Time-delayed electrons from neutral currents at the LHC

Zeren Simon Wang

(National Tsing Hua University)

 ${\sf arXiv:} 2107.03203$ in collaboration with Kingman Cheung and Kechen Wang

August 5th, 2021 Asia-Pacific Workshop on Particle Physics and Cosmology 2021

Motivation

- Surge of interest in long-lived particles (LLPs) in recent years
- Most common strategy: displaced objects at colliders
- A novel strategy: time-delay feature of the LLP decay products
- Neutral LLPs more challenging than charged LLPs:
 - The lightest neutralinos in the R-parity-violating supersymmetry
 - Heavy neutral leptons (HNLs) in U(1) extensions of the SM

CMS timing detector

- Timing precision upgrades for ATLAS, CMS, and LHCb planned
- Original purpose: reducing pile-up issues at the HL-LHC
- CMS minimum-ionizing-particle (MIP) timing detector (MTD)
- Before ECAL
- Timing resolution: 30 ps

RPV-MSSM

$$W_{R_p} = \mu_i H_u \cdot L_i + \frac{1}{2} \lambda_{ijk} L_i \cdot L_j \bar{E}_k + \lambda'_{ijk} L_i \cdot Q_j \bar{D}_k + \frac{1}{2} \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k$$

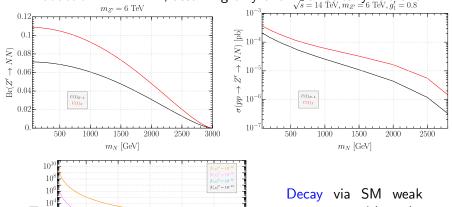
- Light $(\mathcal{O}(GeV))$ neutralinos (binolike) still allowed with RPV
- Assume $\tilde{\chi}_1^0$ LSP and degenerate sfermion masses
- Production: $Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0$ via small Higgsino components
- Decay: $\lambda'_{112} \Rightarrow \tilde{\chi}^0_1 \rightarrow \nu_e d\bar{s}, \bar{\nu}_e \bar{d}s, e^- u\bar{d}, \text{ or } e^+ \bar{u}d$
- Small RPV couplings & $m_{\tilde{\chi}_1^0} o ext{long-lived } \tilde{\chi}_1^0$'s

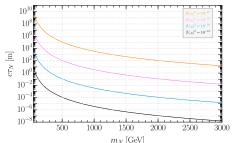
Independent parameter:

$$\underline{m_{ ilde{\chi}_1^0}}, \underline{\lambda_{112}^\prime/m_{ ilde{f}}^2}, \underline{\mathsf{Br}(Z o ilde{\chi}_1^0 ilde{\chi}_1^0)}$$

$$U(1)_{B-L}$$
 and $U(1)_X$

- SM extending of $U(1)_X$, a linear combination of SM $U(1)_Y \& U(1)_{B-L}$
- Predicts a new vector boson Z', a new scalar particle Φ , and three right-handed neutrinos

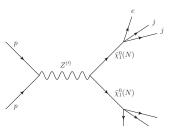

	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	$U(1)_X$
Q_L^i	3	2	$\frac{1}{6}$	$\frac{1}{6}x_{H} + \frac{1}{3}x_{\Phi}$
u_R^i	3	1	$\frac{2}{3}$	$\frac{2}{3}x_{H} + \frac{1}{3}x_{\Phi}$
d_R^i	3	1	$-\frac{1}{3}$	$-\frac{1}{3}x_{H}+\frac{1}{3}x_{\Phi}$
L_L^i	1	2	$-\frac{1}{2}$	$-\frac{1}{2}x_H - x_{\Phi}$
e_R^i	1	1	$-\bar{1}$	$-x_H - x_{\Phi}$
Η	1	2	$\frac{1}{2}$	$\frac{1}{2}X_H$
N^i	1	1	Ō	$-x_{\Phi}$
Ф	1	1	0	$2x_{\Phi}$

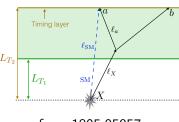

• Fix $x_{\Phi}=1$, and $x_{H}=0 \rightarrow U(1)_{B-L}$ and $x_{H}=-1.2 \rightarrow \text{call } U(1)_{X}$

$$\mathcal{L}_{Y}^{U(1)_{X}} = -Y_{D}\overline{L}_{L}\widetilde{H}N - Y_{N}\Phi\overline{N^{c}}N + \text{h.c.},$$

HNLs in $U(1)_{B-L}$ and $U(1)_X$

• Production: $Z' \to NN$, assuming only one kinematically relevant N



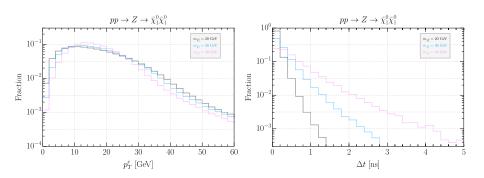


Decay via SM weak currents with the active-heavy neutrino mixing (consider only V_{eN} here)

Signature and strategy

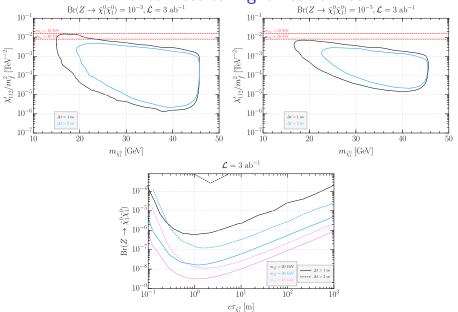
 Require at least one of the two LLPs to decay into ejj final state with a macroscopic distance from the IP

from 1805.05957

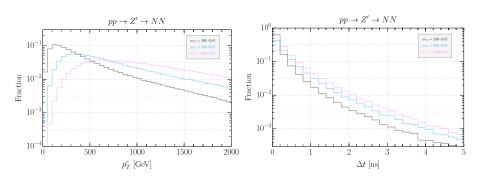

- $p_T^e > 20$ GeV and $\eta^e < 2.5$ for the leading electron
- LLP decay in the f.v.: 200 < r < 1170 mm & |z| < 3040 mm
- \geq 1 ISR jet with $p_T^j > 30$ GeV for timestamping the hard collision $\Delta t = t_{\text{arrival}}^e t_{\text{prompt}}^e > 1 \text{ns}, \quad t_{\text{arrival}}^e = \frac{l_{\text{LLP}}}{\beta_{\text{LLP}}} + l_e$

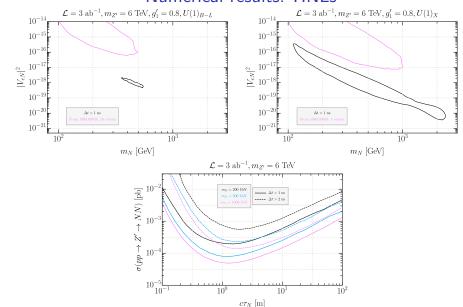
$$N_s^{\tilde{\chi}_1^0} = N^Z \cdot \operatorname{Br}(Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) \cdot \operatorname{Br}(\tilde{\chi}_1^0 \to e^- u \bar{s} \text{ or } e^+ \bar{u} s) \cdot 2 \cdot \epsilon^{\tilde{\chi}_1^0}$$

 $N_s^N = \sigma^N \cdot \mathcal{L} \cdot \operatorname{Br}(N \to e j j) \cdot 2 \cdot \epsilon^N$


Background

- Finite timing resolution (30 ps) \rightarrow same-vertex (SV) hard collisions of jet and photon production may lead to a fake signal
 - $N_{\rm SV}=2\times10^{11}$ for the inclusive photon production, as well as jet production ($p_T^j>30$ GeV) with a jet misidentified as a photon
 - ullet Gaussian smearing $o \Delta t > 1$ ns removes all these background events
- Pile-up (PU) events estimated to be 10^7 , taking the fraction of jets being trackless as 10^{-3}
 - Gaussian smearing of 190 ps $ightarrow \Delta t >$ 1(2) ns leads to 0.7 and 0 background events
 - 190 ps derived by the longitudinal spread of the bunch crossing
- Conclusion: $\Delta t > 1$ ns essentially no background
- Show 3-signal-event isocurves as the 95% C.L. exclusion limits


Numerical results: light neutralinos


Numerical results: light neutralinos

Numerical results: HNLs

Numerical results: HNLs

Summary

- Upcoming upgrades in the timing precision detectors at the ATLAS, CMS, LHCb, etc.
- Using timing information to probe LLPs
- Studied two scenarios of neutral LLPs with similar signatures
 - $\tilde{\chi}_1^0$ in the RPV-SUSY
 - HNLs in U(1) extensions of the SM
- Strong limits obtained, complementary to other search strategies
- In particular interesting for heavy ($\gtrsim \mathcal{O}(10 \text{ GeV})$) LLPs

Thank You!

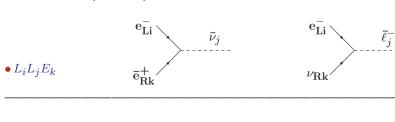
Back-up slides

R-parity and the RPV-MSSM

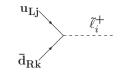
In general, the MSSM superpotential includes the following operators:

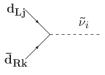
$$W_{R_p} = \mu_i H_u \cdot L_i + \frac{1}{2} \lambda_{ijk} L_i \cdot L_j \bar{E}_k + \lambda'_{ijk} L_i \cdot Q_j \bar{D}_k + \frac{1}{2} \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k$$

Lepton Number Violation & Baryon Number Violation

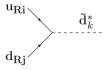

- \Rightarrow too fast proton decay rate!
- \Rightarrow An implicit ingredient of the MSSM: R_p conservation (RPC)

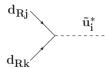
$$R_p = (-1)^{3(B-L)+2S}$$

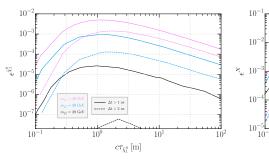

B: baryon number, L: lepton number, S: spin

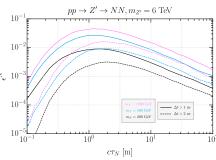

- SM fields: $R_p = +1$, superpartners: $R_p = -1$
- ullet Forbids all the terms in W_{R_p}
- Renders the lightest supersymmetric particle (LSP) a stable cold DM candidate

(Partly) New Yukawa-like couplings








$$\bullet U_i D_j D_k$$

Final efficiencies

