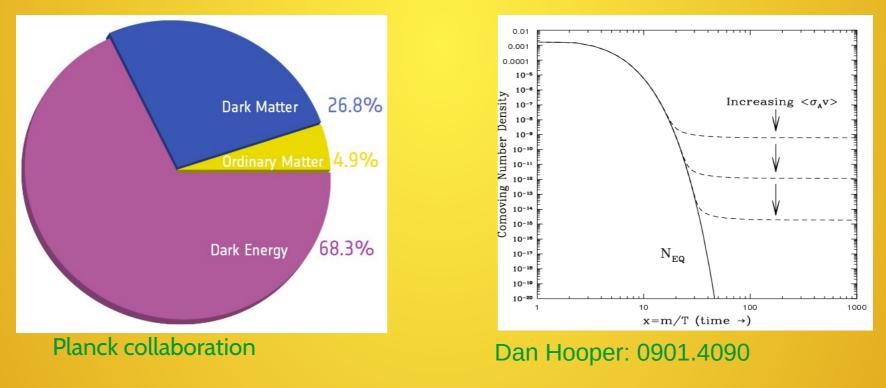
Gravitational wave signals of DM freeze-out

Po-Yan Tseng (NTHU) Danny Marfatia (U. of Hawaii)

Reference: JHEP02(2021)022 (arXiv:2006.07313)

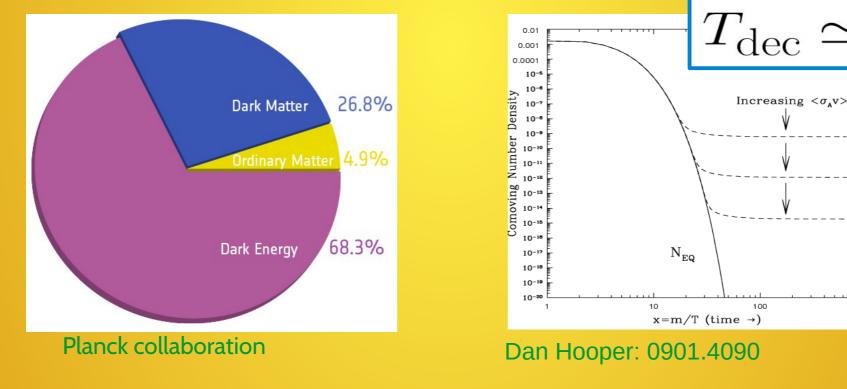
Asia-Pacific Workshop on Particle Physics and Cosmology 2021, Aug. 2nd - Aug. 6th

- DM production: Thermal freeze-out mechanism.
- Weakly interacting massive DM (WIMP), gives the correct relic density.



Asia-Pacific Workshop 2021

- DM production: Thermal freeze-out mechanism.
- Weakly interacting massive DM (WIMP), gives the correct relic density.

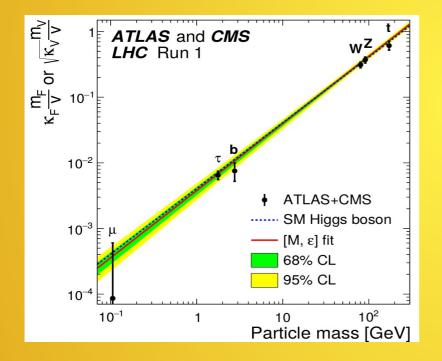


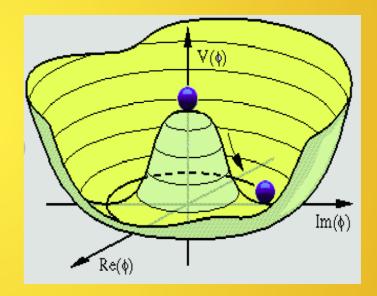
1000

100

 $m_{\hat{}}$

 125 GeV Higgs gives the mass to the SM particles through spontaneous symmetry breaking.





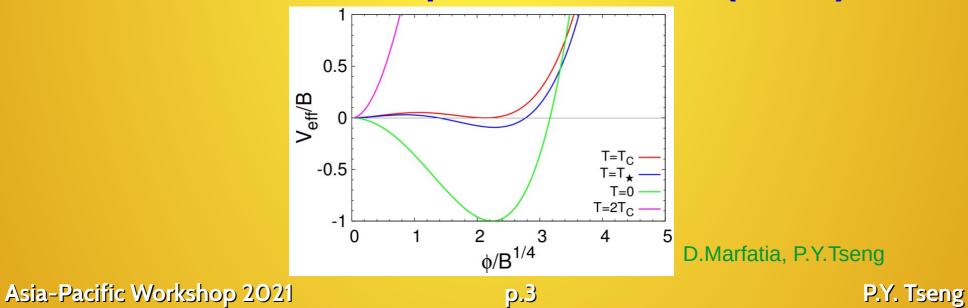
Dezso Horvath: Higgs and BSM studies at the LHC

 The origin of DM mass may come from the spontaneous symmetry breaking inducing by another scalar.

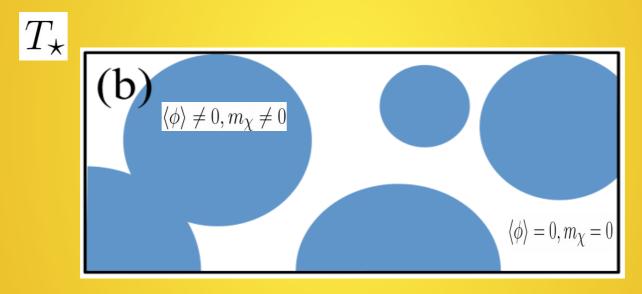
$$\mathcal{L} \supset \bar{\chi} i \partial \!\!\!/ \chi - g_{\chi} \phi \bar{\chi} \chi - V_{\text{eff}}(\phi, T)$$

$$m_{\chi} \simeq g_{\chi} \langle \phi \rangle$$

We consider 1st order phase transition (FOPT).



During 1st order phase transition (FOPT).

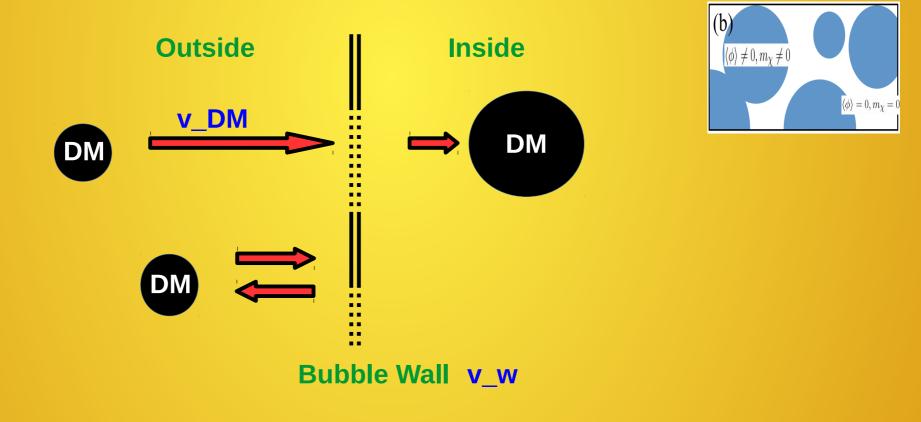


J.P.Hong, S.Jung, K.P.Xie: 2008.04430

Outline

- Introduction
- Bubble filtering
- Gravitational wave production
- Models
- Summary

 During FOPT, massless (massive) DM particles locate outside (inside) the bubble, and momentum conservation much be satisfied at the bubble wall.



If a thermal DM flux is incident on the wall, the number density of DM that enter the bubble is:

$$n_{\chi}^{\rm in} = n_{\bar{\chi}}^{\rm in} \simeq \frac{g_{\rm DM} T_{\star}^3}{\gamma_w v_w} \left(\frac{\gamma_w (1 - v_w) m_{\chi} / T_{\star} + 1}{4\pi^2 \gamma_{\omega}^3 (1 - v_w)^2} \right) e^{-\frac{\gamma_w (1 - v_w) m_{\chi}}{T_{\star}}}$$

D.Chway, T.H.Jung, C.S.Shin: 1912.04238

 DMs are filtered by the non-relativistic and relativistic bubble wall velocity:

$$n_{\chi}^{\rm in} = \begin{cases} \sim e^{-m_{\chi}/T_{\star}} & \text{for } v_w \to 0\\ \sim e^{-m_{\chi}/(2\gamma_w T_{\star})} & \text{for } m_{\chi}/(\gamma_w T_{\star}) \to 0 \end{cases}$$

Asia-Pacific Workshop 2021

- If $T_{\star} < T_{dec}$, the DM inside the bubble is decoupled from the thermal bath and become DM relic abundance.
- DM relic abundance today can be calculated by dividing $n_{\chi}^{in} + n_{\bar{\chi}}^{in}$ by entropy $s = (2\pi^2/45)g_{\star S}T^3$:

$$\Omega_{\rm DM} h^2 \simeq 6.29 \times 10^8 \, \frac{m_\chi (n_\chi^{\rm in} + n_{\bar{\chi}}^{\rm in})}{\rm GeV} \frac{1}{g_{\star S} T_\star^3}$$

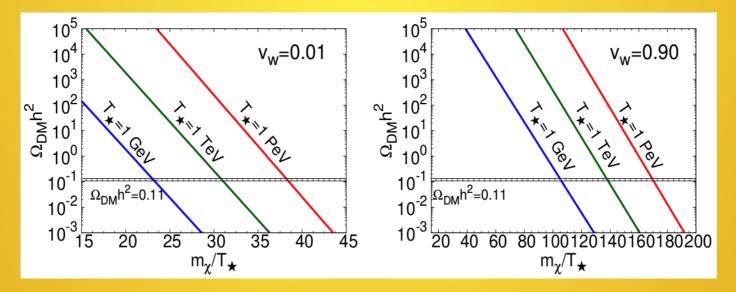
$$\Omega_{\rm DM} h^2 \simeq \begin{cases} 1.27 \times 10^8 \left(\frac{m_{\chi}}{\rm GeV}\right) \left(\frac{g_{\rm DM}}{g_{\star S}}\right) \left(\frac{m_{\chi}}{2\gamma_w T_{\star}} + 1\right) e^{-\frac{m_{\chi}}{2\gamma_w T_{\star}}}, & \text{for } v_w \to 1\\ 3.19 \times 10^7 \left(\frac{m_{\chi}}{\rm GeV}\right) \left(\frac{g_{\rm DM}}{g_{\star S}}\right) \left(\frac{1}{v_w}\right) \left(\frac{m_{\chi}}{T_{\star}} + 1\right) e^{-\frac{m_{\chi}}{T_{\star}}}, & \text{for } v_w \to 0. \end{cases}$$

Asia-Pacific Workshop 2021

- If $T_{\star} < T_{dec}$, the DM inside the bubble is decoupled from the thermal bath and become DM relic abundance.
- DM relic abundance today can be calculated by dividing $n_{\chi}^{in} + n_{\bar{\chi}}^{in}$ by entropy $s = (2\pi^2/45)g_{\star S}T^3$:
- For example: $m_{\chi} \simeq 1$ TeV, $v_w \to 1$ requires

$$\frac{m_{\chi}}{2\gamma_w T_{\star}} \simeq 27$$

- If $T_{\star} < T_{dec}$, the DM inside the bubble is decoupled from the thermal bath and become DM relic abundance.
- DM relic abundance today can be calculated by dividing $n_{\chi}^{in} + n_{\bar{\chi}}^{in}$ by entropy $s = (2\pi^2/45)g_{\star S}T^3$:



Asia-Pacific Workshop 2021

- Sudden DM freeze-out induced by a FOPT can easily accommodate DM mass above a PeV, which is beyond the current DM direct detection and LHC searches.
- We focus on the Gravitational Wave (GW) signals of Sudden DM freeze-out with a FOPT.

- A FOPT generates GWs from three processes: I).
 Bubble collisions, II). Sound wave in the plasma, III) Magnetohydrodynamic (MHD) turbulence.
- The relevant parameters are required to calculate the GW signals:

$$\begin{cases} T_{\star}, \\ \alpha \equiv \frac{\left(1 - T\frac{\partial}{\partial T}\right) \Delta V_{\text{eff}}|_{T_{\star}}}{\rho(T_{\star})}, \quad \rho \equiv \pi^2 g_{\star} T^4 / 30 \\ \frac{\beta}{H_{\star}} \simeq T_{\star} \frac{d(S_3/T)}{dT} \Big|_{T_{\star}} \\ v_W \end{cases}$$

Asia-Pacific Workshop 2021

A FOPT generates GWs from: I). Bubble collisions

$$h^{2}\Omega_{\rm env}(f) = 1.67 \times 10^{-5} \left(\frac{H_{*}}{\beta}\right)^{2} \left(\frac{\kappa\alpha}{1+\alpha}\right)^{2} \left(\frac{100}{g_{*}}\right)^{\frac{1}{3}} \left(\frac{0.11 \, v_{w}^{3}}{0.42 + v_{w}^{2}}\right) \, S_{\rm env}(f)$$

C.Caprini et. al: 1512.06239

$$S_{\rm env}(f) = \frac{3.8 \ (f/f_{\rm env})^{2.8}}{1 + 2.8 \ (f/f_{\rm env})^{3.8}}$$

• The peak frequency is determined by the time scale of **FOPT** $1/\beta$:

$$\frac{f_*}{\beta} = \left(\frac{0.62}{1.8 - 0.1v_w + v_w^2}\right)$$

A FOPT generates GWs from: I). Bubble collisions

$$h^{2}\Omega_{\rm env}(f) = 1.67 \times 10^{-5} \left(\frac{H_{*}}{\beta}\right)^{2} \left(\frac{\kappa\alpha}{1+\alpha}\right)^{2} \left(\frac{100}{g_{*}}\right)^{\frac{1}{3}} \left(\frac{0.11 \, v_{w}^{3}}{0.42 + v_{w}^{2}}\right) \, S_{\rm env}(f)$$

C.Caprini et. al: 1512.06239

$$S_{\rm env}(f) = \frac{3.8 \ (f/f_{\rm env})^{2.8}}{1 + 2.8 \ (f/f_{\rm env})^{3.8}}$$

 The peak frequency is determined by the time scale of FOPT. Then red-shift to present epoch

$$f_{\rm env} = 16.5 \times 10^{-3} \,\mathrm{mHz} \,\left(\frac{f_*}{\beta}\right) \,\left(\frac{\beta}{H_*}\right) \left(\frac{T_*}{100 \,\mathrm{GeV}}\right) \left(\frac{g_*}{100}\right)^{\frac{1}{6}}$$

Model

Model: Scalar quartic Model

The finite-temperature quartic effective scalar potential is:

$$V_{\rm eff}(\eta, T) = \frac{\mu^2 + DT^2}{2}\eta^2 - \xi T\eta^3 + \frac{\lambda}{4}\eta^4$$

F.C.Adams: hep-ph/9302321

 Including one-loop Coleman-Weinberg and finitetemperature contributions, potentials of this form are commonly found in *inert singlet, inert doublet, MSSM,* and Majoron models.

Models: Scalar quartic Model

The finite-temperature quartic effective scalar potential is:

$$V_{\rm eff}(\eta, T) = \frac{\mu^2 + DT^2}{2}\eta^2 - \xi T\eta^3 + \frac{\lambda}{4}\eta^4$$

Benchmark points:

Table 1 . Benchmark points (with $\lambda = 0.1$) for the Scalar Quartic Model that give $\Omega_{\rm DM}h^2 = 0.11$.				
	P1	P2	$\mathbf{P3}$	P4
ξ	0.943	0.863	0.796	0.901
D	19.7	16.5	14.0	18.0
g_χ	2.97	3.22	3.48	3.31
α	0.089	0.082	0.076	0.121
eta/H_{\star}	1116	1062	1015	1085
v_η/T_\star	25.71	23.41	21.49	24.51
v_w	0.768	0.763	0.760	0.791
$T_{\star}/{ m GeV}$	21.5	23.8	26.1	22.7
$m_{\chi}/{ m GeV}$	1642	1799	1953	1838

D.Marfatia, P.Y. Tseng: 2006.07313

Asia-Pacific Workshop 2021

p.13

Models: Scalar quartic Model

The finite-temperature quartic effective scalar potential is:

$$V_{\rm eff}(\eta, T) = \frac{\mu^2 + DT^2}{2}\eta^2 - \xi T\eta^3 + \frac{\lambda}{4}\eta^4$$

GW signals: 10⁻⁶ LIGO 02 10⁻⁸ 05 41 10⁻¹⁰ Ω_{GW}h² 10⁻¹² 10⁻¹⁴ BBO 10⁻¹⁶ 10⁻¹⁸ $0.3 \le v_w \le 1.0$ 10⁻²⁰ 10⁻⁴ 10⁻² 10⁰ 10⁻⁶ 10^{2} 10^{4} f [Hz] D.Marfatia, P.Y. Tseng: 2006.07313

Asia-Pacific Workshop 2021

p.14

P.Y. Tseng

Summary

- We studied the sudden freeze-out DM as an alternative to the continuous thermal freeze-out.
- A necessary ingredient is a FOPT generates DM mass.
- The DM relic abundance may be determined by bubble filtering.
- Because FOPT triggers sudden DM freeze-out, GW offers a signature.

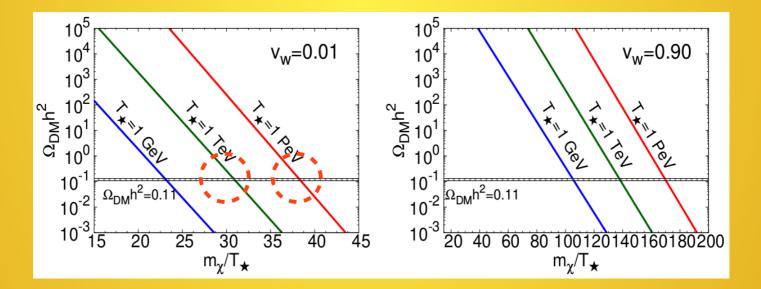
Thank you!

Back up

- Only massless **DM** particles carry kinetic energy larger than m_{χ} can penetrate the bubble walls and become massive.
- DM inside the bubbles abruptly decouples from the thermal bath if $T_{\star} < T_{\rm dec}$.
- The bubbles *filter out* certain amount of DM and determine the DM relic abundance.

• The m_{χ}/T_{\star} needed to produce the DM relic abundance depends on the velocity of bubble wall v_w .

$$T_{\star} = m_{\chi}/30$$
 for $m_{\chi} = 1$ TeV, $v_w = 0.01$



Future is DARK 2021

Bubble wall velocity

 Particles reflected by the bubble wall exert pressure on it, and slow down the bubble wall velocity.



Bubble wall velocity

In the ultrarelativistic limit, the pressure on bubble wall can be obtain from the light degree of freedom inside and outside the bubble:

$$P = \frac{d_n g_\star \pi^2}{90} (1 + v_w)^3 \gamma_\omega^2 T_\star^4$$

D.Chway et.al : 1912.04238 J.R.Espinosa et.al: 1004.4187 D.Bodeker et.al : 0903.4099

$$d_n \equiv \frac{1}{g_{\star}} \left[\sum_{0.2M_i > \gamma_w T_{\star}} \left(g_i^b + \frac{7}{8} g_i^f \right) \right]$$

• The v_w can be obtained by solving the eq. $P = \Delta V_{\text{eff}}$:

$$\alpha = \frac{d_n}{3}(1+v_w)^3\gamma_\omega^2$$

$$\alpha \equiv \frac{\left(1 - T\frac{\partial}{\partial T}\right) \Delta V_{\text{eff}}|_{T_{\star}}}{\rho(T_{\star})}, \quad \rho \equiv \pi^2 g_{\star} T^4 / 30$$

Future is DARK 2021

Bubble wall velocity

• For bubble wall velocity v_w faster than the sound speed in plasma, but not ultrarelativistic, we use the approximation:

P.J.Steinhardt, Phys. Rev. D. 25, 2074 (1982)

$$v_w = \frac{\frac{1}{\sqrt{3}} + \sqrt{\alpha^2 + \frac{2}{3}\alpha}}{1 + \alpha}$$

- A FOPT generates GWs from three processes: I).
 Bubble collisions, II). Sound wave in the plasma, III) Magnetohydrodynamic (MHD) turbulence.
- The Euclidean action:

$$S_3(T) = 4\pi \int_0^\infty r^2 dr \left[\frac{1}{2} \left(\frac{d\phi}{dr}\right)^2 + V_{\text{eff}}(\phi, T)\right]$$

Bubble nucleation rate per unit volume:

$$\Gamma(T) = T^4 \left(\frac{S_3}{2\pi T}\right)^{3/2} e^{-\frac{S_3}{T}}$$

- A FOPT generates GWs from three processes: I).
 Bubble collisions, II). Sound wave in the plasma, III) Magnetohydrodynamic (MHD) turbulence.
- The fraction of space in the false vacuum:

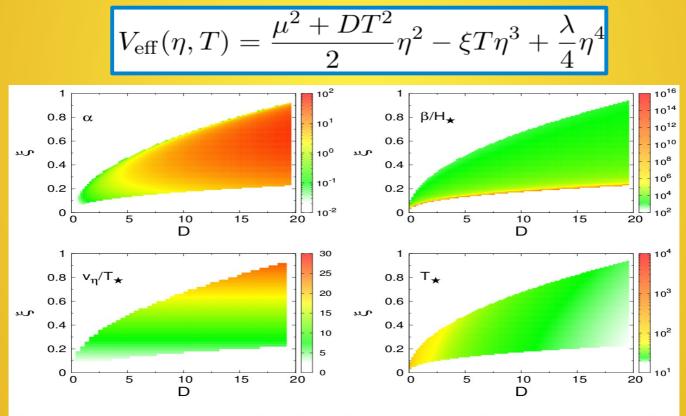
$$F(t) = \exp\left[-\frac{4\pi}{3}v_w^3 \int_{t_c}^t dt'(t-t')^3 \Gamma(t')\right]$$

• The percolation temperature T_{\star} of **FOPT** is determined by :

$$F(t_{\star}) = 1/e \simeq 0.37$$

Models: Scalar quartic Model

The finite-temperature quartic effective scalar potential is:



p.23

Future is DARK 2021

D.Marfatia, P.Y. Tseng: 2006.07313 P.Y. Tseng

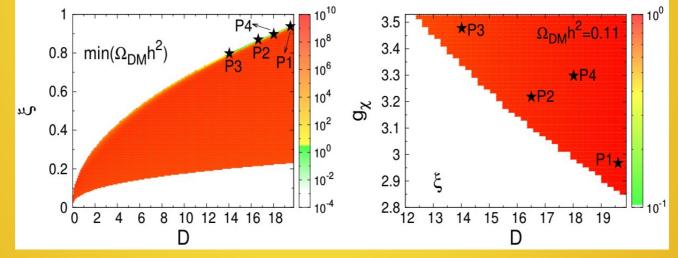
Models: Scalar quartic Model

The finite-temperature quartic effective scalar potential is:

$$V_{\rm eff}(\eta, T) = \frac{\mu^2 + DT^2}{2}\eta^2 - \xi T\eta^3 + \frac{\lambda}{4}\eta^4$$

Correct DM relic:

Future is DARK 2021



p.24

D.Marfatia, P.Y. Tseng: 2006.07313 P.Y. Tseng

Models: SU(2)x model

 In this dimensionless model, the SM gauge group is extended by as SU(2)x

