit fiber.
 - Case **b** shows z_{reco} apart from z_{gen} since the neighboring tower has considerable portion of the energy deposit.

Requirements for CEPC

Physics process	Measurands	Detector subsystem	Performance requirement
$\begin{array}{l} ZH,Z \rightarrow e^+e^-, \mu^+\mu^- \\ H \rightarrow \mu^+\mu^- \end{array}$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV})\sin^{3/2}\theta}$
$H \to b\bar{b}/c\bar{c}/gg$	${ m BR}(H o b ar b / c ar c / g g)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$
$H ightarrow q ar q, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{\text{jet}}/E = 3 \sim 4\%$ at 100 GeV
$H\to\gamma\gamma$	$BR(H \to \gamma \gamma)$	ECAL	$\frac{\Delta E/E}{\sqrt{E(\text{GeV})}} \oplus 0.01$

Table 3.3: Physics processes and key observables used as benchmarks for setting the requirements and the optimization of the CEPC detector.

> CEPC Conceptual Design Report: Volume 2 - Physics & Detector arXiv:<u>1811.10545</u>