

A Reshuffled SIMP Dark Matter Model with U(1)_D to Z₄ symmetry Shu-Yu Ho

In collaboration with Pyungwon Ko & Chih-Ting Lu (KIAS)

In progress (based on 2107.04375)

11/26/2021

Workshop on particle physics and cosmology 2021

I. Introduction

Strongly interacting massive particles (SIMP)

SIMP scenario :

$$\Gamma_{
m el}\gtrsim\Gamma_{3
ightarrow2}\gg\Gamma_{
m ann}>H_{
m DM}$$

Y. Hochberg, E. Kuflik, T. Volansky & J.G. Wacker (2014)

Strongly interacting massive particles (SIMP)

Multi-component DM

- Majority of DM models suggest that DM particle is WIMPtype and of only one kind.
- Vull results of direct search detections have cornered WIMP.
- Dark sector may be plentiful as same as the visible sector.
- It is reasonable to consider a scenario containing more than one species of DM beyond the WIMP paradigm. e.g. hidden QCD, multi-component FIMP, multi-component SIMP,.....

S. M. Choi, et al. (2021)

A. Katz, <i>et al</i> . (2020)	J Herms & A. Ibarra (2020)
S.P. Zakeri, <i>et al</i> . (2018)	S.P. Zakeri, <i>et al</i> . (2018)

Multi-component DM

- In genuine multi-component DM models, it should be possible for different DM species to have distinctive properties such as mass, (dark) charge, and spin, etc.
- Each DM particle should contribute to a sizable abundance to the observed DM relic density.

Carl Sagan's dragon in garage

single-component SIMP

What is the difference between single-component SIMP scenario & multi-component SIMP scenario?

Poker notation : (spade) (heart) (diamond) (club)

Reshuffled SIMP (rSIMP)

number-changing process

: deplete the DM yields

number-conserving process : redistribute/**reshuffle** the DM yields

$$\frac{\text{rSIMP scenario}}{\text{rSIMP scenario}} : \frac{\Gamma_{2 \to 2}^{2 - \text{loop}} > \Gamma_{\text{el}}}{\frac{1}{2} \to 2} > \Gamma_{3 \to 2} \gg \Gamma_{\text{ann}} > H_{\text{DM}}$$
will be explained later
Poker notation : (spade) (heart) (diamond) (club)

II. Effective theory

EFT Model

Three representative EFT models for the rSIMP scenario.

Model	Fields	$U(1)_{D}$	Interaction
A	(♥, ♠)	(2, -3)	$\mathcal{O}_{\texttt{VA}}^{(5)} = \frac{c}{3!2!\Lambda} \texttt{V}^3 \texttt{A}^2$
В	(♥, ♦)	(2, -3)	$\mathcal{O}_{\clubsuit}^{(6)} = \frac{c}{3!2!\Lambda^2} \clubsuit^3 \overline{\clubsuit^c} \diamondsuit$
C	(♥,♣,♦)	(1, -2, -5)	$\mathcal{O}_{\texttt{F}}^{(6)} = \frac{c}{3!\Lambda^2} \texttt{F}^3 \overline{\texttt{F}} \texttt{O}$

Annihilation process

Model A & B: $3m_{\forall} > 2m_{\diamond,\diamond} > m_{\forall}$ Model C: $3m_{\forall} > m_{\diamond} + m_{\diamond} > m_{\forall} > |m_{\diamond} - m_{\diamond}|$

DM-SM interaction

$$\mathcal{O}_{\phi e}^{(6)} = \frac{c_{\phi e}}{\Lambda_{Z'}^2} \left(i\phi^{\dagger} \overleftrightarrow{\partial_{\mu}} \phi \right) \left(\overline{e} \gamma^{\mu} e \right) , \quad \phi = \checkmark, \diamondsuit$$
B. V. Lehmann & S. Profumo (2020)
$$\mathcal{O}_{\phi e}^{(6)} = \frac{c_{\psi e}}{\Lambda_{Z'}^2} \left(\overline{f_{\psi e}} - f_{\psi e} \right) \left(\overline{f_{\psi e} - f_{\psi e} \right) \left(\overline{f_{\psi e}} - f_{\psi e} \right) \left(\overline{f_{\psi e}} - f_{\psi e} \right) \left(\overline{f_{\psi e} - f_{\psi e}$$

$$\mathcal{O}_{\psi e}^{(0)} = \frac{\psi e}{\Lambda_{Z'}^2} \left(\psi \gamma_\mu \psi \right) \left(\overline{e} \gamma^\mu e \right) , \quad \psi = \clubsuit, \diamondsuit$$

As we shall see soon, the rSIMP masses are tens of MeV scale, we then focus on the DM and e^{\pm} interactions.

III. Cosmological evolution

🔷 : S

\checkmark The Boltzmann equations of comoving number yields Y_{ullet} , Y_{ullet}

$$x \equiv \frac{m_{\clubsuit}}{T} \qquad Y_{j}^{\text{eq}} = \frac{45\sqrt{2}}{8\pi^{7/2}} \frac{g_{j}}{g_{\star s}(x)} (r_{j}x)^{3/2} e^{-r_{j}x} \qquad r_{j} \equiv \frac{m_{j}}{m_{\blacktriangledown}}$$

\checkmark The Boltzmann equations of comoving number yields Y_{\bullet} , Y_{\bullet}

 $\mathcal{I}(t) \approx 1 + \frac{1}{2t^2} \left[4 - 3\ln t^2 - \frac{3}{2} \left(\ln t^2 \right)^2 \right]$ J. F. Yang, J. Zhou & C. Wu (2003)

 $\Lambda \gtrsim m_{\rm V}$

<mark>></mark> : S

The 3 to 2 annihilation cross-sections w/ degenerate masses

The 2 to 2 annihilation cross-sections

p-wave dominate

💙 : S 🔷 : F

$$\begin{split} \langle \sigma \upsilon \rangle_{\mathbf{v}\bar{\mathbf{v}} \to \mathbf{v}\bar{\mathbf{v}}} &= \frac{c^4 (m_{\mathbf{v}}/\Lambda)^4}{16\pi (4\pi)^8 m_{\mathbf{v}}^2} \mathcal{I}^2 \left(\frac{\Lambda}{m_{\mathbf{v}}}\right) \sqrt{1 - r_{\mathbf{v}}^2} \quad \langle \sigma \upsilon \rangle_{\mathbf{v}\bar{\mathbf{v}} \to \mathbf{v}\bar{\mathbf{v}}} &= \frac{3c^4 (m_{\mathbf{v}}/\Lambda)^4}{32\pi (4\pi)^8 x m_{\mathbf{v}}^2} \mathcal{I}^2 \left(\frac{\Lambda}{m_{\mathbf{v}}}\right) \frac{\sqrt{r_{\mathbf{v}}^2 - 1}}{r_{\mathbf{v}}} \\ &\times \left[1 - r_{\mathbf{v}}^2 + \frac{3}{4x} \left(5r_{\mathbf{v}}^2 - 2\right)\right] \end{split}$$

fermion-number-violating Feynman rules A. Denner, et al. 92'

IV. Kinetic equilibrium

In the SIMP scenario, the DM particles should keep kinetic equilibrium with SM particles until the f.o. temperature

kinetic equilibrium condition

$$\gamma_e(x_{\rm f.o.})\gtrsim H(x_{\rm f.o.})x_{\rm f.o.}^2$$

S. M. Choi, *et al*. (2019)

momentum relaxation rate

$$\begin{split} \gamma(T) &= \sum_{i} \frac{g_{i}}{6m_{\chi}T} \int_{0}^{\infty} \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} f_{i}(1 \pm f_{i}) \frac{p}{\sqrt{p^{2} + m_{i}^{2}}} & \text{P. Gondolo, et al. (2012)} \\ &\times \int_{-4p^{2}}^{0} dt(-t) \frac{d\sigma_{\chi+i \to \chi+i}}{dt}. & \frac{d\sigma_{\chi+i \to \chi+i}}{dt} = \frac{1}{64\pi m_{\chi}^{2}p^{2}} \overline{|\mathcal{M}_{\chi+i \to \chi+i}|^{2}} \end{split}$$

In the SIMP scenario, the DM particles should keep kinetic equilibrium with SM particles until the f.o. temperature

In the SIMP scenario, the DM particles should keep kinetic equilibrium with SM particles until the f.o. temperature

S. M. Choi, et al. (2019)

$$\gamma_e(x) = \frac{31\pi^3}{189x^6} \frac{m_{\checkmark}^5}{\Lambda_{Z'}^4} \sum_{j \,=\, {\rm SIMP}} c_{je}^2$$

momentum relaxation rate

$$\sum_{j=\text{SIMP}} c_{je}^2 \gtrsim 10^{-9} \left(\frac{\Lambda_{Z'}}{200 \text{ MeV}}\right)^4 \left(\frac{m_{\clubsuit}}{20 \text{ MeV}}\right)^{-3}$$

In the SIMP scenario, the DM particles should keep kinetic equilibrium with SM particles until the f.o. temperature

kinetic decoupling condition

$$\gamma_e(x_{\rm k.d.}) \simeq 2H(x_{\rm k.d.})$$

$$\gamma_e(x) = \frac{31\pi^3}{189x^6} \frac{m_{\checkmark}^5}{\Lambda_{Z'}^4} \sum_{j \,=\, {\rm SIMP}} c_{je}^2$$

': S

In the SIMP scenario, the DM particles should keep kinetic equilibrium with SM particles until the f.o. temperature

$$\begin{split} \text{kinetic decoupling condition} \\ \gamma_e(x_{\text{k.d.}}) &\simeq 2H(x_{\text{k.d.}}) \\ \gamma_e(x_{\text{f.o.}}) &\simeq H(x_{\text{f.o.}}) x_{\text{f.o.}}^2 \end{split} \\ \gamma_e(x) &= \frac{31\pi^3}{189x^6} \frac{m_{\checkmark}^5}{\Lambda_{Z'}^4} \sum_{j \,= \, \text{SIMP}} c_{je}^2 \end{split}$$

: S

In the SIMP scenario, the DM particles should keep kinetic equilibrium with SM particles until the f.o. temperature

kinetic decoupling condition

$$\gamma_e(x_{k.d.}) \simeq 2H(x_{k.d.}) \qquad \gamma_e(x) = \frac{31\pi^3}{189x^6} \frac{m_{\bullet}^5}{\Lambda_{Z'}^4} \sum_{j = \text{SIMP}} c_{je}^2$$

$$\gamma_e(x_{f.o.}) \simeq H(x_{f.o.}) x_{f.o.}^2$$

$$\implies x_{k.d.} \simeq x_{f.o.}^{3/2} / \sqrt[4]{2} \simeq 75 < x_{f.i.}$$

$$\implies \Gamma_{2 \rightarrow 2}^{2-\text{loop}} > \Gamma_{el}$$

V. UV complete model

Particle content and charge assignment

	H	N	X	S	Φ
SU(2)	2	1	1	1	1
$U(1)_{Y}$	-1/2	0	0	0	0
$U(1)_{D}$	0	-1/8	+1/12	+1/4	-1/2
\mathbb{Z}_4	+1	$\pm i$	-1	-1	+1

 \checkmark N and X are SIMP DM candidates in our setup.

- \checkmark S is a mediator connecting N and X.
- $\checkmark \Phi$ develops vev that breaks the dark symmetry.

Lagrangian : Scalar sector

 $\mathcal{L}_{\text{scalar}} = \left(\mathcal{D}^{\rho}H\right)^{\dagger} \mathcal{D}_{\rho} H + \left(\mathcal{D}^{\rho}X\right)^{\dagger} \mathcal{D}_{\rho} X + \left(\mathcal{D}^{\rho}S\right)^{\dagger} \mathcal{D}_{\rho} S + \left(\mathcal{D}^{\rho}\Phi\right)^{\dagger} \mathcal{D}_{\rho} \Phi - \mathcal{V}$ $\mathcal{V} = \mu_h^2 H^{\dagger} H + \mu_X^2 X^* X + \mu_S^2 S^* S + \mu_{\phi}^2 \Phi^* \Phi$ $+\lambda_h (H^{\dagger}H)^2 + \lambda_X (X^*X)^2 + \lambda_S (S^*S)^2 + \lambda_{\phi} (\Phi^*\Phi)^2$ $+\lambda_{hX}(H^{\dagger}H)(X^{*}X)+\lambda_{hS}(H^{\dagger}H)(S^{*}S)+\lambda_{h\phi}(H^{\dagger}H)(\Phi^{*}\Phi)$ $+\lambda_{XS}(X^*X)(S^*S) + \lambda_{X\phi}(X^*X)(\Phi^*\Phi) + \lambda_{S\phi}(S^*S)(\Phi^*\Phi)$ $+\left(\lambda_3 X^3 S^* + \frac{1}{\sqrt{2}}\kappa \upsilon_\phi S^2 \Phi + \text{h.c.}\right)$

Lagrangian : Scalar sector

$$\begin{split} \mathcal{L}_{\text{scalar}} &= \left(\mathcal{D}^{\rho}H\right)^{\dagger}\mathcal{D}_{\rho}H + \left(\mathcal{D}^{\rho}X\right)^{\dagger}\mathcal{D}_{\rho}X + \left(\mathcal{D}^{\rho}S\right)^{\dagger}\mathcal{D}_{\rho}S + \left(\mathcal{D}^{\rho}\Phi\right)^{\dagger}\mathcal{D}_{\rho}\Phi - \mathcal{V} \\ \mathcal{V} &= \mu_{h}^{2}H^{\dagger}H + \mu_{X}^{2}X^{*}X + \mu_{S}^{2}S^{*}S + \mu_{\phi}^{2}\Phi^{*}\Phi \quad \begin{array}{c} \text{Vacuum stability } \& \\ \text{self-interacting of DM} \\ &+ \lambda_{h}(H^{\dagger}H)^{2} + \lambda_{X}(X^{*}X)^{2} + \lambda_{S}(S^{*}S)^{2} + \lambda_{\phi}(\Phi^{*}\Phi)^{2} \\ &+ \lambda_{hX}(H^{\dagger}H)(X^{*}X) + \lambda_{hS}(H^{\dagger}H)(S^{*}S) + \lambda_{h\phi}(H^{\dagger}H)(\Phi^{*}\Phi) \\ &+ \lambda_{XS}(X^{*}X)(S^{*}S) + \lambda_{X\phi}(X^{*}X)(\Phi^{*}\Phi) + \lambda_{S\phi}(S^{*}S)(\Phi^{*}\Phi) \\ &+ \left(\lambda_{3}X^{3}S^{*} + \frac{1}{\sqrt{2}}\kappa v_{\phi}S^{2}\Phi + \text{h.c.}\right) \quad \begin{array}{c} \text{Higgs invisible decay} \end{split}$$

3 to 2 process U(1)_D symmetry breaking term

Lagrangian : Yukawa sector

$$\mathcal{L}_N = \overline{N} \left(i \gamma^{\rho} \mathcal{D}_{\rho} - m_N \right) N - \frac{1}{2} \left(y_N \overline{N^{\mathsf{c}}} NS + \text{h.c.} \right)$$

 $m_S>2m_N~{\rm or}~m_S>3m_X~~S~{\rm is}~{\rm unstable}$

Lagrangian : Yukawa sector

$$\mathcal{L}_N = \overline{N} \left(i \gamma^{\rho} \mathcal{D}_{\rho} - m_N \right) N - \frac{1}{2} \left(y_N \overline{N^{\mathsf{c}}} NS + \text{h.c.} \right)$$

$$m_S>2m_N~{\rm or}~m_S>3m_X~~S~{\rm is}~{\rm unstable}$$

Lagrangian : Gauge sector

$$\mathcal{L}_{\text{gauge}} \,=\, -\, \frac{1}{4} W^{3\rho\sigma} W^3_{\rho\sigma} - \frac{1}{4} B^{\rho\sigma} B_{\rho\sigma} - \frac{1}{4} C^{\rho\sigma} C_{\rho\sigma} - \frac{1}{2} s_\epsilon B^{\rho\sigma} C_{\rho\sigma} - \frac{1}{2} m_C^2 C^\rho C_{\rho\sigma}$$

Lagrangian : Yukawa sector

$$\mathcal{L}_N = \overline{N} \left(i \gamma^{\rho} \mathcal{D}_{\rho} - m_N \right) N - \frac{1}{2} \left(y_N \overline{N^{\mathsf{c}}} NS + \text{h.c.} \right)$$

$$m_S > 2 m_N \,\, {\rm or} \,\, m_S > 3 m_X \,\, {}^{\rm S}$$
 is unstable

Lagrangian : Gauge sector

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4}W^{3\rho\sigma}W^3_{\rho\sigma} - \frac{1}{4}B^{\rho\sigma}B_{\rho\sigma} - \frac{1}{4}C^{\rho\sigma}C_{\rho\sigma} - \frac{1}{2}s_{\epsilon}B^{\rho\sigma}C_{\rho\sigma} - \frac{1}{2}m_C^2C^{\rho}C_{\rho\sigma}$$

$$\mathcal{D}_{\rho} \supset i (g_{\mathsf{D}} \mathcal{Q}_{\mathsf{D}} - g_{e} c_{\mathsf{W}} \epsilon \mathcal{Q}_{e}) Z_{\rho}'$$
$$\epsilon \ll 1 \quad m_{Z}^{2} \gg m_{Z'}^{2}$$

Lagrangian : Yukawa sector

$$\mathcal{L}_N = \overline{N} \left(i \gamma^{\rho} \mathcal{D}_{\rho} - m_N \right) N - \frac{1}{2} \left(y_N \overline{N^{\mathsf{c}}} NS + \text{h.c.} \right)$$

$$m_S>2m_N~{\rm or}~m_S>3m_X~~S~{\rm is}~{\rm unstable}$$

Lagrangian : Gauge sector

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4}W^{3\rho\sigma}W^3_{\rho\sigma} - \frac{1}{4}B^{\rho\sigma}B_{\rho\sigma} - \frac{1}{4}C^{\rho\sigma}C_{\rho\sigma} - \frac{1}{2}s_{\epsilon}B^{\rho\sigma}C_{\rho\sigma} - \frac{1}{2}m_C^2C^{\rho}C_{\rho\sigma}$$

Annihilation process

Interactions for the annihilations

Annihilation process

Interactions for the annihilations

3 to 2 processes :

$$(\sigma v^2)_{XXX \to \bar{N}\bar{N}} = \frac{\lambda_3^2 y_N^2}{128\pi m_X^5} \frac{\left(9 - 4r_N^2\right)^{3/2}}{\left(9 - r_S^2\right)^2}$$

$$(\sigma v^2)_{XXN \to \bar{X}\bar{N}} = \frac{9\sqrt{3}\,\lambda_3^2 y_N^2}{32\pi m_X^5} \frac{\left(1+r_N\right)\left(1+2r_N+2r_N^2\right)\sqrt{3+8r_N+4r_N^2}}{\left(2+r_N\right)^2 \left[r_S^2\left(1+r_N\right)+2r_N\right]^2}$$

 $(\sigma v^2)_{XNN \to \bar{X}\bar{X}} = \mathcal{O}(v^2) \qquad \qquad r_{N,S} \equiv m_{N,S}/m_X$

3 to 2 processes :

$$(\sigma v^2)_{XXX \to \bar{N}\bar{N}} = \frac{\lambda_3^2 y_N^2}{128\pi m_X^5} \frac{\left(9 - 4r_N^2\right)^{3/2}}{\left(9 - r_S^2\right)^2} \text{ resonant SIMP}$$

S. M. Choi, *et al.*, 2016

$$(\sigma v^2)_{XXN \to \bar{X}\bar{N}} = \frac{9\sqrt{3}\,\lambda_3^2 y_N^2}{32\pi m_X^5} \frac{\left(1+r_N\right)\left(1+2r_N+2r_N^2\right)\sqrt{3+8r_N+4r_N^2}}{\left(2+r_N\right)^2 \left[r_S^2\left(1+r_N\right)+2r_N\right]^2}$$

 $(\sigma v^2)_{XNN \to \bar{X}\bar{X}} = \mathcal{O}(v^2) \qquad \qquad r_{N,S} \equiv m_{N,S}/m_X$

2 to 2 processes :

$$\begin{split} \langle \sigma v \rangle_{N\bar{N} \to X\bar{X}}^{2\text{-loop}} &= \frac{81\lambda_3^4 y_N^4 \sqrt{r_N^2 - 1}}{\pi (4\pi)^8 r_S^4 m_X^2 r_N} \left[\left(r_N^2 - 1 \right) |\mathcal{I}_1|^2 + \frac{\left(11 - 2r_N^2 \right) |\mathcal{I}_1|^2 + 6r_N^2 |\mathcal{I}_2|^2}{4x} \right] \\ \langle \sigma v \rangle_{X\bar{X} \to N\bar{N}}^{2\text{-loop}} &= \frac{81\lambda_3^4 y_N^4 r_N^2 \sqrt{1 - r_N^2}}{\pi (4\pi)^8 r_S^4 m_X^2} \left[\left(1 - r_N^2 \right) |\mathcal{I}_2|^2 + \frac{2\left(1 + 2r_N^{-2} \right) |\mathcal{I}_1|^2 + 3\left(5r_N^2 - 2 \right) |\mathcal{I}_2|^2}{4x} \right] \end{split}$$

Two-loop functions :

$$\begin{split} \mathcal{I}_{1,2}(r_N,r_S) &= \int_0^1 \mathrm{d}z_1 \int_0^1 \mathrm{d}z_2 \int_0^{1-z_2} \mathrm{d}z_3 \int_0^{z_1(1-z_1)} \mathrm{d}z_4 \int_0^1 \mathrm{d}z_5 \,\mathcal{F}_{1,2}(r_N,r_S) \\ \mathcal{F}_1(r_N,r_S) &= \frac{r_S^2 z_5^2 \left[2P^2 z_5^3 - \left(P^2 + 3Q^2\right) z_5^2 + \left(2Q^2 + 3\right) z_5 - 2\right] \right]}{2\left(P^2 z_5^2 - Q^2 z_5 + 1\right)^2} \\ \mathcal{F}_2(r_N,r_S) &= \frac{r_S^2 (1-z_2-z_3) z_5^3 \left(2P^2 z_5^2 - 3Q^2 z_5 + 3\right)}{2\left(P^2 z_5^2 - Q^2 z_5 + 1\right)^2} \\ P^2 &= \begin{cases} z_4 \left[r_N^2 (z_2-z_3+1) (z_2-z_3-1) + 1 \right] & \text{for } N\bar{N} \to X\bar{X} \\ z_4 \left[r_N^2 (z_2+z_3-1)^2 - (2z_2-1) (2z_3-1) \right] & \text{for } X\bar{X} \to N\bar{N} \end{cases} \\ Q^2 &= \begin{cases} 1+z_4 \left[2r_N^2 (z_2+z_3-1) - r_S^2 (z_2+z_3) + 1 \right] & \text{for } N\bar{N} \to X\bar{X} \\ 1+z_4 \left[(2-r_S^2) (z_2+z_3) - 1 \right] & \text{for } X\bar{X} \to N\bar{N} \end{cases} \end{split}$$

Two-loop functions :

$$\mathcal{I}_{1,2}(r_N, r_S) = \int_0^1 \mathrm{d}z_1 \int_0^1 \mathrm{d}z_2 \int_0^{1-z_2} \mathrm{d}z_3 \int_0^{z_1(1-z_1)} \mathrm{d}z_4 \int_0^1 \mathrm{d}z_5 \,\mathcal{F}_{1,2}(r_N, r_S)$$

UV model & EFT theory

UV model

$$\begin{split} \langle \sigma v \rangle_{N\bar{N} \to X\bar{X}}^{\text{UV}} &\approx \frac{243\lambda_3^4 y_N^4 \sqrt{r_N^2 - 1}}{2\pi (4\pi)^8 x m_X^2} \left(\frac{m_X}{m_S}\right)^4 |\mathcal{I}_2|^2 \\ \mathcal{I}_2 &= \mathcal{I}_2 \left(r_N = 1, r_S = 3\right) \simeq 0.27 \end{split}$$

EFT theory

 $r_N \simeq 1 \\ \Lambda \sim m_S \simeq 3 m_X$

$$\begin{split} \langle \sigma v \rangle_{N\bar{N} \to X\bar{X}}^{\mathsf{EFT}} &\approx \frac{243 \, c^4 \sqrt{r_N^2 - 1}}{2\pi (4\pi)^8 x m_X^2} \bigg(\frac{m_X}{\Lambda} \bigg)^4 |\mathcal{I}_{\Lambda}|^2 \\ \mathcal{I}_{\Lambda} &= \mathcal{I}_{\Lambda} \big(r_S = 3 \big) \simeq 0.45 \end{split}$$

Perturbativity

L. Allwicher, *et al.*, 2021 S. M. Choi, *et al.*, 2021

 $\lambda_k < 4\pi \qquad y_N < \sqrt{8\pi}$ $g_{\mathsf{D}} < 4\pi$

Unitarity

M.H. Namjoo, et al., 2019

 $\langle \sigma v^2 \rangle_{XXX \to \bar{N}\bar{N}} \leqslant \frac{192\sqrt{3}\pi^2 x^2}{m_Y^5} \qquad \langle \sigma v^2 \rangle_{XXN \to \bar{X}\bar{N}} \leqslant \frac{16\pi^2 x^2}{m_Y^5} \left(1 + \frac{2}{r_N}\right)^{3/2}$ $\langle \sigma v^2 \rangle_{XNN \to \bar{X}\bar{X}} \leqslant \frac{4\pi^2 x^2}{m_N^5} \left(\frac{1}{r_N^2} + \frac{2}{r_N}\right)^{3/2}$ $\langle \sigma v \rangle_{N\bar{N} \to X\bar{X}} \leqslant \frac{4\sqrt{\pi x}}{m_{\star}^2 r_{\star}^{3/2}} \qquad \langle \sigma v \rangle_{X\bar{X} \to N\bar{N}} \leqslant \frac{64\sqrt{\pi x}}{m_{\star}^2}$

Vacuum stability

$$\mathcal{V}_{XS} = \lambda_X (X^*X)^2 + \lambda_S (S^*S)^2 + \lambda_{XS} (X^*X) (S^*S) + \lambda_3 \left[X^3S^* + (X^*)^3S \right]$$

$$\lambda_{X,S} > 0 \qquad \lambda_{XS} + 2\sqrt{\lambda_X \lambda_S} > 0$$

S. M. Choi, et al., 2016

$$|\lambda_3| < \sqrt{\frac{\left(12\lambda_X\lambda_S + \lambda_{XS}\right)^{3/2} + 36\lambda_X\lambda_S\lambda_{XS} - \lambda_{XS}^3}{54\lambda_S}}$$

 $\lambda_{XS} \to 0 \longrightarrow \lambda_{X,S} > 0 \text{ and } |\lambda_3| < (16\lambda_X^3 \lambda_S/27)^{1/4}$

Effective number of neutrino species

C. Boehm, M. J. Dolan & C. McCabe (2013)

$$N_{\text{eff}}\left(T_{\text{CMB}}\right) = \left[1 + \frac{4}{11} \sum_{j=X,N} g_{\star s}^{\text{DM}}\left(m_j, T_{\nu d}\right)\right]^{-4/3} N_{\text{eff}}^{\text{SM}}\left(T_{\text{CMB}}\right)$$

$$g_{\star s}^{\text{DM}}(m_j, x) = \frac{15g_j}{4\pi^4} \int_{r_j x}^{\infty} du \, \frac{\left(4u^2 - r_j^2 x^2\right) \left(u^2 - r_j^2 x^2\right)^{1/2}}{e^u \pm 1}$$

B. V. Lehmann & S. Profumo (2020)

$$N_{\rm eff} = 2.99^{+0.34}_{-0.33}~(95\%~{\rm C.L.}) \implies m_{X,N} \gtrsim 12\,{\rm MeV}$$
 Planck 2018 $r_N \simeq 1$

Kinetic mixing & dark gauge boson mass

M. Fabbrichesi, et al., 2020

Kinetic mixing & dark gauge boson mass

M. Fabbrichesi, et al., 2020

Cosmological evolution of DM

Boltzmann equation

$$\begin{split} \frac{\mathrm{d}Y_{X}}{\mathrm{d}x} &= -\frac{s^{2}}{Hx} \Biggl\{ 12 \langle \sigma v^{2} \rangle_{XXX \to \bar{N}\bar{N}} \Biggl[Y_{X}^{3} - Y_{N}^{2} \frac{(Y_{X}^{\mathsf{eq}})^{3}}{(Y_{N}^{\mathsf{eq}})^{2}} \Biggr] + 2 \langle \sigma v^{2} \rangle_{XXN \to \bar{X}\bar{N}} Y_{X} Y_{N} \Big(Y_{X} - Y_{X}^{\mathsf{eq}} \Big) \\ &- \langle \sigma v^{2} \rangle_{XNN \to \bar{X}\bar{X}} Y_{X} \Biggl[Y_{N}^{2} - Y_{X} \frac{(Y_{N}^{\mathsf{eq}})^{2}}{Y_{X}^{\mathsf{eq}}} \Biggr] \Biggr\} \\ &- \frac{s}{Hx} \Biggl\{ 4 \langle \sigma v \rangle_{X\bar{X} \to N\bar{N}} \Biggl[Y_{X}^{2} - Y_{N}^{2} \frac{(Y_{X}^{\mathsf{eq}})^{2}}{(Y_{N}^{\mathsf{eq}})^{2}} \Biggr] - \langle \sigma v \rangle_{N\bar{N} \to X\bar{X}} \Biggl[Y_{N}^{2} - Y_{X}^{2} \frac{(Y_{N}^{\mathsf{eq}})^{2}}{(Y_{N}^{\mathsf{eq}})^{2}} \Biggr] \Biggr\} \\ \frac{\mathrm{d}Y_{N}}{\mathrm{d}x} &= -\frac{s^{2}}{Hx} \Biggl\{ 2 \langle \sigma v^{2} \rangle_{XNN \to \bar{X}\bar{X}} Y_{X} \Biggl[Y_{N}^{2} - Y_{X} \frac{(Y_{N}^{\mathsf{eq}})^{2}}{(Y_{N}^{\mathsf{eq}})^{2}} \Biggr] - 8 \langle \sigma v^{2} \rangle_{XXX \to \bar{N}\bar{N}} \Biggl[Y_{X}^{3} - Y_{N}^{2} \frac{(Y_{X}^{\mathsf{eq}})^{3}}{(Y_{N}^{\mathsf{eq}})^{2}} \Biggr] \Biggr\} \\ &- \frac{s}{Hx} \Biggl\{ \langle \sigma v \rangle_{N\bar{N} \to X\bar{X}} \Biggl[Y_{N}^{2} - Y_{X}^{2} \frac{(Y_{N}^{\mathsf{eq}})^{2}}{(Y_{X}^{\mathsf{eq}})^{2}} \Biggr] - 4 \langle \sigma v \rangle_{X\bar{X} \to N\bar{N}} \Biggl[Y_{X}^{2} - Y_{N}^{2} \frac{(Y_{X}^{\mathsf{eq}})^{2}}{(Y_{N}^{\mathsf{eq}})^{2}} \Biggr] \Biggr\} \end{split}$$

Cosmological evolution w/o 2 to 2 process

Cosmological evolution w/o 2 to 2 process

Cosmological evolution w/ 2 to 2 process

Cosmological evolution w/ 2 to 2 process

SIMP condition

Thermalization

kinetic equilibrium condition $\gamma_e(x_{\rm f.o.}) \gtrsim H(x_{\rm f.o.}) x_{\rm f.o.}^2$

Suppression of WIMP annihilation

$$\begin{split} \Gamma_{\rm ann}(x_{\rm f.o.}) \ll H(x_{\rm f.o.}) \simeq \Gamma_{3\to 2} \\ & \longrightarrow g_{\rm D} \ll \frac{3}{|\mathcal{Q}_N|} \left(\frac{\epsilon}{10^{-3}}\right)^{-1} \left(\frac{m_{Z'}}{250 \,\,{\rm MeV}}\right)^2 \left(\frac{m_X}{20 \,\,{\rm MeV}}\right)^{-3/2} \end{split}$$

 O self

S. Tulin & H.B. Yu, 2018

M. Markevitch et al., 2004 D. Clowe, et al., 2004

Self-interacting DM

Self-interacting cross section

$$\frac{\sigma_{\text{self}}}{m_{\text{DM}}} = \mathcal{R}_X^2 \frac{\sigma_X}{m_X} + \mathcal{R}_N^2 \frac{\sigma_N}{m_N}$$

Self-interacting DM

Self-interacting cross section

$$\begin{aligned} \frac{\sigma_{\text{self}}}{m_{\text{DM}}} &= \mathcal{R}_X^2 \frac{\sigma_X}{m_X} + \mathcal{R}_N^2 \frac{\sigma_N}{m_N} \\ \mathcal{R}_X &= \frac{\Omega_X}{\Omega_X + \Omega_N} \quad \mathcal{R}_N = \frac{\Omega_N}{\Omega_X + \Omega_N} \\ \sigma_X &= \frac{1}{4} \left(\sigma_{XX \to XX} + \sigma_{X\bar{X} \to X\bar{X}} + \sigma_{\bar{X}\bar{X} \to \bar{X}\bar{X}} \right) = \frac{\lambda_X^2}{8\pi m_X^2} \\ \sigma_N &= \frac{1}{4} \left(\sigma_{NN \to NN} + \sigma_{N\bar{N} \to N\bar{N}} + \sigma_{\bar{N}\bar{N} \to \bar{N}\bar{N}} \right) = \frac{y_N^4}{16\pi m_X^2} \frac{r_N^2}{r_S^4} \end{aligned}$$
Benchmark points

 $\mathbb{N}\overline{N} \to X\overline{X}$

λ_X	λ_S	λ_3	y_N	$\Big \; \big(m_X^{}, m_N^{}, m_S^{} \big) / \mathrm{MeV} \Big $	\mathcal{R}_X	\mathcal{R}_N	$\sigma_{\rm self}/m_{\rm DM}({\rm cm^2/g})$
4.4	10	4.7	3	(20, 20.02, 59.6)	0.56	0.44	6.70
4.5	8	4.5	2	(25, 25.1, 76)	0.66	0.34	4.92
4	10	4.3	2.5	(25, 25.2, 77)	0.86	0.14	6.66
5	9	5	2.2	(30, 30.3, 92.4)	0.89	0.11	6.31

 $\overrightarrow{XX} \rightarrow \overrightarrow{NN}$

λ_X	λ_S	λ_3	y_N	$\Big(m_X,m_N,m_S\Big)/{\rm MeV}$	\mathcal{R}_X	\mathcal{R}_N	$\sigma_{\rm self}/m_{\rm DM}({\rm cm^2/g})$
5	4	3.9	2	(20, 19.9, 61)	0.06	0.94	0.20
				(,,)			

Take home message

We have built a UV complete DM model to realize the rSIMP scenario with the following condition

$$\Gamma^{2 ext{-loop}}_{2 o 2} > \Gamma_{ ext{el}} \gtrsim \Gamma_{3 o 2} \gg \Gamma_{ ext{ann}} > H_{ ext{DM}}$$

- In the rSIMP scenario, there is an inevitable two-loop induced 2 to 2 process which would redistribute the DM yields after the chemical freeze-out of DM.
- The rSIMP masses must be degenerate and O(20 MeV) to contribute sizable densities to the observed DM abundance.
- Self-interacting of DM provides the observational signature to test the reshuffled effect in this model.