The domain of thermal dark matter candidates

Rupert Coy

Université Libre de Bruxelles (ULB), Belgium (Visiting at UNSW)

Asia-Pacific Workshop on Particle Physics and Cosmology, Monday 2nd August 2021

Based on arXiv: 2105.01263 with Thomas Hambye, Michel Tytgat and Laurent Vanderheyden

The domain of thermal dark matter candidates

• Understanding the nature of dark matter is an important open question

• Part of the challenge is the vast parameter space, for instance the allowed DM mass spans dozens of orders of magnitude

• One way to refine this parameter space is to consider the implications of the production mechanism

Thermal dark matter

- DM may be produced in many ways, one of the most appealing is freeze-out
- DM thermalises at some point ($\Gamma > H$), then at a later time the interactions drop out of equilibrium ($\Gamma < H$) and the DM yield, $Y_{\rm dm} \equiv n_{\rm dm}/s$, is essentially fixed
- Stronger interactions ⇒ later freeze-out ⇒ smaller yield (cf. figure from Baumann/Dodelson)

Thermal dark matter equilibrated with the SM

- For DM which entered into equilibrium with the SM, we have:
 - $m_{\rm dm}\gtrsim 100$ eV, since for smaller masses it is underabundant—the Cowsik-McClelland bound [Cowsik+McClelland, PRL 29, 669 (1972)]
 - $m_{
 m dm}\gtrsim 5.3~
 m keV$ from structure formation data, specifically from the Lyman-lpha forest [Irsic+, PRD 96, 023522 (2017)]
 - $m_{
 m dm} \gtrsim 3$ MeV from the constraint on $N_{
 m eff}$ [Planck, Astron. Astrophys. **641**, A6 (2020); Fields+, JCAP **03**, 010 (2020)]
 - $m_{
 m dm} \lesssim$ 300 TeV from the unitarity limit—the Griest-Kamionkowski bound [Griest+Kamionkowski, PRL 64, 615 (1990)]
- Thus, the DM mass is limited to the range [3 MeV, 300 TeV], about 8 orders of magnitude

Thermal dark matter with general T'

- Dark matter may thermalise, but not with the SM
- This scenario broadly needs:
 - Some way of producing some dark sector particle, e.g. through reheating or freeze-in
 - Sufficiently strong dark sector interactions that it thermalises with temperature T', independent of the SM temperature, T
 - Sufficiently feeble dark sector interactions with the SM that the two sectors don't thermalise
- In this more general scenario, what is the allowed range of DM mass as a function of T'/T?

The domain

э

The domain has five components:

- 1. The relativistic floor (blue)
- 2. The unitarity wall (red)
- 3. The thermalisation 'cellar' (orange)
- 4. The $N_{\rm eff}$ ceiling (green)
- 5. The free-streaming 'door' (purple)

1. Relativistic floor

• The relic DM abundance is proportional to

$$\Omega_{\rm dm} \propto m_{\rm dm} Y_{\rm dm, FO}$$
 (1)

since $Y_{\rm dm,FO}\simeq Y_{\rm dm,0}$

- Given some $\xi \equiv {\cal T}'/{\cal T}$, the smallest $m_{
 m dm}$ is obtained for the largest $Y_{
 m dm}$
- Largest thermal number density is relativistic one since there's no Boltzmann suppression, i.e. $n_{\rm dm} \sim T'^3 \Rightarrow Y_{dm,{
 m FO}} \sim \xi^3$
- In this case, the DM abundance is

$$\Omega_{\rm dm}h^2 = 0.12 \left(\frac{g'm_{\rm dm}}{6 \text{ eV}}\right) \left(\frac{g_{*s,0}}{g_{*s,\rm FO}}\right) \left(\frac{g'_{*s,\rm in}}{g'_{*s,\rm FO}}\right) \xi_{\rm in}^3, \quad (2)$$

so the floor scales as $m_{
m dm,min} \propto \xi^{-3}$, cf. [Hambye, Lucca and Vanderheyden,

PLB 807, 135553 (2020)]

The domain

æ

- Since $\Omega_{\rm dm} \propto m_{\rm dm} Y_{\rm dm,FO}$, the largest $m_{\rm dm}$ is obtained for the smallest possible $Y_{\rm dm} \Rightarrow$ annihilate away as much as possible
- What is the largest annihilation cross-section? Unitarity limit,

$$\langle \sigma v \rangle = \frac{\pi}{T^{\prime 2}} \mathcal{I}_{\epsilon}(m_{\rm dm}/T'),$$
 (3)

for J = 0, where \mathcal{I}_{ϵ} is the thermal-averaging integral

• When $m_{
m dm}/T'\gtrsim$ 3, find $\langle\sigma v
angle\sim\pi/m_{
m dm}^2$

• Taking the instantaneous freeze-out approximation, i.e. a) freeze-out when $\Gamma = H$, and b) $Y_{dm,FO} = Y_{dm,0}$, one finds

$$\Omega_{\rm dm}h^2 = 4.7 \times 10^8 \frac{g_{\rm dm}g_{*,\rm FO}^{1/2} x_{\rm FO}'\xi}{g_{*s,\rm FO}m_{Pl}\langle\sigma v\rangle {\rm GeV}} \tag{4}$$

- Expression agrees well with a full Boltzmann equation when DM undergoes non-relativistic freeze-out, $x'_{\rm FO}\equiv m_{
 m dm}/T'_{
 m FO}\gtrsim 3$
- Heavy DM freezes-out while non-relativistic, so $x'_{\rm FO} \sim 20$ and the unitarity cross-section $\langle \sigma v \rangle \sim \pi/m_{\rm dm}^2$ gives $\Omega_{\rm dm} h^2 \propto \xi m_{\rm dm}^2$
- Thus $m_{
 m dm}$ larger than GK bound is permitted if $\xi < 1$

- It's a different story for $T' \gg T$ (or if $g'_* \gg g_*$)
- Key point: for $T' \gtrsim 3T$, the Hubble rate is dominated by the hidden sector, so FO is no longer at $n_{\rm dm} \langle \sigma v \rangle \simeq T^2 / m_{Pl}$, instead it's at $n_{\rm dm} \langle \sigma v \rangle \simeq T'^2 / m_{Pl}$
- Consequently, the unitarity upper bound is independent of *T*, hence of ξ: a vertical line in the domain
- The dark sector must decay/annihilate away: how it does this modifies the result

The domain

æ

An aside: more on $m_{ m dm}$

- As $m_{
 m dm}
 ightarrow$ 0 (relativistic FO), we have $\Omega_{
 m dm} \propto m_{
 m dm}$
- As $m_{
 m dm} o \infty$ (non-relativistic FO), we have $\Omega_{
 m dm} \propto m_{
 m dm}^2$
- Assuming continuity of $\Omega_{dm}(m_{dm})$, must be at least one m_{dm} giving the correct abundance, in general an odd # of solns.
- The allowed range of $m_{
 m dm}$ decreases with ξ

• Assumed the DM sector thermalises-need to check this is true

• DM barely equilibrates if
$$\,T_{
m eq}^\prime\simeq\,T_{
m FO}^\prime(\simeq\,m_{
m dm})$$

$$\bullet$$
 Solved ${\it T}_{\rm eq}^{\prime}={\it T}_{\rm FO}^{\prime}$ for the unitarity cross-section

• Basic behaviour of this bound is $\xi \propto \sqrt{m_{
m dm}}$

The domain

æ

Observational bounds on the domain

• What model-independent constraints can we impose?

 Can't say anything about direct or indirect detection because make no assumption about dark sector interactions with SM, nor about DM self-interactions

• Look towards cosmology, where we may see effects which depend only on DM mass, temperature, etc.

4. The $N_{\rm eff}$ ceiling

- One well-known bound is $\Delta N_{
 m eff} \lesssim$ 0.3 at BBN
- The DM contribution is

$$\Delta N_{\rm eff} = \frac{60g_{\rm dm}\xi^4}{7\pi^4} \left(\frac{11}{4}\right)^{4/3} \int_{m_{\rm dm}/T'_{\rm BBN}}^{\infty} dz \frac{z^2 \sqrt{z^2 - m_{\rm dm}^2/T'_{\rm BBN}^2}}{e^z \pm 1}$$
(5)

- For $m_{\rm dm} \ll T'_{\rm BBN} = \xi T_{\rm BBN}$, have $\Delta N_{\rm eff} \sim \xi^4$, so require $\xi \lesssim 0.5$ independently of the DM mass
- Larger ξ is possible as long as the DM is non-relativistic, i.e. $m_{\rm dm}\gtrsim {\cal T}_{\rm BBN}'$

The domain

æ

5. The free-streaming door

- Consider DM's role in structure formation, saw that Lyman- α forest data gave $m_{\rm dm} \gtrsim 5.3$ keV for DM thermalised with SM
- Apply this constraint to different ξ via free-streaming horizon: the distance travelled by DM assuming it's collisionless
- Fermionic DM thermalised with SM with mass $m_{
 m dm}\gtrsim 5.3$ keV corresponds to $\lambda_{FS}\lesssim 0.066$ Mpc
- For $\xi \ll 1$, have roughly $\lambda_{FS} \propto \xi/m_{
 m dm}$
- For $\xi \gg 1$, have roughly $\lambda_{FS} \propto 1/(\xi m_{
 m dm})$ due to entropy dilution

The domain

æ

• For thermal DM that is a Dirac fermion, find mass range

$$m_{\rm dm} \in \left[1.0 \text{ keV}, 52 \text{ PeV}\right],\tag{6}$$

with extrema reached at $\xi \simeq 0.16, 6.9 \times 10^{-5}$

• The temperature ratio range is

$$\xi \in [1.4 \times 10^{-5}, 6.9 \times 10^5], \tag{7}$$

with extrema at $m_{
m dm}\simeq 50$ TeV, 30 PeV

t-channel scenario

- Want to see how an explicit simplified model fits into the domain
- Consider scenario with Dirac fermion DM, χ , and massive dark photon, γ' : dark QED with DM abundance driven by *t*-channel annihilation $\chi \bar{\chi} \rightarrow \gamma' \gamma'$

• What values of ξ and $m_{\rm dm}$ give the correct abundance? Can it fill part of the domain, or all of the domain, or go beyond the domain?

t-channel scenario

- Very light \Rightarrow rel. floor; very heavy \Rightarrow parallel to unitarity wall
- Larger $\alpha' \Rightarrow$ closer to unitarity wall
- Don't decouple relativistically when $m_{\rm dm} \gtrsim m_{\gamma'}$, increases of ξ compensates Boltzmann suppression of DM abundance
- For dashed scenario, ξ must increase to ξ ≫ 1, there is a unique solution in this regime

Conclusions

- Considered DM freeze-out for dark sector with temperature T'
- Generalising well-known theoretical and observational bounds, found the allowed DM domain as a function of $m_{\rm dm}$ and T'/T, with $m_{\rm dm} \in [1.0 \text{ keV}, 52 \text{ PeV}]$ and $\xi \in [1.4 \times 10^{-5}, 6.9 \times 10^5]$
- Due mainly to relativistic floor and N_{eff} ceiling, allowed mass range shrinks both for small ξ and large ξ
- Useful framework for studying specific scenarios
- Domain can be further shrunk by model-dependent constraints, are there other general bounds?
- Unclear how viable cases with $T' > (\text{or} \gg) T$ are

Back-up slides

→ ∃ →

æ

Thermalisation

- Solid: the DM particles become non-relativistic
- Dot-dashed: the DM annihilates into heavier particles of mass m', here chosen to be $m' = 3m_{\rm dm}$
- Dashed: the DM interacts through some heavy mediator and decouples while still relativistic

A slide on g_{*}

- Lots of different g_{*} and g'_{*} factors throughout this paper, qualitatively not that important
- Note that DM reheating may occur
 - 1. If DM scattering freezes out relativistically because its annihilation is mediated by some particle with $m_{\rm med} \gg m_{\rm dm}$, then nothing happens to g'_* (this is like SM neutrinos)
 - 2. If DM freezes out because it scatters into particles that become non-relativistic, then annihilations of this heavier particle reheats DM (like e^+e^- annihilations reheating photons)
- Consequently, we get

$$\xi_{\rm FO} = \left(\frac{g'_{*s,\rm in}}{g'_{*s,\rm FO}}\right)^{1/3} \xi_{\rm in} \tag{8}$$

The unitarity wall

- Since $\Omega_{\rm dm} \propto m_{\rm dm} Y_{\rm dm,FO}$, the largest $m_{\rm dm}$ is obtained for the smallest possible $Y_{\rm dm} \Rightarrow$ annihilate away as much as possible
- What is the largest annihilation cross-section? Unitarity limit,

$$\langle \sigma v \rangle = \frac{\pi}{T^{\prime 2}} \mathcal{I}_{\epsilon}(m_{\rm dm}/T'),$$
 (9)

for J = 0, where the thermal-averaging integral gives

$$\mathcal{I}_{\epsilon}(x') = \frac{1}{N_{\epsilon}^{2}} \int_{4x'^{2}}^{\infty} dw \int_{\sqrt{w}}^{\infty} dk_{+} \int_{-k_{-,\max}}^{k_{-,\max}} dk_{-}$$
$$\times \frac{\sqrt{w/(w - 4x'^{2})}}{(e^{(k_{+} + k_{-})/2} + \epsilon)(e^{(k_{+} - k_{-})/2} + \epsilon)}, \qquad (10)$$

and
$$N_{\epsilon} = \int_{x'}^{\infty} dk \, k \sqrt{k^2 - x'^2} / (e^k + \epsilon)$$
 and
 $k_{-,\max} = \sqrt{(1 - 4x'^2/w)(k_+^2 - w)}$

The unitarity wall for $T' \gg T$

 If the hidden sector decays/annihilates to the visible sector via equilibrium processes, entropy is conserved and one can use the general formula

$$m_{
m dm} \lesssim 35 \; {
m TeV} \; g_{
m dm}^{1/4} (x_{
m FO}' \mathcal{I}(x_{
m FO}'))^{1/2}$$
 (11)

 If hidden sector → visible sector is out-of-equilibrium, energy is conserved but entropy created, in which case the upper bound on the mass increases by a factor,

$$f \simeq \left(\frac{g_{*s}^4}{g_*'g_*^3}\right)^{1/8}$$
, (12)

where $g_*^{(\prime)}$ is relativisitic d.o.f. while $g_{*s}^{(\prime)}$ is d.o.f. in entropy • If $g'_* \sim \mathcal{O}(1)$, then $1 \leq f \leq 1.6$

- We have in mind the simplest kind of FO, $\chi \overline{\chi} \to \psi \overline{\psi}$, but what else could happen?
 - Co-annihilation, $\chi\phi\to\psi\eta,$ then unitarity limit will be on the heavier of χ,ϕ
 - DM is asymmetric, in which case a larger cross-section is required, and the unitarity bound on the DM mass is stronger
 - DM may be composite, conceivably with $\sigma \sim r_{\rm dm}^2 \gg 1/m_{\rm dm}^2$, see e.g. [Harigaya, Ibe, Kaneta, Nakano and Suzuki, JHEP **08**, 151 (2016)]
- The first two cases are subject to the general bounds we impose, the third is beyond our scope and will not be discussed

- Assumed the DM sector thermalises—need to check this is true
- At some very high temperature above all relevant scales of the DM interaction, $\Gamma \sim \alpha'^2 T'$, and this entered into equilibrium at

$$T'_{\rm eq} \simeq \alpha'^2 \xi^2 \frac{M_{Pl}}{\sqrt{g_*}}$$
 (13)

- The value of Γ/H typically peaks around $T' \sim m_{\rm dm}$: for larger T', $H \propto T^2$ grows faster than Γ , while for smaller T' the DM abundance is Boltzmann-suppressed
- \bullet DM barely equilibrates if ${\it T}_{
 m eq}^\prime \simeq {\it T}_{
 m FO}^\prime \sim {\it m}_{
 m dm}$

The thermalisation cellar

• Solving for $T'_{\rm eq} = m_{\rm dm}$ gives

$$\xi \simeq \sqrt{\frac{m_{\rm dm} g_*^{1/2}}{\alpha'^2 M_{Pl}}} \,. \tag{14}$$

- For smaller ξ , the DM does not equilibrate
- If there is some heavier mass involved, e.g. some other dark sector mass, m', then the bound is increased by $m_{\rm dm} \to m'$
- Doing this more carefully by solving $T'_{eq} = T'_{FO}$ for the unitarity cross-section gives a similar result

Other dark sector contributions to $N_{\rm eff}$

- Considering only the DM contribution to $N_{\rm eff}$ gives a conservative limit
- If hidden sector particles decouple from the dark matter and then decay/annihilate back into the SM, there is no problem
- If not, and they are still relativisitic at BBN, we have

$$\xi \lesssim 0.6 \, g_{\mathrm{dark, light}}^{-1/4} \,.$$
 (15)

• For heavier dark sector particles, have an equivalent, perhaps stronger diagonal line, $m_{
m partner}\gtrsim T_{
m BBN}'$

The free-streaming door

• Formally, free-streaming horizon given by

$$\lambda_{FS} = \int_{t_{\rm FO}}^{t_0} dt \frac{\langle v(t) \rangle}{a(t)} \tag{16}$$

• If time when DM becomes non-relativistic, t_{nr} , is before the time of matter-radiation equality, $t_{eq} = 1.9 \times 10^{11}$ s, have

$$\lambda_{FS} = \frac{\sqrt{t_{nr} t_{eq}}}{a_{eq}} \left(5 + \log \frac{t_{nr}}{t_{eq}} \right) \left(\frac{g_{*s,0} + \xi^3 g'_{*s,0}}{g_{*s,FO} + \xi^3 g'_{*s,FO}} \right)^{1/3}$$
(17)

• For $\xi \ll 1$, have roughly $\lambda_{FS} \propto \xi/m_{
m dm}$

• For $\xi \gg 1$, have $t_{nr} \propto 1/H(T'_{nr}) \propto 1/m_{dm}^2$ hence $\lambda_{FS} \propto 1/(\xi m_{dm})$, neglecting the log

t-channel scenario

- Can see how the abundance changes as a function of $m_{
 m dm}$, explicit example of the plot we saw before
- See that there are an odd number of DM candidates in general
- Figure for lpha'= 0.1, $m_{\gamma'}=$ 30 MeV

• Introduce Dirac fermion DM, χ , as well as another Dirac fermion, ψ , and scalar, ϕ :

$$\mathcal{L}_{\rm HS} = i\bar{\chi}\partial\!\!\!/ \chi - m_{\rm dm}\bar{\chi}\chi + i\bar{\psi}\partial\!\!\!/ \psi - m_{\psi}\bar{\psi}\psi \qquad (18)$$
$$+ \frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi - \frac{1}{2}m_{\phi}^{2}\phi^{2} - y_{\chi}\phi\bar{\chi}\chi - y_{\psi}\phi\bar{\psi}\psi$$

- If $m_{\psi} \gg m_{\chi}, m_{\phi}$, integrate it out and have a similar situation to t-channel, with $\chi \bar{\chi} \to \phi \phi$
- Otherwise, have s-channel annihilation, $\chi \bar{\chi} \to \phi \to \psi \psi$, with $\sigma \propto \alpha_x^2/(s m_{\phi}^2)^2$, where $\alpha_x \equiv y_{\chi} y_{\psi}/(4\pi)$
- This annihilation can have a resonance at $m_{
 m dm} \sim m_{\phi}$

s-channel model

- As expected, similar behaviour in the large $m_{\rm dm}$ and small $m_{\rm dm}$ limits
- Solid line: $\alpha_x = 0.001$, $m_{\chi} = 5$ GeV, $m_{\phi} = 100$ GeV Dashed line: $\alpha_x = 0.1$, $m_{\psi} = 30$ MeV, $m_{\phi} = 1$

Contact interaction

- Potential problem in previous model (and many models!): what happens to the $\gamma'?$
- In some instances its abundance may be comparable to or larger than the DM
- Can it decay away before BBN, but yet have sufficiently weak interactions with the SM that T' ≠ T? Not sure
- Now consider scenario with scalar DM, Φ , and scalar partner, η ,

$$\mathcal{L} \supset -\frac{1}{2}m_{\rm dm}^2\Phi^2 - \frac{\lambda_{\Phi}}{4!}\Phi^4 - \frac{1}{2}m_{\eta}^2\eta^2 - \frac{\lambda_{\eta}}{4!}\eta^4 - \frac{\lambda_{\Phi\eta}}{4}\Phi^2\eta^2,$$
(19)

neglecting other quartic terms and imposing a $\mathbb{Z}_2\times\mathbb{Z}_2$ symmetry to forbid cubic terms

• DM abundance set by $\Phi\Phi \rightarrow \eta\eta$

- If λ_{Φ} is large enough, the DM abundance modified by number-violating 2 \leftrightarrow 4 interactions, see e.g. [Arcadi, Lebedev, Pokorski and Toma, JHEP 08 050 (2019)], then concerned with unitarity of this process
- If $m_{\eta} > m_{\Phi}$, its abundance is efficiently suppressed by equilibration of $\eta\eta \leftrightarrow \Phi\Phi$ alone
- However, if $m_\eta < m_\Phi$, the η is not Boltzmann suppressed, hence may be too abundant
- Here the 2 \leftrightarrow 4 process in the η sector may efficiently deplete it

Contact interaction

- Similar behaviour to t-channel model at small and large $m_{
 m dm}$
- Can we deplete the η ? Consider $m_\eta = 10$ MeV for concreteness
 - Taking $\lambda_\eta=$ 10, find $\Omega_\eta<\Omega_{\rm dm}$ for $\xi\lesssim 0.1$
 - Taking $\lambda_{\eta} = 10^{-3}$ (η fails to thermalise if λ_{η} is much smaller), find $\Omega_{\eta} < \Omega_{dm}$ for $\xi \lesssim 0.03$

