Precise Capture Rates of Cosmic Neutrinos and Their Implications on Cosmology

Kensuke Akita(IBS-CTPU)

Based on <u>arXiv:2010.04454</u> (published in Eur.Phys.J.C) with Saul Hurwitz and Masahide Yamaguchi (Tokyo Tech)

Introduction

- Precise CMB observations constrain many cosmological parameters.
- However, it is not enough to understand the early universe and particle physics.
- →What are future observations to understand them?

The Cosmic Neutrino Background(C v B)

The C ν B would be produced at 1 second of the universe.

(CMB: 400,000 years)

$$\nu_i + {}^3\mathrm{H} \rightarrow {}^3\mathrm{He} + e^-$$

We formulate the C v B and the future direct observation, including sub-leading cosmological contributions in the Standard Model.

Outline

Introduction

Neutrino number density in the current universe

Implication on the PTOLEMY experiment

$$\nu_i + {}^3\mathrm{He} + e^-$$

Summary

Neutrino number density

Capture rates will depend on the neutrino number density.

In the current universe, momentum of cosmic neutrinos is

$$\langle |\boldsymbol{p}| \rangle \sim 0.53 \text{ meV} \ll \sqrt{\Delta m_{\rm sol}^2} \simeq 8.6 \text{ meV}, \ \sqrt{|\Delta m_{\rm atm}^2|} \simeq 50 \text{ meV}$$

At least, two neutrino species are non-relativistic.

<u>Sub-leading cosmological contributions</u> to number density:

 \bigcirc Spectral distortion from FD distribution by e^-e^+ -annihilation in neutrino decoupling

$$T_{e^-e^+} \sim m_e \simeq 0.5 \; {
m MeV}$$
 $T_{
m dec} \sim 2 \; {
m MeV}$ into only high energy neutrinos

Gravitational clustering by our Galaxy and nearby galaxies
 Non-relativistic neutrinos are attracted by their gravitational potential.

Neutrino number density

Number density including <u>sub-leading cosmological contributions</u>:

$\delta n_{\nu_1}^d \ (\%)$	$\delta n_{\nu_2}^d \ (\%)$	$\delta n_{\nu_3}^d \ (\%)$
1.13	1.01	0.91

Spectral distortion by e^-e^+ -annihilation in the mass-diagonal basis, estimated by solving the Boltzmann equations in the mass basis

KA and M. Yamaguchi 2005.07047.

m (meV)	$\delta n^c \ (\%)$
10	0.53
50	12

Gravitational clustering estimated by Mertsch's group.

P. Mertsch et al 1910.13388.

 n_0 : number density if all e^-e^+ annihilate into photons.

$$n_0 = \frac{1}{(2\pi)^3} \int d^3p \frac{1}{e^{p/T_\nu} + 1} \simeq 56.01 \text{ cm}^3$$

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma} \simeq 1.9454 \ K$$

$$T_{\gamma} = 2.72548 \pm 0.00057 \mathrm{K}$$

D. J. Fixsen 0911.1955.

Outline

Introduction

Neutrino number density in the current universe

Implication on the PTOLEMY experiment

$$\nu_i + {}^3\mathrm{He} + e^-$$

• Summary

PTOLEMY experiment

The most discussed method of direct observation of the C v B

$$\nu_i + {}^3{\rm H} \rightarrow {}^3{\rm He} + \underline{e}^-$$
100g of Tritium We observe this electron.

P onT ecorvo
O bservatory for
L ight,
E arly-universe,
M assive-neutrino
Y ield

- · No threshold energy E_{ν_i} because of $m_{^3{
 m H}}>m_{^3{
 m He}}+m_e$
- Long lifetime $t_{1/2} = 12.32 \text{ years}$
- Relatively high cross section with the C v B

PTOLEMY experiment

The most discussed method of direct observation of the C v B

$$\nu_i + {}^3{\rm H} \rightarrow {}^3{\rm He} + \underline{e}^-$$
100g of Tritium We observe this electron.

- · Handling with large amounts of tritium
- Distinguishing from β -decay, ${}^3{\rm He} + e^- + \bar{\nu}_i$

Electron energy from the C ν B : $E_e^{{
m C}
u {
m B},i} \simeq K_{
m end}^0 + m_e + E_{
u_i}$

Maximal energy from β -decay: $E_{\mathrm{end}} \simeq K_{\mathrm{end}}^0 + m_e - m_{\mathrm{lightest}}$

$$E_e^{\mathrm{C}\nu\mathrm{B},i} - E_{\mathrm{end}} \simeq m_{\mathrm{lightest}} + E_{\nu_i}$$

$$K_{\rm end}^0 = \frac{(m_{^3\rm H} - m_e)^2 - m_{^3\rm He}^2}{2m_{^3\rm H}}$$

A <u>tiny</u> detector energy resolution is required to be $\Delta \lesssim m_{\text{lightest}} + E_{\nu_i}$.

Precise Capture Rates

$$\Gamma_i = N_T \sum_{s_\nu = \pm \frac{1}{2}} \int \frac{d^3p_\nu}{(2\pi)^3} \sigma_i(p_\nu, s_\nu) v_{\nu_i} f_{\nu_i}(p_\nu, s_\nu)$$
 Number of tritium Cross section Distribution

• Capture Rates for non-relativistic neutrinos with 1% precision:

Nuclear coupling constants
$$\Gamma_i \simeq N_T \frac{G_F^2}{2\pi} |V_{ud}|^2 |U_{ei}|^2 \frac{m_{^3\mathrm{He}}}{m_{^3\mathrm{H}}} \underbrace{\left(\langle f_F \rangle^2 + \frac{g_A^2}{g_V^2} \langle g_{GT} \rangle^2\right)}_{\times F(2,\tilde{E}_e)\tilde{E}_e|\tilde{p}_e|} \times \underbrace{\sum_{s_\nu = \pm \frac{1}{2}} \left(\underline{n_{\nu_i} - 2s_\nu \langle v_{\nu_i}^0 \rangle}\right)}_{s_\nu = \pm \frac{1}{2}} \underbrace{\left(\underline{n_{\nu_i} - 2s_\nu \langle v_{\nu_i}^0 \rangle}\right)}_{\langle v_{\nu_i}^0 \rangle} = \int \frac{d^3p}{(2\pi)^3} \, \frac{1}{e^{p_\nu/T_\nu + 1}} v_{\nu_i} \, \left(\langle n_{\nu_i} \rangle - \langle n_{\nu_i} \rangle \right)$$

Neglect neutrino momentum.

Only the number density contains sub-leading cosmological contributions.

Values of Capture Rates

Normal hierarchy case for Majorana neutrinos on 100g of tritium

$$\Gamma_1^M \simeq 5.48 \text{ yr}^{-1}, \quad \Gamma_2^M \simeq 2.40 \text{ yr}^{-1}, \quad \Gamma_3^M \simeq 0.200 \text{ yr}^{-1}$$

• Contributions from e^-e^+ -annihilation in neutrino decoupling

$$\delta\Gamma_1^{Md} \simeq 0.061 \text{ yr}^{-1}, \ \delta\Gamma_2^{Md} \simeq 0.024 \text{ yr}^{-1}, \ \delta\Gamma_3^{Md} \simeq 1.6 \times 10^{-3} \text{ yr}^{-1}$$

• Contributions from neutrino clustering $(m_{\nu_1} = 0 \text{ meV})$

$$\delta\Gamma_1^{Mc} \simeq 0 \text{ yr}^{-1}, \ \delta\Gamma_2^{Mc} \simeq 0.013 \text{ yr}^{-1}, \ \delta\Gamma_3^{Mc} \simeq 0.021 \text{ yr}^{-1}$$

We need about 10 kg of tritium to observe $\delta\Gamma_i^M$.

<u>Uncertainties of parameters</u>

 $|U_{ei}|$ (PMNS matrix): About 10% errors at 3 σ confidence

We need to reduce these uncertainties to observe $\delta\Gamma_i^M$.

Summary

- We estimated the C ν B number density including sub-leading contributions, in particular, contributions from e^-e^+ -annihilation in neutrino decoupling for the first time.
- We also formulated the capture rates on tritium with 1% precision, including the above effects.
- The precise capture rates will also be useful to compare the SM and physics beyond the SM properly.

Outlook

- Methods to distinguish effects between gravitational clustering and e^-e^+ -annihilation.
- Forecasts for constraints on physic beyond the SM in the PTOLEMY experiment (ex: The C ν B decay,…) KA, M. Yamaguchi and G. Lambiase in preparation