Lepton sector in a modular flavor symmetry

Hiroshi Okada
(Asia Pacific Center for Theoretical Physics)
26th-28th Nov. 2021 at …Jeju Hidden Cliff
Content: 1. Introduction…A4
2. Modular group and its application (Zee model)
3. Summary

1 Introduction

Q.

Predictions for quark and lepton masses and mixings as well as reproducing experimental results are very important issue to understand flavor physics.

The CKM mixing angles and CP violating phase of quarks have been precisely measured in the SM.

Neutrino sector may be more attractive since it would include new physics(NP).

Precise measurement for the neutrino oscillation observations and CP violations will be done by

T2K and Nova experiments T2HK, DUNE.

What is the principle to control flavors of leptons ? => We expect a flavor symmetry.

Alternative group with four objects (A4) are frequently applied to lepton sector to get predictions!

A4: Minimum non-Abelian discrete group with triplet irreducible representation.

Related to Three families ?

Why A4???

Tri-bimaximal Mixing of Neutrino flavors.

$\sin ^{2} \theta_{12}=1 / 3, \sin ^{2} \theta_{23}=1 / 2, \sin ^{2} \theta_{13}=0$,

$$
U_{\text {tri-bimaximal }}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & \sqrt{1 / 3} & 0 \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & -\sqrt{1 / 2} \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & \sqrt{1 / 2}
\end{array}\right)
$$

Harrison, Perkins, Scott (2002) proposed

Tri-bimaximal Mixing (TBM) is realized by the mass matrix

$$
m_{T B M}=\frac{m_{1}+m_{3}}{2}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\frac{m_{2}-m_{1}}{3}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)+\frac{m_{1}-m_{3}}{2}\left(\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\right)
$$

in the diagonal basis of charged leptons.
A_{4} symmetric

A_{4} group

Even permutation group of four objects (1234)

Symmetry of tetrahedron 12 elements (order 12) are generated by
S and $T: S^{2}=T^{3}=(S T)^{3}=1: S=(14)(23), T=(123)$

4 conjugacy classes
C1: 1 C3: $S, T^{2} S T, T S T^{2} \quad h=2$
C4: T, ST, TS, STS $h=3$

	h	χ_{1}	$\chi_{1^{\prime}}$	$\chi_{1^{\prime \prime}}$	χ_{3}
C_{1}	1	1	1	1	3
C_{3}	2	1	1	1	-1
C_{4}	3	1	ω	ω^{2}	0
$C_{4^{\prime}}$	3	1	ω^{2}	ω	0

$C 4^{\prime}: T^{2}, S T^{2}, T^{2} S, S T^{2} S \quad h=3$

Irreducible representations: 1, 1', 1", 3
The minimum group containing triplet that is identified as 3 flavor.

Multiplication rule of \boldsymbol{A}_{4} group

Irreducible representations: 1, 1', 1", 3

$$
\begin{aligned}
& S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right), T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right) ; \omega=e^{2 \pi i / 3} \quad \text { for triplet } \\
&\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)_{3} \otimes\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)_{3}=\underbrace{}_{\left.\left(a_{1} b_{1}+a_{2} b_{3}+a_{3} b_{2}\right)_{1}\right)} \oplus\left(a_{3} b_{3}+a_{1} b_{2}+a_{2} b_{1}\right)_{1^{\prime}} \\
& \oplus\left(a_{2} b_{2}+a_{1} b_{3}+a_{3} b_{1}\right)_{1^{\prime \prime}} \\
& \oplus \frac{1}{3}\left(\begin{array}{l}
2 a_{1} b_{1}-a_{2} b_{3}-a_{3} b_{2} \\
2 a_{3} b_{3}-a_{1} b_{2}-a_{2} b_{1} \\
2 a_{2} b_{2}-a_{1} b_{3}-a_{3} b_{1}
\end{array}\right)_{3} \oplus \frac{1}{2}\left(\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{1} b_{2}-a_{2} b_{1} \\
a_{3} b_{1}-a_{1} b_{3}
\end{array}\right)_{3}
\end{aligned}
$$

A_{4} invariant Majorana neutrino mass term

$$
\underset{3 \times 3}{(L L)_{1}}=L_{1} L_{1}+L_{2} L_{3}+L_{3} L_{2}
$$

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

A_{4} invariant

Concrete realization

Neutrino sector

G. Altarelli, F. Feruglio, Nucl.Phys. B720 (2005) 64

$$
\mathbf{3}_{\mathrm{L}} \times \mathbf{3}_{\mathrm{L}} \times \mathbf{1}_{\text {flavon }} \rightarrow \mathbf{1}
$$

$$
\begin{aligned}
& m_{\nu L L} \sim y_{1}\left(\begin{array}{ccc}
2\left\langle\phi_{\nu 1}\right\rangle & -\left\langle\phi_{\nu 3}\right\rangle & -\left\langle\phi_{\nu 2}\right\rangle \\
-\left\langle\phi_{\nu 3}\right\rangle & 2\left\langle\phi_{\nu 2}\right\rangle & -\left\langle\phi_{\nu 1}\right\rangle \\
-\left\langle\phi_{\nu 2}\right\rangle & -\left\langle\phi_{\nu 1}\right\rangle & 2\left\langle\phi_{\nu 3}\right\rangle
\end{array}\right)+y_{2}\langle\xi\rangle\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& \left\langle\phi_{\nu 1}\right\rangle=\left\langle\phi_{\nu 2}\right\rangle=\left\langle\phi_{\nu 3}\right\rangle, \text { which preserves S symmetry. } \\
& m_{\nu L L}=3 a\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)-a\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)+b\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Charged-lepton sector

If the following conditions, diagonal mass matrix if obtained! $\left\langle\phi_{E 2}\right\rangle=\left\langle\phi_{E 3}\right\rangle=0$

In 2012, θ_{13} was measured by Daya Bay, RENO, Double Chooz, T2K, MINOS,

Tri-bimaximal mixing was ruled out!

$$
\begin{gathered}
\theta_{13} \simeq 9^{\circ} \simeq \theta_{c} / \sqrt{2} \\
M_{\nu}=a\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+b\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)+c\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)+d\left(\begin{array}{lll}
\text { Additional Matrix } & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
\end{gathered}
$$

More flavors are needed!

Neutrino mixing matrix

$V_{\alpha}=\left(U_{\text {PMNS }}\right)_{\alpha i} V_{i}$

$$
\alpha=e, \mu, \tau \quad i=1,2,3
$$

flavor eigenstates mass eigenstates

$$
U_{\mathrm{PMNS}}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta_{\mathrm{CP}}} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta_{\mathrm{CP}}} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta_{\mathrm{CP}}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta_{\mathrm{CP}}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta_{\mathrm{CP}}} & c_{23} c_{13}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \frac{\alpha_{21}}{2}} & 0 \\
0 & 0 & e^{i \frac{\alpha_{31}}{2}}
\end{array}\right)
$$

$c_{i j}$ and $s_{i j}$ denote $\cos \theta_{i j}$ and $\sin \theta_{i j}$, respectively.

吡		Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^{2}=2.7$)	
		bfp $\pm 1 \sigma$	3σ range	bfp $\pm 1 \sigma$	3σ range
	$\sin ^{2} \theta_{12}$	$0.304_{-0.012}^{+0.013}$	$0.269 \rightarrow 0.343$	$0.304_{-0.012}^{+0.013}$	$0.269 \rightarrow 0.343$
	$\theta_{12} /{ }^{\circ}$	$33.44_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.86$	$33.45{ }_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$
	$\sin ^{2} \theta_{23}$	$0.570_{-0.024}^{+0.018}$	$0.407 \rightarrow 0.618$	$0.575_{-0.021}^{+0.017}$	$0.411 \rightarrow 0.621$
	$\theta_{23} /{ }^{\circ}$	$49.0_{-1.4}^{+1.1}$	$39.6 \rightarrow 51.8$	$49.3{ }_{-1.2}^{+1.0}$	$39.9 \rightarrow 52.0$
	$\sin ^{2} \theta_{13}$	$0.02221_{-0.00062}^{+0.0068}$	$0.02034 \rightarrow 0.02430$	$0.02240_{-0.00062}^{+0.00062}$	$0.02053 \rightarrow 0.02436$
	$\theta_{13}{ }^{\circ}$	$8.57_{-0.12}^{+0.13}$	$8.20 \rightarrow 8.97$	$8.61_{-0.12}^{+0.12}$	$8.24 \rightarrow 8.98$
	$\delta_{\mathrm{CP}} /{ }^{\circ}$	195_{-25}^{+51}	$107 \rightarrow 403$	286_{-32}^{+27}	$192 \rightarrow 360$
	$\frac{\Delta m_{21}^{2}}{10^{-5} \mathrm{eV}^{2}}$	$7.42_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.04$	$7.42_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.04$
	$\frac{\Delta m_{3 \ell}^{2}}{10^{-3} \mathrm{eV}^{2}}$	$+2.514_{-0.027}^{+0.028}$	$+2.431 \rightarrow+2.598$	$-2.497_{-0.028}^{+0.028}$	$-2.583 \rightarrow-2.412$

NuFIT5.0 (2020)

$$
\Delta m^{2}{ }_{\mathrm{atm}}=\mathrm{m}_{3}{ }^{2}-\mathrm{m}_{1}^{2}, \quad \Delta \mathrm{~m}^{2}{ }_{\mathrm{sol}}=\mathrm{m}_{2}^{2}-\mathrm{m}_{1}^{2}
$$

Unsatisfactory points for traditional flavor models

1. A large number of scalars(flavons) are needed.
2. Vacuum alignment for bosons are imposed.

Modular flavor symmetries can resolve these issues!!!

2 Modular Group and its application

It is well known that the superstring theory on certain compactifications lead to non-Abelian finite groups.

Indeed, two dimensional torus compactification leads to Modular symmetry, which includes $S_{3}, A_{4}, S_{4}, A_{5}$ as its congruence subgroup.

Advantages:

1. Additional scalar bosons contributing to mass matrix are not needed, because Yukawa coupling has its structure originated from a modular group: More predictions without assumptions!
2. DM stability can be assured by modular number that is required by a modular group; Additional symmetry $\left(\mathrm{Z}_{2}\right)$ is not needed!
$2 D$ torus (T^{2}) is equivalent to parallelogram with identification of confronted sides.

Two-dimensional torus T^{2} is obtained

as $\quad T^{2}=\mathbb{R}^{2} / \Lambda$

Λ is two-dimensional lattice
The shape of torus is represented by a modulus $\tau \in \mathbb{C}$.

The different value of τ realize the different shape of T^{2}
$\mathcal{L}_{\text {eff }}$ depends on τ.

$$
\text { e.g.) } \mathcal{L}_{\text {eff }} \supset Y(\tau)_{i j} \phi \overline{\psi_{i}} \psi_{j}+\cdots
$$

$>4 D$ effective theory depends on a modulus τ

However,
there are specific transformations of τ which don't change T^{2}
Modular transformation

$$
\tau \rightarrow \tau^{\prime}
$$

$$
\tau \longrightarrow \tau^{\prime}=\frac{a \tau+b}{c \tau+d}
$$

Modular transformation

Modular transf. does not change the lattice (torus)

$4 D$ effective theory (depends on τ) must be invariant under modular transf.

The modular transformation is generated by S and T.

$$
\left.\begin{array}{ll}
S: \tau \longrightarrow-\frac{1}{\tau} & \begin{array}{c}
\tau \longrightarrow \tau^{\prime}=\frac{a \tau+b}{c \tau+d} \\
\text { translation }
\end{array} \\
T: \tau \longrightarrow \tau+1
\end{array}\right] \begin{array}{ll}
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{array}
$$

Matrix Form

${ }^{14}$ Schematical Form

$$
\mathbf{T}=\mathrm{a}_{2} / \mathrm{a}_{1}
$$

$$
\begin{aligned}
& S: \tau \longrightarrow-\frac{1}{\tau}, \\
& T: \tau \longrightarrow \tau+1
\end{aligned} \quad \quad S^{2}=1, \quad(S T)^{3}=1
$$

generate infinite discrete group

Modular group

4D effective theory

- depends on a modulus \mathbf{T}
- is independent under modular transformation

$$
\begin{aligned}
& \text { An example } \\
& \qquad \begin{array}{l}
\mathcal{L}_{1}=f(\tau) \phi_{1} \phi_{2} \cdots \phi_{n} \\
f(\tau) \rightarrow(c \tau+d)^{k} f(\tau) \\
\phi_{i} \rightarrow(c \tau+d)^{-k_{i}} \phi_{i} \\
\phi_{i}: \text { scalar fields }
\end{array} \\
& \text { When } k=\sum_{i} k_{i}, \mathcal{L}_{1} \text { is modular invariant. }
\end{aligned}
$$

Modular group has interesting subgroups

Modular group

$$
\Gamma \simeq\left\{S, T \mid S^{2}=\mathbb{I},(S T)^{3}=\mathbb{I}\right\} \quad \text { Infinite discrete group }
$$

Impose $T N=1$ congruence condition

$$
\bar{\Gamma}(N) \simeq\left\{S, T \mid S^{2}=\mathbb{I},(S T)^{3}=\mathbb{I}, T^{N}=\mathbb{I}\right\}
$$

$$
\Gamma(N) \equiv\ulcorner/ \Gamma(N)
$$

$\Gamma(2) \simeq S_{3}, \Gamma(3) \simeq A_{4}, \Gamma(4) \simeq S_{4}$, and $\Gamma(5) \simeq A_{5}$

Concrete forms of

 Yukawa couplings of A4$$
\mathbf{Y}_{\mathbf{3}}{ }^{(2)}=\left(\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right)
$$

- Yukawa couplings

$$
\left.\begin{array}{l}
Y_{1}(\tau)=\frac{i}{2 \pi}\left(\frac{\eta^{\prime}(\tau / 3)}{\eta(\tau / 3)}+\frac{\eta^{\prime}((\tau+1) / 3)}{\eta((\tau+1) / 3)}+\frac{\eta^{\prime}((\tau+2) / 3)}{\eta((\tau+2) / 3)}-\frac{27 \eta^{\prime}(3 \tau)}{\eta(3 \tau)}\right) \\
Y_{2}(\tau)=\frac{-i}{\pi}\left(\frac{\eta^{\prime}(\tau / 3)}{\eta(\tau / 3)}+\omega^{2} \frac{\eta^{\prime}((\tau+1) / 3)}{\eta((\tau+1) / 3)}+\omega \frac{\eta^{\prime}((\tau+2) / 3)}{\eta((\tau+2) / 3)}\right) \\
Y_{3}(\tau)=\frac{-i}{\pi}\left(\frac{\eta^{\prime}(\tau / 3)}{\eta(\tau / 3)}+\omega \frac{\eta^{\prime}((\tau+1) / 3)}{\eta((\tau+1) / 3)}+\omega^{2} \frac{\eta^{\prime}((\tau+2) / 3)}{\eta((\tau+2) / 3)}\right), \\
\eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right) \quad \text { Dedekind eta-function } \\
\eta(-1 / \tau)=\sqrt{-i \tau} \eta(\tau), \quad \eta(\tau+1)=e^{i \pi / 12} \eta(\tau)
\end{array}\right\} \begin{aligned}
Y_{1}(\tau) & =1+12 q+36 q^{2}+12 q^{3}+\cdots, \quad q=e^{2 \pi i \tau} \quad|\mathbf{q}| \ll \mathbf{1} \\
Y_{2}(\tau) & =-6 q^{1 / 3}\left(1+7 q+8 q^{2}+\cdots\right), \\
Y_{3}(\tau) & =-18 q^{2 / 3}\left(1+2 q+5 q^{2}+\cdots\right) .
\end{aligned}
$$ with higher orders

are constructed
by multiplication rules
of A4 symmetry!

- Singlet Yukawa starts at

$$
k=4 \text {. }
$$

$$
\begin{aligned}
& \mathbf{Y}_{1}^{(4)}=Y_{1}^{2}+2 Y_{2} Y_{3}, \quad \mathbf{Y}_{1^{\prime}}^{(4)}=Y_{3}^{2}+2 Y_{1} Y_{2}, \quad \mathbf{Y}_{1^{\prime \prime}}^{(4)}=Y_{2}^{2}+2 Y_{1} Y_{3}=0 \\
& \mathbf{Y}_{3}^{(4)}=\left(\begin{array}{l}
Y_{1}^{2}-Y_{2} Y_{3} \\
Y_{3}^{2}-Y_{1} Y_{2} \\
Y_{2}^{2}-Y_{1} Y_{3}
\end{array}\right),
\end{aligned}
$$

$$
\mathbf{Y}_{1}^{(6)}=Y_{1}^{3}+Y_{2}^{3}+Y_{3}^{3}-3 Y_{1} Y_{2} Y_{3}
$$

$$
\mathbf{Y}_{3}^{(6)} \equiv\left(\begin{array}{c}
Y_{1}^{(6)} \\
Y_{2}^{(6)} \\
Y_{3}^{(6)}
\end{array}\right)=\left(\begin{array}{c}
Y_{1}^{3}+2 Y_{1} Y_{2} Y_{3} \\
Y_{1}^{2} Y_{2}+2 Y_{2}^{2} Y_{3} \\
Y_{1}^{2} Y_{3}+2 Y_{3}^{2} Y_{2}
\end{array}\right), \quad \mathbf{Y}_{3^{\prime}}^{(6)} \equiv\left(\begin{array}{c}
Y_{1}^{\prime(6)} \\
Y_{2}^{\prime(6)} \\
Y_{3}^{\prime(6)}
\end{array}\right)=\left(\begin{array}{c}
Y_{3}^{3}+2 Y_{1} Y_{2} Y_{3} \\
Y_{3}^{2} Y_{1}+2 Y_{1}^{2} Y_{2} \\
Y_{3}^{2} Y_{2}+2 Y_{2}^{2} Y_{1}
\end{array}\right)
$$

I /

A concrete model

Zee model

One of the simplest neutrino model
 New particles: h^-,H2

No additional symmetries are needed!

Anti-symmetric!

> Zee model in a modular A_4 symmetry
> T. Nomura, HO, Yong-hui Qi (2111.10944)

Field contents and their assignments

Fermions:
A_{4} singlets Le_bar 1: L μ _bar $1^{\prime \prime}$: LT_bar 1^{\prime}...with [-2-2-4] modular weight.
A_{4} triplet $3\left(e_{R e}, e_{R \mu}, e_{R T}\right)$...with zero modular weight.

Bosons: all the bosons are trivial singlets with different modular weights!
$\mathrm{H}_{1}, \mathrm{H}_{2} \ldots$ doublet bosons with [0-2] modular weight, s -, $\varphi \ldots$ singlet bosons with [-4-2] modular weight.

	Leptons	
	$\left[\bar{L}_{L_{e}}, \bar{L}_{L_{\mu}}, \bar{L}_{L_{\tau}}\right]$	$\left[e_{R}, \mu_{R}, \tau_{R}\right]$
$S U(2)_{L}$	$\mathbf{2}$	$\mathbf{1}$
$U(1)_{Y}$	$\frac{1}{2}$	-1
A_{4}	$\left[1,1^{\prime \prime}, 1^{\prime}\right]$	3
$-k_{I}$	$[-2,-2,-4]$	0

$$
\begin{aligned}
& -\mathcal{L}_{Y}=a_{\ell} L_{L_{e}} H_{1}\left(y_{1} e_{R}+y_{2} \tau_{R}+y_{3} \mu_{R}\right)+b_{\ell} L_{L_{\mu}} H_{1}\left(y_{3} \tau_{R}+y_{1} \mu_{R}+y_{2} e_{R}\right) \\
& +c_{l} \bar{L}_{L_{T}} H_{1}\left(y_{2}^{(4)} \mu_{R}+y_{1}^{(4)} \tau_{R}+y_{3}^{(4)} e_{R}\right) \\
& y_{i j}^{\ell} \\
& +a_{\ell}^{\prime} \bar{L}_{L_{e}} H_{2}\left(y_{1}^{(4)} e_{R}+y_{2}^{(4)} \tau_{R}+y_{3}^{(4)} \mu_{R}\right)+b_{\ell}^{\prime} \bar{L}_{L_{\mu}} H_{2}\left(y_{3}^{(4)} \tau_{R}+y_{1}^{(4)} \mu_{R}+y_{2}^{(4)} e_{R}\right) \\
& +c_{l}^{\prime} \bar{L}_{L_{r}} H_{2}\left(y_{2}^{(6)} \mu_{R}+y_{1}^{(6)} \tau_{R}+y_{3}^{(6)} e_{R}\right)+d_{l}^{\prime} \bar{L}_{L} H_{2}\left(y_{2}^{(6)} \mu_{R}+y_{1}^{\prime(6)} \tau_{R}+y_{3}^{\prime(6)} e_{R}\right) \\
& +a \bar{L}_{L_{e}}\left(i \sigma_{2}\right) L_{L_{\mu}}^{C} s^{-}+b \bar{L}_{L_{e}}\left(i \sigma_{2}\right) L_{L_{\tau}}^{C} s^{-}+c \bar{H}_{L_{\mu}}\left(i \sigma_{2}\right) L_{L_{\tau}}^{C} s^{-}+\text {h.c. }, \\
& \mathcal{V}=\mu\left(H_{1}^{T} \cdot H_{2}\right) s^{-}+\mu^{\prime} \varphi H_{1}^{\dagger} H_{2}+\text { h.c. },
\end{aligned}
$$

Singlets have non-zero coupling in case of 4=k.

Higgs sector:

$$
\begin{gathered}
O_{h} M_{\text {even }}^{2} O_{h}^{T}=\operatorname{diag}\left[m_{h}^{2}, m_{H}^{2}\right] \\
O_{z} M_{\text {odd }}^{2} O_{z}^{T}=\operatorname{diag}\left[m_{z}^{2}(=0), m_{A}^{2}\right] \\
O_{C} M_{C}^{2} O_{C}^{T}= \\
\operatorname{diag}\left[m_{w^{+}}^{2}(=0), m_{h^{+}}^{2}, m_{H^{+}}^{2}\right] \\
{\left[v_{1} / v_{H}, v_{2} / v_{H}, 0\right]} \\
\frac{M_{C}}{\mathrm{GeV}} \approx\left(\begin{array}{ccc}
49.3 & 110 i & 77.8 \\
110 i & 246 & 174 i \\
77.8 & 174 i & 181 i
\end{array}\right), \quad O_{C} \approx\left(\begin{array}{ccc}
\frac{0.981}{} & 0.196 & 0 \\
-0.0553 i & 0.277 i & 0.959 i \\
0.188 & -0.941 & 0.282
\end{array}\right) \\
v_{1} / v_{2}=5
\end{gathered}
$$

Charged-lepton mass matrix:

$$
\begin{aligned}
& M_{e}=\frac{v_{1}}{\sqrt{2}} \tilde{M}_{e}+\frac{v_{2}}{\sqrt{2}} \tilde{M}_{e}^{\prime}, \\
& \tilde{M}_{e}=\left(\begin{array}{ccc}
\left|a_{\ell}\right| & 0 & 0 \\
0 & \left|b_{\ell}\right| & 0 \\
0 & 0 & \left|c_{\ell}\right|
\end{array}\right)\left(\begin{array}{ccc}
y_{1} & y_{3} & y_{2} \\
y_{2} & y_{1} & y_{3} \\
y_{3}^{(4)} & y_{2}^{(4)} & y_{1}^{(4)}
\end{array}\right), \\
& \tilde{M}_{e}^{\prime}=\left(\begin{array}{ccc}
a_{\ell}^{\prime} & 0 & 0 \\
0 & b_{\ell}^{\prime} & 0 \\
0 & 0 & c_{\ell}^{\prime}
\end{array}\right)\left(\begin{array}{ccc}
y_{1}^{(4)} & y_{3}^{(4)} & y_{2}^{(4)} \\
y_{2}^{(4)} & y_{1}^{(4)} & y_{3}^{(4)} \\
y_{3}^{(6)}+e_{\ell}^{\prime} y_{3}^{\prime(6)} & y_{2}^{(6)}+e_{\ell}^{\prime} y_{2}^{\prime(6)} & y_{1}^{(6)}+e_{\ell}^{\prime} y_{1}^{\prime(6)}
\end{array}\right), \\
& D_{e} \equiv \operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right)=V_{e L}^{\dagger} M_{e} V_{e R} .
\end{aligned}
$$

```
Tr}[\mp@subsup{M}{e}{}\mp@subsup{M}{e}{\dagger}]=|\mp@subsup{m}{e}{}\mp@subsup{|}{}{2}+|\mp@subsup{m}{\mu}{}\mp@subsup{|}{}{2}+|\mp@subsup{m}{\tau}{}\mp@subsup{|}{}{2}
Det[M}\mp@subsup{M}{e}{}\mp@subsup{M}{e}{\dagger}]=|\mp@subsup{m}{e}{}\mp@subsup{|}{}{2}|\mp@subsup{m}{\mu}{}\mp@subsup{|}{}{2}|\mp@subsup{m}{\tau}{}\mp@subsup{|}{}{2}
```


al, bl cl are fixed giving numerical values of $a^{\prime}, b^{\prime}\left|, c^{\prime}\right|$ and charged-lepton masses.

Neutrino sector:

$$
\begin{aligned}
& \left.-\mathcal{L}_{\nu}=\bar{\nu}_{L_{i}}\left(\tilde{M}_{e}\right)_{i j}\left(V_{e R}\right)_{j a}\left(\ell_{R}\right)_{a}\left(O_{C}^{T}\right)_{1 \alpha}\left(h_{m}^{+}\right)_{\alpha}+\bar{\nu}_{L_{i}}\left(\tilde{M}_{e}^{\prime}\right)_{i j}\left(V_{e R}\right)_{j a}\left(\ell_{R}\right)_{a}\left(O_{C}^{T}\right)_{2 \alpha} \overrightarrow{\left(h_{m}^{+}\right.}\right)_{\alpha} \\
& +\left[-\bar{\ell}_{L_{a}}\left(V_{e L}^{\dagger}\right)_{a i} f_{i j} \nu_{L_{i}}^{C}+\bar{\nu}_{L_{i}} f_{i j}^{T}\left(V_{e L}^{*}\right)_{j b} \ell_{L_{h}}^{C}\right]\left(O_{C}^{T}\right)_{3 \alpha}\left(h_{m}^{+}\right)_{\alpha}+\text { h.c. }, \\
& f=\left(\begin{array}{ccc}
0 & a & b \\
-a & 0 & |c| \\
-b & -|c| & 0
\end{array}\right)=|c|\left(\begin{array}{ccc}
0 & \epsilon^{\prime} & \epsilon \\
-\epsilon^{\prime} & 0 & 1 \\
-\epsilon & -1 & 0
\end{array}\right) \equiv|c| \tilde{f}, \\
& \left(m_{\nu}\right)_{i j}=|c|\left[\left(\tilde{m}_{\nu}^{(I)}\right)_{i j}+\left(\tilde{m}_{\nu}^{(I I)}\right)_{i j}+\left(\tilde{m}_{\nu}^{(I)}\right)_{i j}^{T}+\left(\tilde{m}_{\nu}^{(I I)}\right)_{i j}^{T}\right], \\
& \left(\tilde{m}_{\nu}^{(I)}\right)_{i j} \simeq \frac{1}{(4 \pi)^{2}}\left(\tilde{M}_{e}^{\prime}\right)_{i j^{\prime}}\left(V_{e R}\right)_{j^{\prime} a} D_{e_{a}}\left(V_{e L}^{\dagger}\right)_{a_{i} i^{\prime}} \tilde{f}_{i^{\prime} j}\left[\left(O_{C}^{T}\right)_{2 \alpha}\left(O_{C}\right)_{\alpha 3}\right] \\
& \left.\left(\tilde{m}_{\nu}^{(I I)}\right)_{i j} \simeq-\frac{1}{(4 \pi)^{2}} \tilde{f}_{i_{j^{\prime}}}^{T}\left(V_{e L}^{*}\right)_{j^{\prime} a} D_{e_{a}}\left(V_{e R}^{T}\right)_{a_{i^{\prime}}}\left(\tilde{M}_{e}^{T}\right)_{i_{i^{\prime} j} j}, m_{h_{m_{\alpha}}}\right), \\
& \left.I\left(O_{C}^{T}\right)_{3 \alpha}\left(O_{C}\right)_{\alpha 1}\right] I\left(D_{e_{a}}, m_{h_{m_{\alpha}}^{ \pm}}\right), \\
& I\left(D_{e_{a}}, m_{h_{m_{\alpha}}}\right)=\int_{0}^{1} \ln \left[x D_{e_{a}}^{2}+(1-x) m_{h_{m_{\alpha}}}^{2}\right],
\end{aligned}
$$

Charged-NGB does not contribute to the neutrino mass since 1-3 component of Oc is zero.

Numerical results:
※IH is not favored up to 5 chi-square analysis.

NH for neutrinos

$\mathrm{t}=2.1 \mathrm{i} \sim 2.3 \mathrm{i}$ is favored.

$$
Y_{3}^{(2,4,6)} \sim[1,0,0]^{T}, Y_{3}^{\left(6^{\prime}\right)} \sim[0,0,0]^{T}
$$

The mass matrix is simplified!=> later!

Numerical results:

NH for neutrinos

NH for neutrinos

$$
\alpha_{21}=[20-50,320-360][\mathrm{deg}],
$$

$$
\alpha_{31}=[135-165,195-225][\mathrm{deg}]
$$

$$
\delta_{C P}=[30-100,260-330][\mathrm{deg}] .
$$

Numerical results:

NH for neutrinos

$$
\left\langle m_{e e}\right\rangle=[2.6-4.4][\mathrm{meV}] .
$$

$$
\sum m_{i}=[58-61][\mathrm{meV}]
$$

$m_{1} \ll m_{2} \ll m_{3}$, because $\sum m_{i}$ is close to $\sqrt{\Delta m_{a t m}^{2}}$.

Neutrino mass matrix in the limit of $\tau=i \infty$.

$$
Y_{3}^{(2,4,6)} \sim[1,0,0]^{T}, \quad Y_{3}^{\left(6^{\prime}\right)} \sim[0,0,0]^{T}
$$

The neutrino mass matrix is given by B1 form, since the loop function does not depend on the charged-lepton masses: me, $m \mu, m T \ll m h \pm$.

$$
\operatorname{diag}\left[m_{w^{+}}, m_{h^{+}}, m_{H^{+}}\right] \approx \operatorname{diag}[0,204,269] \mathrm{GeV}
$$

$$
m_{\nu} \sim\left(\begin{array}{ccc}
\times & \times & 0 \\
\times & 0 & \times \\
0 & \times & \times
\end{array}\right) \cdot \begin{gathered}
\mathrm{NH} \text { is favored. } \\
\alpha_{21} \simeq-\alpha_{31} \simeq \delta_{C P}-\frac{\pi}{2} .
\end{gathered}
$$

Numerical results:

Our predictions for phases are similar to the predictions for B1 texture!

3 Summary

- Modular non-Abelian discrete flavor symmetries provide several predictions without introducing so many Higgs fields.
- Neutrino mass matrix of A_{4} Zee-model favors t~2i;

$$
y \sim[1,0,0] .
$$

- It leads to B1 two zero texture and similar predictions are obtained for phases.

Sum of neutrino mass is about 60 meV that is equal to square root of atmospheric neutrino mass squared difference; $m 1 \ll m 2 \ll m 3$.

