Early kinetic decoupling and Higgs invisible decay in simple dark matter models

Tomohiro Abe

Tokyo University of Science

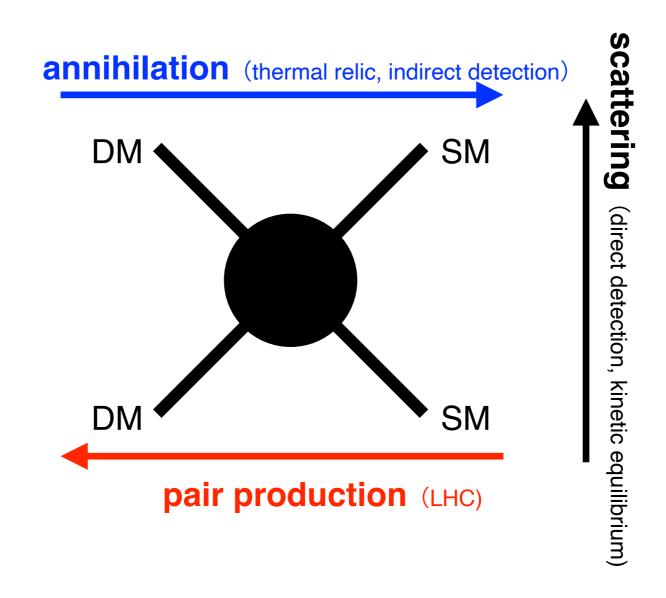
- ◆PRD102(2020)035018 (arXiv:2004.10041)
- ◆arXiv:2106.01956 (accepted by PRD)

$Br(h \rightarrow DMs)$ Was underestimated in WIMP models

Weakly Interacting Massive Particle

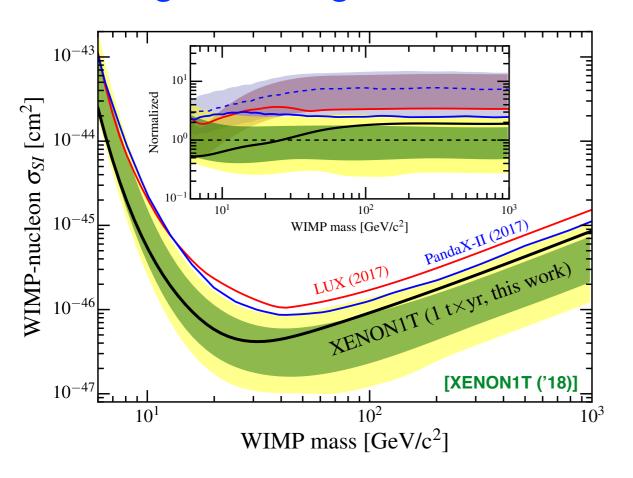
WIMP (Weakly Interacting Massive Particle)

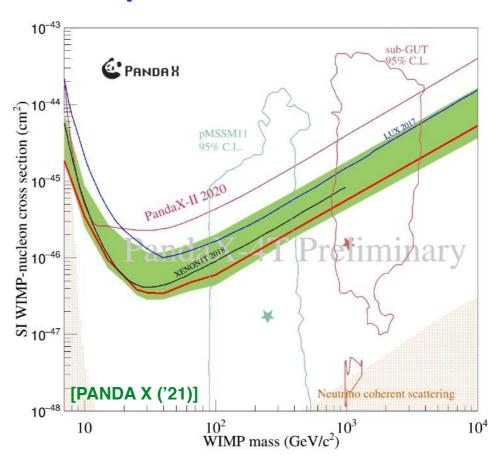
- has short range interactions with the standard model particles
- energy density is explained by the freeze-out mechanism
- correlation btw. various processes



scattering has to be suppressed

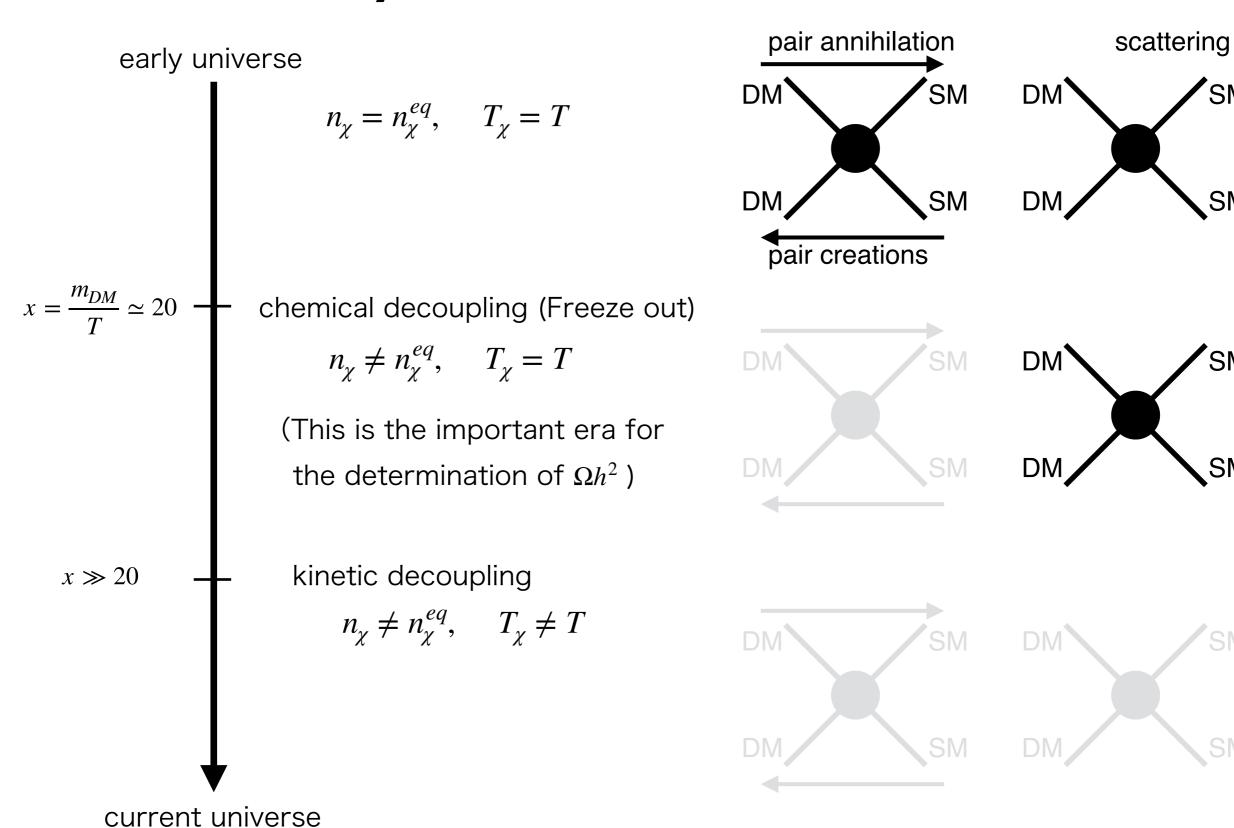
No significant signals at the direct detection experiments





- we still have many models that can explain these null results
 (s-channel resonance, pseudo-scalar interaction, CP-odd mediator,
 pseudo Nambu-Goldstone model, ...)
- However, we have to revisit the thermal relic calculation because the small σ_{scat} can cause the kinetic decoupling earlier than usual

standard way to calculate Ωh^2

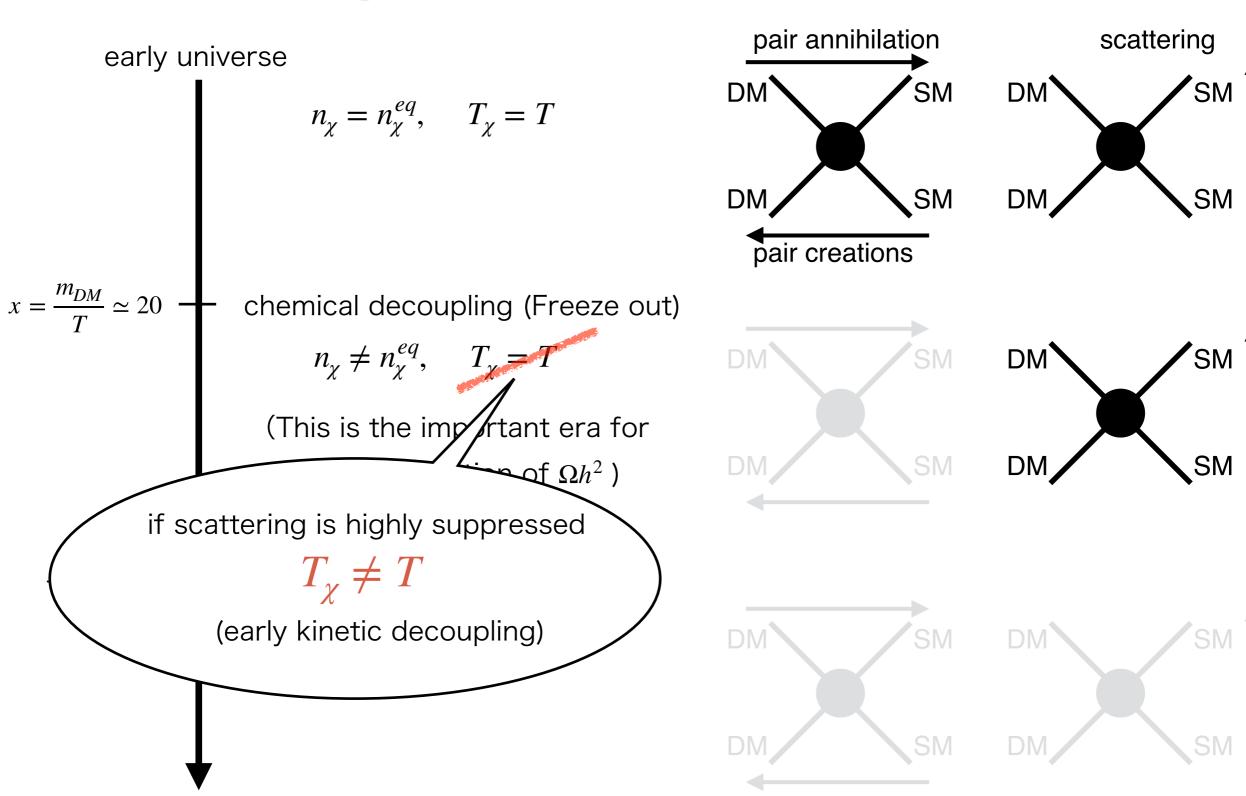


SM

SM

standard way to calculate Ωh^2

current universe



How to calculate Ωh^2 without assuming $T_\chi = T$

Boltzmann equation

[Binder, Bringmann, Gustafsson, Hryczuk ('17)]

$$E\left(\frac{\partial}{\partial t} - H\vec{p} \cdot \frac{\partial}{\partial \vec{p}}\right) f_{\chi}(t, \vec{p}) = C_{ann.}[f_{\chi}] + C_{el.}[f_{\chi}]$$

If
$$T_\chi = T$$

$$\frac{dn_\chi}{dt} + 3Hn_\chi = -\langle \sigma v \rangle_T (n_\chi^2 - n_{\chi,eq}^2)$$

If
$$T_{\chi} \neq T$$

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v \rangle_{T_{\chi}} n_{\chi}^{2} + \langle \sigma v \rangle_{T} n_{\chi,eq}^{2}$$

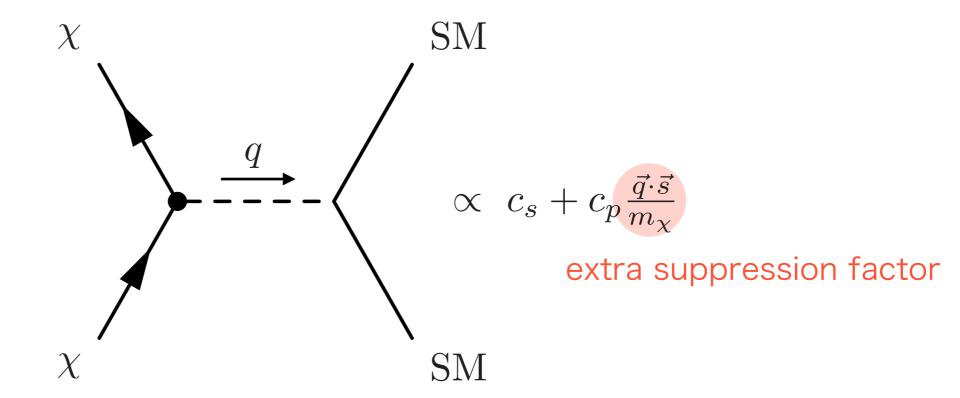
$$\frac{dT_{\chi}}{dt} = \text{(complicated equations depending on } \langle \sigma v \rangle, \langle \sigma v \rangle_{2}, \text{ and } |\mathcal{M}_{\text{scattering}}|^{2}).$$

A Fermion DM model

[Kanemura et. al ('10), Lopez-Honorez et.al ('12), Djouadi et.al ('13), Greljo et.al ('13), Beniwal et.al ('16), GAMBITCollaboration ('18), TA Sato ('19), ...]

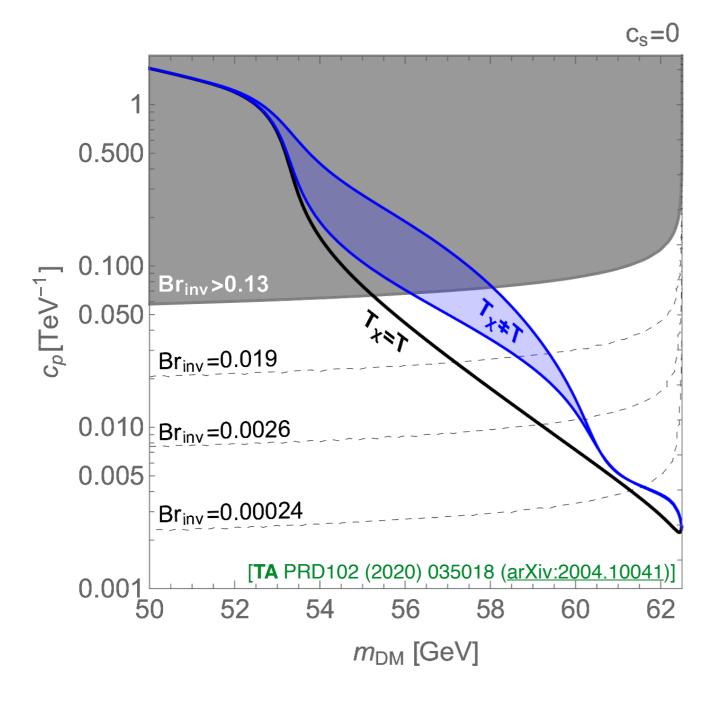
$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2}\bar{\chi}\left(i\gamma^{\mu}\partial_{\mu} - m_{\chi}\right)\chi + \frac{c_s}{2}\bar{\chi}\chi\left(H^{\dagger}H - \frac{v^2}{2}\right) + \frac{c_p}{2}\bar{\chi}i\gamma_5\chi\left(H^{\dagger}H - \frac{v^2}{2}\right)$$

- two types of DM-Higgs interactions ($\bar{\chi}\chi H^{\dagger}H$ and $\bar{\chi}i\gamma_5\chi H^{\dagger}H$)
- scattering can be suppressed by the momentum transfer



Result

 $T_{\chi} = T$ is not a good assumption



The coupling (c_p) is determined to obtain the right amount of the DM energy density

 $T_{\chi} = T$: result in the literatures

 $T_{\chi} \neq T$: with early kinetic decoupling effect (blue band is due to the QCD uncertainty)

current bound on the Higgs invisible decay

$${
m BR_{inv}} < egin{cases} 0.13 & \mbox{[ATLAS-CONF-2020-008]} \ 0.19 & \mbox{[CMS 1809.05937]} \end{cases}$$

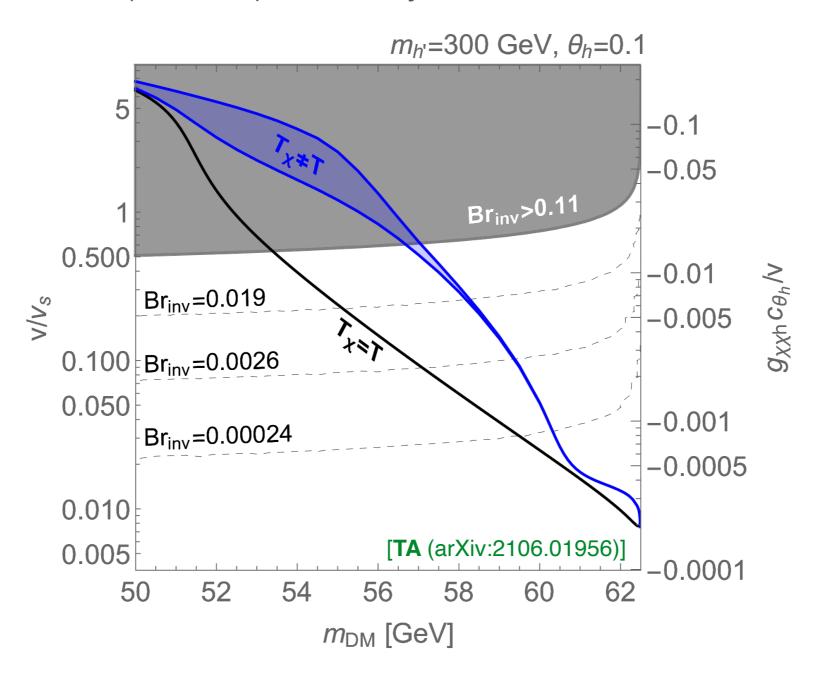
prospect [1905.03764]

$$\mathrm{BR_{inv}} < \begin{cases} 0.019 & (\mathrm{HL\text{-}LHC}) \\ 0.0026 & (\mathrm{ILC}(250)) \\ 0.0023 & \mathrm{ILC_{500}} \\ 0.0022 & \mathrm{ILC_{1000}} \\ 0.0027 & (\mathrm{CEPC}) \\ 0.00024 & (\mathrm{FCC}) \end{cases}$$

Another example

pseudo-Nambu-Goldstone DM model [Gross Lebedev Toma ('17)]

- DM-SM scattering is much suppressed
- prediction of Br(h→DMs) was really underestimated



Summary

$T_{\gamma} = T$ is not a good assumptions in some WIMP models

 if DM-SM scattering is highly suppressed, then we need to calculate the evolution of DM temperature as well

example of phenomenological consequence

- DM-Higgs coupling was underestimated in Higgs resonant regime
- Br(H \rightarrow inv.) can be much larger than in the previous studies

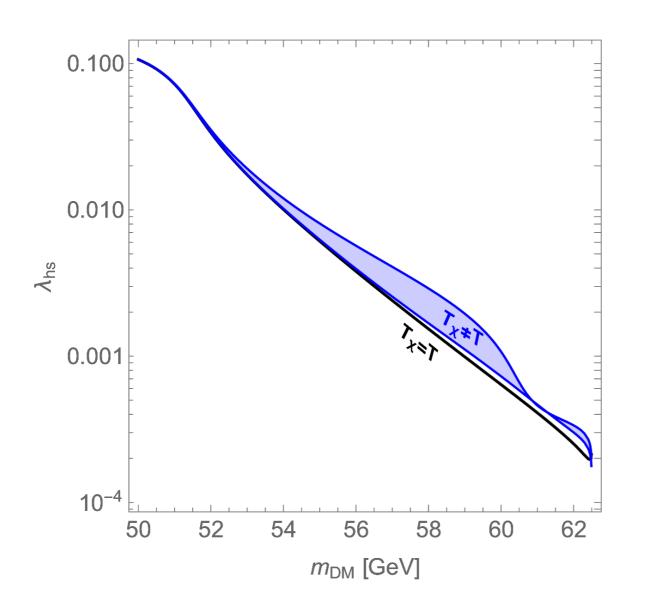
Backup

real scalar DM model case

[Silveria et.al. ('85), McDonald ('94), Burgess ('01), ..., Cline et.al. ('13), TA Kitano Sato ('15), ... GAMBIT collaboration ('17, '19)]

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} \partial^{\mu} S \partial_{\mu} S - \frac{m^2}{2} S^2 - \frac{\lambda_{sH}}{2} S^2 H^{\dagger} H - \frac{\lambda_s}{4!} S^4$$

- · λ_{sH} is determined to obtain the measured value of Ωh^2
- \cdot λ_{sH} should be larger than one in the literature, but enhancement is mild



- $T_{\gamma} = T$: result in the literatures
- $T_{\chi} \neq T$: with early kinetic decoupling effect (blue band is due to the QCD uncertainty)

[Binder, Bringmann, Gustafsson, Hryczuk ('17)]

Public code is available

DRAKE [Binder, Bringmann, Gustafsson, Hryczuk (2103.01944)]

- calculate Ωh^2 with the evolution of DM temperature
- Mathematica / Wolfram Engine
- give the code σv and $|\mathcal{M}|^2$ then we obtain result

Dark matter Relic Abundance beyond Kinetic Equilibrium

Tobias Binder^{1,a}, Torsten Bringmann^{2,b}, Michael Gustafsson^{3,c}, Andrzej Hryczuk ^{4,d}

¹Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

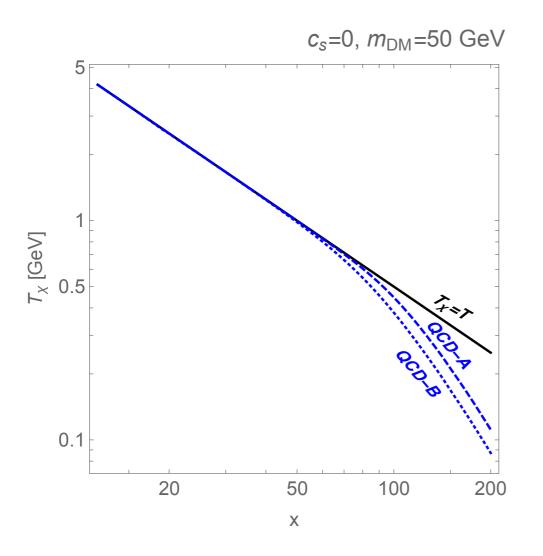
²Department of Physics, University of Oslo, Box 1048 Blindern, NO-0316 Oslo, Norway

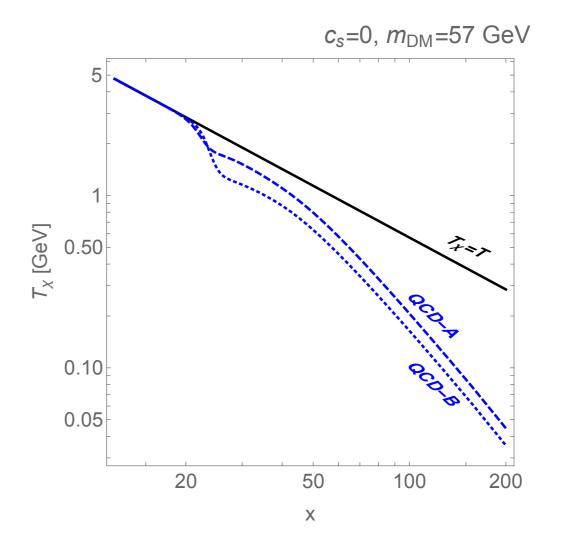
³Institute for Theoretical Physics, Georg-August University Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany

⁴National Centre for Nuclear Research, Pasteura 7, 02-093 Warsaw, Poland

Evolution of T_χ in the fermionic DM model

. In the small coupling region, $T_{\chi} \neq T$ happens around $\mathbf{x} = 20$ ($\mathbf{x} = m_{\chi}/T$)





t dependence in the scattering amplitude

model

$$\sum_{spin} \left| \mathcal{M}_{\chi b o \chi b} \right|^2$$
 (for low momentum transfer region)

$$24\lambda_{hS}^{2} \frac{m_{b}^{4}}{m_{h}^{4}}$$

$$48(c_{p}m_{h})^{2} \frac{m_{b}^{4}}{m_{h}^{4}} \times \left(\frac{-t}{m_{h}^{2}}\right)$$

$$24s_{h}^{2}c_{h}^{2} \frac{m_{h}^{4}}{m_{h'}^{4}} \frac{(m_{h}^{2} - m_{h'}^{2})^{2}}{v^{2}v_{s}^{2}} \frac{m_{b}^{4}}{m_{h}^{4}} \times \left(\frac{-t}{m_{h}^{2}}\right)^{2}$$

power of the t dependence is a key to suppress the scattering amp.. ($-t \simeq (momentum\ transfer)^2$ is quite small)