Does existence of dark matter imply grand unification?

Yoshihiko Abe

(Kyoto Univ.)

2021/8/2

Asia-Pacific Workshop on Particle Physics and Cosmology 2021

Based on the collaboration with

Takashi Toma (Kanazawa Univ.), Koji Tsumura (Kyushu Univ.), Naoki Yamatsu (Kyushu Univ.) arXiv:2104.13523 [hep-ph] to be published in PRD

Dark matter

- Dark matter (DM)
 - The existence of dark matter is inferred from various observations.
 - The nature of dark matter is still unknown.
 - Identification of dark matter ⇒ big probe for BSM

 $\Omega_{\rm DM} h^2 = 0.120 \pm 0.001$

[PLANCK collaboration arXiv:1807.06209]

- WIMP DM
 - Dark matter relic abundance is realized as the thermal relic

Constraints from direct detection

- Direct detection experiments
 LUX, PandaX-II, XENON
 Severe constraints on the W/IN/IF
 - ⇒ Severe constraints on the WIMP nucleon cross section

pNGB DM

- Pseudo-Nambu-Goldstone boson (pNGB) DM [Gross-Lebedev-Toma '17]
 - SM + SM singlet scalar S w/ global $U(1)_S$ softly broken to \mathbb{Z}_2 by m^2

$$V(H,S) = -\frac{\mu_H^2}{2}|H|^2 - \frac{\mu_S^2}{2}|S|^2 + \frac{\lambda_H}{2}|H|^4 + \frac{\lambda_S}{2}|S|^4 + \lambda_{HS}|H|^2|S|^2 - \frac{m^2}{4}(S^2 + S^{*2})$$

- Breaking of $U(1)_S \Rightarrow$ Nambu-Goldstone boson arises $\operatorname{Im} S$
- This is an attractive WIMP candidate escaping the direct detection constraint naturally
- Scattering between pNGB DM and SM fermions

What is origin of pNGB DM?

- What is the UV completion of the simple pNGB DM model?
- Where does the soft breaking term come?

$$V_{\text{soft}}(S) = -\frac{m^2}{4} \left(S^2 + S^{*2}\right)$$

• Our proposal: pNGB DM from gauged $U(1)_{B-L}$ model

[YA-Toma-Tsumura '20, Okada et al. '20]

The symmetry of the UV physics (consistent w/QG) maybe *gauge symmetry* (discrete symmetry should be *gauged*) DM

										$\mu_{c}(\mu,\sigma,\pi) = \mu_{c}(\pi^{*}\sigma^{2}+1) = \mu_{c}(\pi^{*}\sigma^{2}+1)$
	Q_L	u_R^c	d_R^c	L	e_R^c	Н	ν_R^c	S	Φ	$V(H, S, \Phi) \supset -\frac{1}{\sqrt{2}} (\Phi^* S^- + \text{n.c.}) \rightarrow -\frac{1}{\sqrt{2}} (\langle \Phi^* \rangle S^- + \text{n.c.})$
$SU(3)_C$	3	$\overline{3}$	$\overline{3}$	1	1	1	1	1	1	2
$SU(2)_L$	2	1	1	2	1	2	1	1	1	$\sim m$
$U(1)_Y$	+1/6	-2/3	+1/3	-1/2	+1	+1/2	0	0	0	$\langle \Phi \rangle \sim 10^{13} { m GeV}$
$U(1)_{B-L}$	+1/3	-1/3	-1/3	-1	+1	0	+1	+1	+2	

• Simple pNGB DM is realized as the low energy effective field theory

<u>Gauged</u> $U(1)_{B-L}$ model

[YA-Toma-Tsumura '20]

• The new interactions and scalar mixing give the following decay processes

pNGB DM inspired by grand unification

[YA-Toma-Tsumura-Yamatsu '21]

SO(10) pNGB DM model

• What is the further UV completion of the gauged $U(1)_{B-L}$ pNGB DM model? [YA-Toma-Tsumura '20, Okada *et al.* '20] $\langle \Phi \rangle \sim 10^{13} \text{ GeV}$ • Charge quantization of $U(1)_{Y}$, anomaly cancellation in SM [Gerogi-Glashow '74] $M_{U} \sim 10^{15-17} {
m GeV}$ Grand unified theory (GUT) \Rightarrow • The symmetry $G_{SM} \times U(1)_{B-L}$ can appear in the GUT symmetry breaking pattern **Motivation** Can the pNGB DM model be embedded to GUT? Does the existence of DM (+ QG assumption?) imply the grand unification? • In this work, we focus on the Pati-Salam gauge group $G_{\rm PS}$ [Pati-Salam '74] $G_{\rm PS} = SU(4)_C \times SU(2)_L \times SU(2)_R \supset G_{\rm SM} \times U(1)_{B-L}$

SO(10) pNGB DM model

[YA-Toma-Tsumura-Yamatsu '21]

• Particle contents and symmetry breaking pattern $G_{PS} \supset G_{SM} \times U(1)_{B-L}$ $\xrightarrow{\langle \Phi_{126} \rangle \neq 0} G_{SM}$ $\xrightarrow{\langle \Phi_{10} \rangle \neq 0} SU(3)_C \times U(1)_{EM}$

			Ψ_{16}		Φ ₁₀	Φ_{16}	$\Phi_{\overline{126}}$		
SO(10)			16		10	16	$\overline{126}$		
	$\psi_{(4,2,1)}$ $\psi_{(\overline{4},1,2)}$						$\phi_{(1,2,2)}$	$\phi_{(\overline{4},1,2)}$	$\phi_{(\overline{f 10}, {f 1, 3})}$
$G_{\rm PS}$	(4,2	2 , 1)	$(\overline{4}, 1, 2)$				(1, 2, 2)	$(\overline{f 4},{f 1},{f 2})$	$(\overline{10}, 1, 3)$
	Q_L L		u_R^c	d_R^c	e_R^c	$ u_R^c $	Н	S	Φ
$SU(3)_C$	3	1	$\overline{3}$	$\overline{3}$	1	1	1	1	1
$SU(2)_L$	2 2		1	1	1	1	2	1	1
$U(1)_Y$	+1/6 $-1/2$		-2/3	+1/3	+1	0	+1/2	0	0
$U(1)_{B-L}$	+1/3	-1	-1/3	-1/3	+1	+1	0	+1	+2

• Grand unification determines some free parameters in gauged $U(1)_{B-L}$ model

$$\mathcal{L} = |D_{\mu}S|^{2} + |D_{\mu}\Phi|^{2} + i\overline{\nu_{Ri}}\mathcal{D}\nu_{Ri} - \frac{1}{4}X_{\mu\nu}^{2} - \frac{\sin\epsilon}{2}X_{\mu\nu}B^{\mu\nu} - y_{ij}^{\nu}\tilde{H}^{\dagger}\overline{\nu_{Ri}}L_{j} - \frac{y_{ij}^{\Phi}}{2}\Phi\overline{\nu_{Ri}^{c}}\nu_{Rj} + \text{h.c.} + \mathcal{L}_{\text{SM}} - V(H, S, \Phi)$$

✓ Gauge kinetic mixing
 ✓ Gauge couplings
 ✓ ⟨Φ⟩: U(1)_{B-L} breaking scale

<u>SO(10) pNGB DM model</u>

- Gauge kinetic mixing \sim mixing angle (cf. Weinberg angle in the SM) $G_{\rm PS} = SU(4)_C \times SU(2)_L \times SU(2)_R \xrightarrow{\langle \Phi_{\overline{126}} \rangle \neq 0} SU(3)_C \times SU(2)_L \times U(1)_Y$ $U(1)_{B-L} \times U(1)_R$ Gauge fields $U(1)_{Y} = \begin{pmatrix} U(1)_{Y} \\ U(1)_{B-L} \end{pmatrix} = \begin{pmatrix} 1 & -\tan \epsilon \\ 0 & 1/\cos \epsilon \end{pmatrix} \begin{pmatrix} B'_{\mu} \\ C'_{\mu} \end{pmatrix} = \begin{pmatrix} U(1)_{R} \\ U(1)_{B-L} \end{pmatrix}$ U(1) generator (in GUT) $I_Y = \sqrt{\frac{3}{5}}I_{3R} + \sqrt{\frac{2}{5}}I_{B-L}$
- The gauge kinetic mixing angle is determined as

$$\epsilon = -\arctan\sqrt{\frac{2}{3}} \qquad \qquad \mathcal{L} \supset -\frac{1}{4}B_{\mu\nu}^2 - \frac{1}{4}X_{\mu\nu}^2 - \frac{\sin\epsilon}{2}X_{\mu\nu}B^{\mu\nu}$$

Gauge coupling unification

Long-lived DM in SO(10) pNGB DM model

• Long-lived DM in SO(10) pNGB DM model $M_I = 1.26 \times 10^{11}$ GeV DM should be lighter than that in the previous work.

$$\langle \Phi \rangle \sim 10^{13} {\rm GeV}$$

• Four-body decays and three-body decay of pNGB DM

• DM lifetime constraint

$$au_{\rm DM} \gtrsim 10^{27} \ {\rm s}$$

[Baring-Ghosh-Queiroz-Sinha '16]

Long-lived DM in SO(10) pNGB DM model

• The typical DM mass $\mathcal{O}(10^{1-2})~{
m GeV}$

$$\begin{pmatrix} h \\ s \end{pmatrix} \approx \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

 θ : mixing angle of CP-even scalars

• Parameter space in (m_{χ}, v_{ϕ}) -plane

Long-lived DM in SO(10) pNGB DM model

• (m_{χ}, m_{h_2}) -plane

Parameter space of SO(10) pNGB DM model

• Allowed region in $(m_{\chi}, v/v_s)$ plane realizing the DM relic abundance

<u>Summary</u>

- We proposed an SO(10) pNGB DM model in the framework of GUTs
- The gauged $U(1)_{B-L}$ pNGB DM model can be embedded to SO(10) GUT

$$H \subset \Phi_{10}, \quad S \subset \Phi_{16}, \quad \Phi \subset \Phi_{\overline{126}}$$

• The grand unification condition requires the following relations

$$\sin \epsilon = -\sqrt{2/5}, \quad v_{\phi} \approx 10^{11} \text{ GeV}, \quad m_{\chi} \lesssim \mathcal{O}(100) \text{ GeV}$$

• We find that the thermal relic abundance can be consistent with all the constraints when the DM mass is rather close to the resonances

Gauged $U(1)_{R-L}$ model

[YA-Toma-Tsumura '20]

$$\mathcal{L} = |D_{\mu}S|^{2} + |D_{\mu}\Phi|^{2} + \mathrm{i}\overline{\nu_{Ri}}\mathcal{D}\nu_{Ri} - \frac{1}{4}X_{\mu\nu}^{2} - \frac{\sin\epsilon}{2}X_{\mu\nu}B^{\mu\nu} - y_{ij}^{\nu}\tilde{H}^{\dagger}\overline{\nu_{Ri}}L_{j} - \frac{y_{ij}^{\Phi}}{2}\Phi\overline{\nu_{Ri}^{c}}\nu_{Rj} + \mathrm{h.c.} + \mathcal{L}_{\mathrm{SM}} - V(H, S, \Phi)$$

Gauge kinetic mixing of $U(1)_Y$ and $U(1)_{B-L}$

• Intuitive story of our gauged $U(1)_{B-L}$ model

arangian

```
Energy scale
       |d\Phi + 2ig_{B-L}X|^2
\langle \Phi \rangle = v_{\phi} \sim 10^{13} \text{ GeV}: U(1)_{B-L} \text{ is broken by } v_{\phi}
\tilde{\chi} \text{ is eaten by } X_{\mu} \Rightarrow X_{\mu} \text{ becomes massive } m_X \sim v_{\phi}
                 Large VEV hierarchy ~ heavy particles decouple X_{\mu}, \phi
            v_s \sim \text{TeV} SM + singlet scalar S with S<sup>2</sup> term
                12~246 GeV
```


$$i\mathcal{M} \propto -\frac{\sin\theta\cos\theta(m_{h_1}^2 - m_{h_2}^2)}{v_s m_{h_1}^2 m_{h_2}^2} q^2 + \mathcal{O}(1/v_\phi)$$

 \Rightarrow pNGB dark matter χ + second Higgs h_2 = simple pNGB DM model

Mass spectrum of scalar fields in gauged $U(1)_{B-L}$ model

- Mass eigenstates
 - CP-even scalars

$$\begin{pmatrix} h \\ s \\ \phi \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & \frac{\lambda_{H\Phi}v}{\lambda_{\Phi}v_{\phi}} \\ 0 & 1 & \frac{\lambda_{S\Phi}v_s}{\lambda_{\Phi}v_{\phi}} \\ -\frac{\lambda_{H\Phi}v}{\lambda_{\Phi}v_{\phi}} & -\frac{\lambda_{S\Phi}v_s}{\lambda_{\Phi}v_{\phi}} & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix}$$

 h_1 : SM-like Higgs boson

Mixing angle $\tan 2\theta \approx \frac{2vv_s(\lambda_{HS}\lambda_{\Phi} - \lambda_{H\Phi}\lambda_{S\Phi})}{v^2(\lambda_{H\Phi}^2 - \lambda_H\lambda_{\Phi}) - v_s^2(\lambda_{S\Phi}^2 - \lambda_S\lambda_{\Phi})}$

$$m_{h_1}^2 \approx \lambda_H v^2 - \frac{\lambda_{H\Phi}^2 \lambda_S - 2\lambda_{HS} \lambda_{H\phi} \lambda_{S\Phi} + \lambda_{\Phi} \lambda_{HS}^2}{\lambda_S \lambda_{\Phi} - \lambda_{S\Phi}^2} v^2 = 125 \text{ GeV},$$

$$m_{h_2}^2 \approx \frac{\lambda_S \lambda_{\Phi} - \lambda_{S\Phi}^2}{\lambda_{\Phi}} v_s^2 + \frac{(\lambda_{\Phi} \lambda_{HS} - \lambda_{H\Phi} \lambda_{S\Phi})^2}{\lambda_{\Phi} (\lambda_S \lambda_{\Phi} - \lambda_{S\Phi}^2)} v^2, \quad m_{h_3}^2 \approx \lambda_{\Phi} v_{\phi}^2$$

CP-odd scalars

$$\begin{pmatrix} \eta_s \\ \eta_\phi \end{pmatrix} = \frac{1}{(v_s^2 + 4v_\phi^2)^{1/2}} \begin{pmatrix} 2v_\phi & v_s \\ -v_s & 2v_\phi \end{pmatrix} \begin{pmatrix} \chi \\ \tilde{\chi} \end{pmatrix} \quad \begin{array}{l} \chi: \text{pNGB} \\ \tilde{\chi} \text{ is NGB eaten by the new gauge boson} \\ \end{array}$$

$$m_{\chi}^2 = rac{\mu_{
m c}(v_s^2 + 4v_{\phi}^2)}{4v_{\phi}}$$
 If $\mu_{
m c} o 0$, the pNGB becomes massless

Gauge kinetic mixing

• Gauge groups $SU(2)_L \times U(1)_Y \times U(1)_{B-L}$

• Mixing
$$ilde{V}_{GK} = \begin{pmatrix} 1 & 0 & -\tan\epsilon \\ 0 & 1 & 0 \\ 0 & 0 & 1/\cos\epsilon \end{pmatrix}, \quad \tan 2\zeta = \frac{-m_{\tilde{Z}}^2 \sin\theta_W \sin 2\epsilon}{m_X^2 - m_{\tilde{Z}}^2 (\cos^2\epsilon - \sin^2\theta_W \sin^2\epsilon)}$$
$$U_G = \begin{pmatrix} \cos\theta_W & -\sin\theta_W & 0 \\ \sin\theta_W & \cos\theta_W & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\zeta & -\sin\zeta \\ 0 & \sin\zeta & \cos\zeta \end{pmatrix}$$

• Mass eigenstate (R) (A)

$$\begin{pmatrix} B_{\mu} \\ W_{\mu}^{3} \\ X_{\mu} \end{pmatrix} = \tilde{V}_{\mathrm{GK}} U_{G} \begin{pmatrix} A_{\mu} \\ Z_{\mu} \\ Z'_{\mu} \end{pmatrix}$$

• Mass eigenvalues

$$m_Z^2 = \frac{1}{2} \left[\overline{M}^2 - \sqrt{\overline{M}^4 - \frac{4m_{\tilde{Z}}^2 m_X^2}{\cos^2 \epsilon}} \right], \quad m_{Z'}^2 = \frac{1}{2} \left[\overline{M}^2 - \sqrt{\overline{M}^4 + \frac{4m_{\tilde{Z}}^2 m_X^2}{\cos^2 \epsilon}} \right],$$
$$\overline{M}^2 := m_{\tilde{Z}}^2 (1 + \sin^2 \theta_W \tan^2 \epsilon) + m_X^2 / \cos^2 \epsilon$$

Path of $SO(10) \rightarrow SU(3)_C \times U(1)_{em}$

SO(10) pNGB DM model

• Particle contents of our model

[YA-Toma-Tsumura-Yamatsu '21]

			Ψ_{16}		Φ ₁₀	Φ_{16}	$\Phi_{\overline{126}}$		
SO(10)			16		10	16	$\overline{126}$		
	$\psi_{(4,$	2 , 1)		$\psi_{(\overline{4},1,2)}$	$\phi_{(1,2,2)}$	$\phi_{(\overline{4},1,2)}$	$\phi_{(\overline{\bf 10},{\bf 1},{\bf 3})}$		
$G_{\rm PS}$	(4, 2	2 , 1)	$(\overline{f 4}, f 1, f 2)$				$({f 1},{f 2},{f 2})$	$(\overline{f 4},{f 1},{f 2})$	$(\overline{10}, 1, 3)$
	Q_L	L	u_R^c	d_R^c	e_R^c	ν_R^c	Н	S	Φ
$SU(3)_C$	3	1	$\overline{3}$	$\overline{3}$	1	1	1	1	1
$SU(2)_L$	2 2		1	1	1	1	2	1	1
$U(1)_Y$	+1/6	-1/2	-2/3	+1/3	+1	0	+1/2	0	0
$U(1)_{B-L}$	+1/3	-1	-1/3	-1/3	+1	+1	0	+1	+2

• Symmetry breaking pattern

$$SO(10) \xrightarrow{\langle \Phi_{210} \rangle \neq 0} G_{PS}(\supset G_{SM} \times U(1)_{B-L}) \xrightarrow{\langle \Phi_{\overline{126}} \rangle \neq 0} G_{SM} \xrightarrow{\langle \Phi_{10} \rangle \neq 0} SU(3)_C \times U(1)_{EM}$$
$$G_{SM} \times U(1)_{B-L} \xrightarrow{\langle \Phi \rangle \neq 0} G_{SM} \xrightarrow{\langle H \rangle \neq 0} SU(3)_C \times U(1)_{EM}$$
$$(YA-Toma-Tsumura '20)$$

Gauge kinetic mixing

2

- E_{μ} : gauge field of $U(1) \subset SU(4)_C$, $W_{\mu}'^3$: gauge filed of $U(1) \subset SU(2)_R$
- Lagrangian

$$\mathcal{L} \supset -\frac{1}{4} (E_{\mu\nu})^2 - \frac{1}{4} (W_{\mu\nu}'^3)^2 + \frac{1}{2} \left(\frac{v_s^2}{4} + v_\phi^2 \right) \left(2g_{B-L} E_\mu - g_R W_\mu'^3 \right)$$
$$= -\frac{1}{4} (B_{\mu\nu}')^2 - \frac{1}{4} (C_{\mu\nu}')^2 + \frac{1}{2} M_{C'}^2 C_\mu'^2$$
$$= -\frac{1}{4} (B_{\mu\nu})^2 - \frac{1}{4} (C_{\mu\nu})^2 - \frac{\sin \epsilon}{2} B_{\mu\nu} C^{\mu\nu} + \frac{1}{2} M_C^2 C_\mu^2$$

• Relations of gauge fields

$$\begin{pmatrix} B'_{\mu} \\ C'_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \epsilon & \sin \epsilon \\ -\sin \epsilon & \cos \epsilon \end{pmatrix} \begin{pmatrix} W'^3_{\mu} \\ E_{\mu} \end{pmatrix}, \quad \begin{pmatrix} B_{\mu} \\ C_{\mu} \end{pmatrix} = \begin{pmatrix} 1 & -\tan \epsilon \\ 0 & 1/\cos \epsilon \end{pmatrix} \begin{pmatrix} B'_{\mu} \\ C'_{\mu} \end{pmatrix}, \quad \begin{pmatrix} W'^3_{\mu} \\ E_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \epsilon & 0 \\ \sin \epsilon & 1 \end{pmatrix} \begin{pmatrix} B_{\mu} \\ C_{\mu} \end{pmatrix}$$

• Covariant derivative

$$D_{\mu} \supset ig_{B-L}E_{\mu}Q_{B-L} + ig_{R}W_{\mu}^{\prime 3}I_{3}^{SU(2)_{R}} = ig_{B-L}C_{\mu}Q_{B-L} + ig_{1}B_{\mu}Q_{Y}$$

Beta function coefficient

• Beta function coefficient for vector, Weyl fermion, real, complex scalar fields

$$b_{i} = -\frac{11}{3} \sum_{\text{vector}} T(R_{V}) + \frac{2}{3} \sum_{\text{Weyl}} T(R_{F}) + \frac{1}{6} \sum_{\text{Real}} T(R_{RS}) + \frac{1}{3} \sum_{\text{Complex}} T(R_{CS})$$

• Vector fields => gauge fields

$$T(R_V) = C_2(G)$$

- $C_2(G)$: Quadratic Casimir invariant of the adjoint representation of G
- $T(R_i)$ is a Dynkin index of the irreducible representation R_i

\mathfrak{su}_n irrep.	d(R)	$C_2(R)$	T(R)	A(R)	$C_c(R)$	C/R/PR
$(0000\cdots 0000)$	1	0	0	0	0	R
$(1000\cdots 0000)$	n	$\frac{n^2-1}{2n}$	$\frac{1}{2}$	+1	1	$C/PR_{n=2}$
$(0000 \cdots 0001)$	n	$\frac{n^2-1}{2n}$	$\frac{1}{2}$	-1	n-1	$C/PR_{n=2}$
$(0100 \cdots 0000)$	$\frac{n(n-1)}{2}$	$\frac{(n+1)(n-2)}{n}$	$\frac{n-2}{2}$	n-4	2	$C/R_{n=4}$
$(0000 \cdots 0010)$	$\frac{n(n-1)}{2}$	$\frac{(n+1)(n-2)}{n}$	$\frac{n-2}{2}$	-n + 4	n-2	$C/R_{n=4}$
$(2000 \cdots 0000)$	$\frac{n(n+1)}{2}$	$\frac{(n-1)(n+2)}{n}$	$\frac{n+2}{2}$	n+4	2	$C/R_{n=2}$
$(0000 \cdots 0002)$	$\frac{n(n+1)}{2}$	$\frac{(n-1)(n+2)}{n}$	$\frac{n+2}{2}$	-n - 4	n-2	$C/R_{n=2}$
$(1000 \cdots 0001)$	$n^2 - 1$	$\overset{n}{n}$	\overline{n}	0	0	R
$(0010 \cdots 0000)$	$\frac{n(n-1)(n-2)}{6}$	$\frac{(n-2)(n-3)(n-4)}{12}$	$\frac{(n-3)(n-2)}{4}$	$\frac{(n-3)(n-6)}{2}$	3	$C/PR_{n=6}$
$(0000 \cdots 0100)$	$\frac{n(n-1)(n-2)}{6}$	$\frac{(n-2)(n-3)(n-4)}{12}$	$\frac{(n-3)(n-2)}{4}$	$-\frac{(n-\tilde{3})(n-6)}{2}$	n-3	$C/PR_{n=6}$
$(1100 \cdots 0000)$	$\frac{n(n-1)(n+1)}{3}$	$\frac{3(n^2-3)}{2n}$	$\frac{n^2-3}{2}$	$n^2 - 9$	3	$C/R_{n=3}$
$(0000 \cdots 0011)$	$\frac{n(n-1)(n+1)}{3}$	$\frac{3(n^2-3)}{2n}$	$\frac{n^2-3}{2}$	$-n^2 + 9$	n-3	$C/R_{n=3}$
$(3000 \cdots 0000)$	$\frac{n(n+1)(n+2)}{6}$	$\frac{(n+2)(n+3)(n+4)}{12}$	$\frac{(n+2)\tilde{(}n+3)}{4}$	$\frac{(n+3)(n+6)}{2}$	3	$C/PR_{n=2}$
$(0000 \cdots 0003)$	$\frac{n(n+1)(n+2)}{6}$	$\frac{(n+2)(n+3)(n+4)}{12}$	$\frac{(n+2)(n+3)}{4}$	$-\frac{(n+\tilde{3})(n+6)}{2}$	n-3	$C/PR_{n=2}$
$(0200 \cdots 0000)$	$\frac{n^2(n+1)(n-1)}{12}$	$\frac{n(n^2-16)}{3}$	$\frac{n(n-2)(n+2)}{6}$	$\frac{n(n-4)\tilde{(n+4)}}{3}$	4	$C/R_{n=4}$
$(0000 \cdots 0020)$	$\frac{n^2(n+1)(n-1)}{12}$	$\frac{n(n^2-16)}{3}$	$\frac{n(n-2)(n+2)}{6}$	$-\frac{n(n-4)(n+4)}{3}$	n-4	$C/R_{n=4}$

Pati-Salam or Left-Right

• Summary of the intermediate and unification scales and unified coupling

Group G_I	Scalars at $\mu = M_I$	b_j	$\frac{\log_{10}(M_I)}{M_I}$	$rac{1[{ m GeV}])}{M_U}$	α_U^{-1}
$G_{\rm PS}$	$(\begin{array}{c}({\bf 1},{\bf 2},{\bf 2})_{{\bf 10}}\\(\overline{{\bf 4}},{\bf 1},{\bf 2})_{{\bf 16}}\\(\overline{{\bf 10}},{\bf 1},{\bf 3})_{\overline{{\bf 126}}}\end{array}$	$\begin{pmatrix} b_{4C} \\ b'_{2L} \\ b_{2R} \end{pmatrix} = \begin{pmatrix} -\frac{22}{3} \\ -3 \\ +\frac{13}{3} \end{pmatrix}$	11.10 ± 0.08	16.31 ± 0.15	45.92 ± 0.50
$G_{\rm PS} \times D$	$\begin{array}{c}(1,2,2)_{10}\\(4,2,1)_{16}\\(\overline{4},1,2)_{16}\\(\overline{10},1,3)_{\overline{126}}\\(10,3,1)_{\overline{126}}\end{array}$	$\begin{pmatrix} b_{4C} \\ b'_{2L} \\ b_{2R} \end{pmatrix} = \begin{pmatrix} -4 \\ +\frac{13}{3} \\ +\frac{13}{3} \end{pmatrix}$	13.71 ± 0.03	15.22 ± 0.04	40.82 ± 0.13
$G_{\rm LR}$	$(1, 2, 2, 0)_{10}$ $(1, 1, 2, 1)_{16}$ $(1, 1, 3, 2)_{\overline{126}}$	$ \begin{pmatrix} b'_{3C} \\ b'_{2L} \\ b_{2R} \\ b_{B-L} \end{pmatrix} = \begin{pmatrix} -7 \\ -3 \\ -\frac{13}{6} \\ +\frac{23}{4} \end{pmatrix} $	8.57 ± 0.06	16.64 ± 0.13	46.13 ± 0.41
$G_{\rm LR} \times D$	$\begin{array}{c} ({\bf 1},{\bf 2},{\bf 2},0)_{{\bf 10}} \\ ({\bf 1},{\bf 1},{\bf 2},1)_{{\bf 16}} \\ ({\bf 1},{\bf 2},{\bf 1},1)_{{\bf 16}} \\ ({\bf 1},{\bf 1},{\bf 3},2)_{\overline{{\bf 126}}} \\ ({\bf 1},{\bf 3},{\bf 1},-2)_{\overline{{\bf 126}}} \end{array}$	$\begin{pmatrix} b'_{3C} \\ b'_{2L} \\ b_{2R} \\ b_{B-L} \end{pmatrix} = \begin{pmatrix} -7 \\ -\frac{13}{6} \\ -\frac{13}{6} \\ +\frac{15}{2} \end{pmatrix}$	10.11 ± 0.04	15.57 ± 0.09	43.38 ± 0.30

Complex **10** rep.