SEARCH FOR STERILE NEUTRINO WITH LIGHT GAUGE INTERACTIONS

Jongkuk kim kins 25498

ased on arXiv: 2008.12598 n collaboration with

Workshop on particle physics and cosmology 2021

26-28 November 2021

Contents

Neutrino Sector

• Sterile neutrino

Experiments
LSND / MiniBooNE
CHARM / NOMAD
FASER / SHIP
IceCube

o Conclusions

Neutrino sector in the SM

- Neutrino properties
 - Weak force: $-\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} \sum_{l} \bar{\nu}_{Ll} \gamma^{\mu} l_{\bar{L}} W^{+}_{\mu} + \text{h.c.}$, $-\mathcal{L}_{NC} = \frac{g}{2\cos\theta_W} \sum_{l} \bar{\nu}_{Ll} \gamma^{\mu} \nu_{Ll} Z^{0}_{\mu}$.
 - Electrically neutral
 - Lepton number $\rightarrow L_e = \pm 1, \ L_\mu = \pm 1, \ L_\tau = \pm 1$
- The number of neutrino species
 - Z decay width @ LEP $\rightarrow N_{\nu} = 2.984 \pm 0.008$ PDG 2020
 - Effective number of neutrino species: $N_{\rm eff} = 2.99^{+0.34}_{-0.33}$

Planck 2018

- Neutrinos are massless
 - No right-handed neutrino
 - No mass terms: $m_{\nu} \left(\bar{\nu}_L \nu_R + \text{h.c.} \right)$

Neutrino oscillation

Neutrino oscillation

• Implies that at least two neutrinos are massive

Parameter	best-fit	3σ	⁼ PDG 2020
$\frac{\Delta m_{21}^2 \ [10^{-5} \text{ eV}^2]}{\Delta m_{21(22)}^2 \ [10^{-3} \text{ eV}^2]}$	7.37 2.56 (2.54)	6.93 - 7.96 2.45 - 2.69 (2.42 - 2.66)	-

Simplest solution

$$\mathcal{L}_{\rm mass} = -Y^e_{ij} \bar{L}^i H e^j_R - Y^\nu_{ij} \bar{L}^i \tilde{H} \nu^j_R$$

- Introduce singlet RH neutrino & its Yukawa interaction
- Generate pure Dirac-type mass: $m_{\nu} \left(\bar{\nu}_L \nu_R + \text{h.c.} \right)$
- The required Yukawa couplings are extremely small

Neutrino oscillation

Seesaw mechanism

- Introduce Heavy right-handed neutrino
 - Uncharged under both the weak & electromagnetic force

$$\mathcal{L}_{\text{mass}} = -Y_{ij}^e \bar{L}^i H e_R^j - Y_{ij}^\nu \bar{L}^i \widetilde{H} \nu_R^j - i M_{ij} (\nu_R^i)^c \nu_R^j + h.c.$$

• After electroweak symmetry breaking, neutrino mass matrix

$$\mathcal{L}_{\nu,\text{mass}} = -m\bar{\psi}_L\psi_R - \frac{M}{2}\bar{\psi}_R\psi_R \qquad \longrightarrow \qquad \begin{pmatrix} 0 & M_D \\ M_D & M_N \end{pmatrix}$$

- Diagonalizing the matrix, we get light and heavy neutrino
 Light neutrino mass ~ eV
 - Heavy neutrino mass >> 1 TeV

Sterile Neutrino

• Full neutrino mass term

$$-\mathcal{L}_{m}^{\nu} = \frac{1}{2} \left(\sum_{a=1}^{3} \sum_{b=1}^{n} \left(\overline{\nu_{aL}} \ m_{ab}^{\nu} \ N_{bR} + \overline{N_{bL}^{c}} \ m_{ba}^{\nu*} \ \nu_{aR}^{c} \right) + \sum_{b,b'=1}^{n} \overline{N_{bL}^{c}} \ B_{bb'} \ N_{b'R} \right) + \text{h.c.}$$
$$= \frac{1}{2} \left(\sum_{m=1}^{3} m_{\nu_{m}} \ \overline{\nu_{mL}} \ \nu_{mR}^{c} + \sum_{m'=4}^{3+n} M_{N_{m'}} \ \overline{N_{m'L}^{c}} \ N_{m'R} \right) + \text{h.c.}$$

Mixing relations

$$\nu_{aL} = \sum_{m=1}^{3} U_{am} \nu_{mL} + \sum_{m'=4}^{3+n} V_{am'} N_{m'L}^{c}, \ UU^{\dagger} + VV^{\dagger} = I.$$

• Gauge interaction Lagrangian

$$-\mathcal{L} = \frac{g}{\sqrt{2}} W_{\mu}^{+} \left(\sum_{\ell=e}^{\tau} \sum_{m=1}^{3} U_{\ell m}^{*} \,\overline{\nu_{m}} \gamma^{\mu} P_{L} \ell + \sum_{\ell=e}^{\tau} \sum_{m'=4}^{3+n} V_{\ell m'}^{*} \overline{N_{m'}^{c}} \gamma^{\mu} P_{L} \ell \right) + \text{h.c.}$$
$$+ \frac{g}{2 \cos \theta_{W}} Z_{\mu} \left(\sum_{\ell=e}^{\tau} \sum_{m=1}^{3} U_{\ell m}^{*} \,\overline{\nu_{m}} \gamma^{\mu} P_{L} \,\nu_{\ell} + \sum_{\ell=e}^{\tau} \sum_{m'=4}^{3+n} V_{\ell m'}^{*} \overline{N_{m'}^{c}} \gamma^{\mu} P_{L} \,\nu_{\ell} \right) + \text{h.c.}$$
⁶

Sterile Neutrino

- MeV-GeV scale Heavy Neutral Lepton Searches
 - Without new Z' interaction

- Decay channels are induced by CC/NC
- Decay Width is suppressed by $|U_{l4}|^2$ as well as G_F^2 .
- This mixing can be proved by beam-dump experiments, IceCube, rare meson decays...

LSND

Liquid Scintillator Neutrino Detector

- measured the number of neutrinos being produced by an accelerator neutrino source
- results conflict with the standard model expectation of only three neutrino flavors

Oscillation Channel	Class	Experiments
v_e appearance	Short Baseline Experiments	LSND $(\bar{\nu})$

- The controversial LSND result was tested by the MiniBooNE experiment
 - found similar evidence for oscillations

MiniBooNE

MiniBooNE collaboration, PRD 103, 2021

- 8GeV protons from the Fermilab Booster interacting on a beryllium target
- Neutrino mode @ the detector
 - ν_μ: 93.5%
- Antineutrino mode @ the detector

- $v_{\mu} \& \overline{v}_{\mu}$ fluxes peak @ 600 MeV and 400 MeV
- Detector consists of a 12.2m diameter sphere filled with 818 tonnes of pure mineral oil (CH₂)
 - Located 541m from the beryllium target
 - Covered by 152 PMTs

MiniBooNE

MiniBooNE collaboration, PRD 103, 2021

- Long-standing anomaly
 - 4.8σ discrepancy
 - 460 low-energy electronlike events
- Muon-to-electron flavor appearance

Oscillation Channel	Class	Experiments
v_e appearance	Short Baseline Experiments	MiniBooNe (ν, ν̄)

Process	Neutrino mode	Antineutrino mode
$ \frac{\overline{\nu_{\mu} \text{ and } \bar{\nu}_{\mu} \text{ CCQE}}{\text{NC } \pi^{0}} \\ \text{NC } \Delta \rightarrow N\gamma \\ \text{External events} \\ \text{Other } \nu_{\mu} \text{ and } \bar{\nu}_{\mu} $	$\begin{array}{c} 107.6\pm28.2\\ 732.3\pm95.5\\ 251.9\pm35.2\\ 109.8\pm15.9\\ 130.8\pm33.4 \end{array}$	$\begin{array}{c} 12.9 \pm 4.3 \\ 112.3 \pm 11.5 \\ 34.7 \pm 5.4 \\ 15.3 \pm 2.8 \\ 22.3 \pm 3.5 \end{array}$
$\begin{array}{l} \nu_{e} \mbox{ and } \bar{\nu}_{e} \mbox{ from } \mu^{\pm} \mbox{ decay } \\ \nu_{e} \mbox{ and } \bar{\nu}_{e} \mbox{ from } K^{\pm}_{L} \mbox{ decay } \\ \nu_{e} \mbox{ and } \bar{\nu}_{e} \mbox{ from } K^{0}_{L} \mbox{ decay } \\ \mbox{ Other } \nu_{e} \mbox{ and } \bar{\nu}_{e} \end{array}$	$\begin{array}{c} 621.1 \pm 146.3 \\ 280.7 \pm 61.2 \\ 79.6 \pm 29.9 \\ 8.8 \pm 4.7 \end{array}$	$\begin{array}{c} 91.4 \pm 27.6 \\ 51.2 \pm 11.0 \\ 51.4 \pm 18.0 \\ 6.7 \pm 6.0 \end{array}$
Unconstrained bkgd. Constrained bkgd.	$\begin{array}{c} 2322.6 \pm 258.3 \\ 2309.4 \pm 119.6 \end{array}$	$\begin{array}{c} 398.2 \pm 49.7 \\ 400.6 \pm 28.5 \end{array}$
Total data Excess	$2870 \\ 560.6 \pm 119.6$	$\begin{array}{c} 478\\77.4\pm28.5\end{array}$
0.26% (LSND) $\nu_{\mu} \rightarrow \nu_{\mu}$	676.3	100.0

10

MiniBooNE

P. Ballet et al PRD 99, 2019

11

- Z' boson + sterile neutrino with $m_4 = 100 500 \text{ MeV}$
- Lagrangian
 - $\mathcal{L} \supset -eq_f \cos\theta_W \chi \bar{f} \gamma^\mu f Z'_{\mu^*}$, $\mathcal{L} \supset U^*_{\alpha 4} g' \bar{\nu_\alpha} \gamma^\mu P_L \nu_4 Z'_{\mu} + U^*_{\alpha 4} U_{\beta 4} g' \bar{\nu_\alpha} \gamma^\mu P_L \nu_\beta Z'_{\mu} + g' \bar{\nu_4} \gamma^\mu P_L \nu_4 Z'_{\mu}$,
 - Upscatter to produce the heavy neutrinos inside the detector via the Z'-mediated production process $v_{\mu} + N \rightarrow v_4 + N$
 - Subsequent decay: $v_4 \rightarrow v_{\alpha} e^+ e^-$

Sterile Neutrino

A. Atre et al, 0910.3589

Tau-Sterile neutrino mixing

Sterile ν -specific $U(1)_{S P. Ko et al, PLB 739, 2014}$

- Dark `sterile neutrino-specific' gauge interaction
- $U(1)_S$ symmetry
 - No SM particles are charged
 - Introduce gauge singlet RH neutrinos, SM-singlet Dirac neutrino, new scalar field

•
$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + \frac{m_X^2}{2} X_\mu X^\mu$$
$$- \frac{\epsilon_{\gamma X}}{2} X_{\mu\nu} B^{\mu\nu} - g_X \bar{\nu}_s \gamma^\mu \nu_s X_\mu - m_s \overline{\hat{\nu}_s} \hat{\nu}_s$$
$$- \left(\hat{y}_{\nu_s}^j \overline{\hat{N}_{Rj}} \hat{\nu}_s \phi^\dagger + \hat{y}_{\nu}^{ij} \overline{\hat{L}_i} \tilde{H} \hat{N}_{Rj} + \text{h.c.} \right).$$

Active-sterile neutrino mixing & kinetic mixing

• $\mathcal{L} \supset -g_X U_{\ell 4} \bar{\nu}_\ell \gamma^\mu \nu_4 X_\mu - g_X \epsilon_{\gamma X} \cos \theta_W Q_f \bar{f} \gamma^\mu f X_\mu$

Sterile ν -specific $U(1)_s$

CHARM / NOMAD

J. Orloff et al, PLB 550 2002, NOMAD collaboration, PLB 506, 2001

Beam-dump searches using proton beams

- CHARM: 400 GeV/c proton beam
- NOMAD: 450 GeV/c & beryllium target
- o CHARM
 - $m_4 = 10 290 \text{ MeV}$
- NOMAD
 - $m_4 = 10 190 \text{ MeV}$
- Without X boson effect, the largish parameter space up to $|U_{\tau 4}|^2 \ge 10^{-4}$ were probed.
 - With X boson, $|U_{\tau 4}|^2 \sim 10^{-8} 10^{-4}$ can be reached

FASER

- ForwArd Search ExpeRiment
- Designed to search for new light & long-lived particles
- If these particles are sufficiently light, they can be produced in rare decays of hadrons.
 - dominantly produced in the forward direction along the collision axis

FASER

FASER collaboration, EPJC 80 2020

SHiP

S. Alekhin et al, Rept. Prog. Phys. 79, 2016

- Search for Hidden Particles
- Search for LLP using CERN SPS proton beam of 400 GeV & the molybdenum target.
 - Proton on target: ~10²⁰ (in 5 years)
 - Distance: 110m, Δ=50m
 - $\langle E_{\nu_4} \rangle \sim 50 \text{ GeV}$

LLP searches

• LLP searches @ ground experiments

Experiment	$N_{ m POT} ext{ or } \int \mathcal{L} dt$	\sqrt{s}	$E_{p { m beam}}$	L	Δ	$\langle E_{\nu_4} \rangle$	95% C.L. limit
FASER (LHC Run 3)	$\int \mathcal{L} dt = 150 \text{ fb}^{-1}$	$14 { m TeV}$	$7 { m ~TeV}$	480m	$1.5\mathrm{m}$	$\sim 1 { m TeV}$	$N_{ m sig} \geq 3$
FASER2 (HL-LHC)	$\int {\cal L} \; dt = 3 \; { m ab}^{-1}$						
SHiP	$N_{ m POT} = 2 imes 10^{20}$	$27.4 { m ~GeV}$	$400 {\rm GeV}$	110m	$50\mathrm{m}$	$\sim 50 { m ~GeV}$	
CHARM	$N_{\rm POT} = 2.4 \times 10^{18}$			515m	35m		
NOMAD	$N_{\rm POT} = 4.1 \times 10^{19}$	$29 {\rm GeV}$	$450 {\rm GeV}$	835m	290m		

• The number of events

$$N_{\text{sig.}} = \int_{E_{\text{min}}}^{E_{\text{max}}} dE_{\nu_4} \left[\frac{dN_{\nu_4}(E_{\nu_4})}{dE_{\nu_4}} \times \left(e^{-\frac{L-\Delta}{d}} - e^{-\frac{L}{d}} \right) \times \text{Br}(X/\nu_4 \to \text{visible}) \times A_{\text{eff}}(E_{\nu_4}) \right]$$

 $\frac{dN_{\nu_4}}{dE_{\nu_4}} \approx \frac{dN_{\nu_{\tau}}}{dE_{\nu_{\tau}}} \times |U_{\tau 4}|^2 \times \text{(phase space suppression)}$

LEP monojet search

- DELPHI Collaboration, Z. Phys. C 74, 1997
- DELPHI reported the weak isosinglet neutral heavy lepton search with 3.3×10^6 Z bosons @ LEP
 - $v_4 \rightarrow \text{monojet} : m_4 \ge 6 \text{GeV}$
 - $\operatorname{Br}(Z \to \nu \nu_4) < 1.3 \times 10^{-6} (95\% \text{ C.L.})$

Z invisible decay

S. Schael et al, Phys. Rept. 427, 2006

• Measurement of invisible Z decay

$$\Gamma_{Z \to \text{invisible}}^{\text{Exp.}} = 499.0 \pm 1.5 \text{ MeV},$$

$$\Gamma_{Z \to \text{invisible}}^{\text{SM}} = 501.69 \pm 0.06 \text{ MeV}.$$

 Conveniently, the experimental measurement of Z invisible width can be expressed in terms of the number of light neutrino species

•
$$N_{\nu} = 2.9963 \pm 0.0074$$

 ${\rm o}$ To get our limits we set the confidence level to 3σ

$$|U_{l4}|^2 < \frac{1}{\operatorname{Br}(X \to \text{invisible})} \cdot \left(\frac{\Gamma_{Z \to \text{invisible}}^{\operatorname{Exp.}}}{\Gamma_{Z \to \text{invisible}}^{\operatorname{SM}}} - 1\right)$$

IceCube Telescope

 IceCube can distinguish flavors by observing event topology.

IceCube

1908.05506

Distribution of tau-DB & Non-DB events

o 2 candidates of tau-DB @ the IceCube

•
$$L_{\text{dec.}}^{\tau} = \gamma_{\tau} c \tau_{\tau} = 49.04 \text{m} \left(\frac{E_{\tau}}{\text{PeV}} \right)$$

23

IceCube

 GeV-energy tau-sterile probe by (Earth-penetrating) atmospheric neutrinos

$$P(\nu_{\mu} \to \nu_{\tau}) = \sum_{j,k} U_{\mu j} U_{\tau j}^* U_{\mu k}^* U_{\tau k} \exp\left(i\frac{\Delta m_{jk}^2 L}{2E_{\nu}}\right) \approx \cos^4\theta_{13} \sin^2\theta_{23} \sin^2\left(\frac{\Delta m_{jk}^2 L}{4E_{\nu}}\right)$$

 TeV(~PeV)-energy tau-sterile probe by almost isotropic astrophysical neutrinos

$$\frac{d\Phi_{\nu+\bar{\nu}}}{dE_{\nu}} = \Phi_0 \times 10^{-18} \left(\frac{E_{\nu}}{100 \text{ TeV}}\right)^{-\gamma} \left[\text{GeV}^{-1} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}\right]$$

Double-Bang event rate at IceCube

$$N_{\text{sig.}} \simeq \int dE_{\nu} \left[\frac{dN_{\text{NC}}^{\nu_{\tau}}}{dE_{\nu}} \times \left(e^{-\frac{L-\Delta}{d}} - e^{-\frac{L}{d}} \right) \times \text{Br}(X/\nu_4 \to \text{visible}) \right]$$

Numerical Analysis

• Sterile ν -specific $U(1)_s$ model

Conclusions

• We consider MeV-GeV Neutral Lepton in the presence of light gauge interactions in the neutrino sector.

 Due to the different kinematics and decay channels of HNL, the signatures @ LLP searches and neutrino telescopes can be significantly changed.

 Future beam-dump experiments, IceCube telesco are expected to probe even very small tau-sterile mixing region near future.

Conclusions • We consider MeV-GeV Neutral Lanton in the presence of light gauge Thank you very much o Due to HNL, the **Question**? telescopes

 Future beam-dump experiments, IceCube telescop are expected to probe even very sm mixing region near future.