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1   Introduction

Q. 
Predictions for quark and lepton masses and mixings as well as 
reproducing experimental results are very important issue to 
understand flavor physics. 

The CKM mixing angles and CP violating phase of quarks have been 
precisely measured in the SM.  

Neutrino sector may be more attractive since it would 
include new physics(NP). 

Precise measurement for the neutrino oscillation observations and 
CP violations will be done by                 
            T2K and Nova experiments  T2HK, DUNE.



What is the principle to control flavors of 
leptons ? => We expect a flavor symmetry.

Alternative group with four objects (A4) are 
frequently applied to lepton sector to get 
predictions!

A4: Minimum non-Abelian discrete group with 
triplet irreducible representation. 

Related to Three families ?
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Harrison, Perkins, 
Scott (2002) proposed

Tri-bimaximal Mixing of Neutrino flavors.

Tri-bimaximal Mixing (TBM) is realized by the mass matrix

in the diagonal basis of charged leptons. A4 symmetric

E. Ma, G. Rajasekaran　2001

Why A4???



Even permutation group of four objects (1234) 
12 elements (order 12) are generated by  
S and T:  S2=T3=(ST)3=1 : S=(14)(23), T=(123) 

4 conjugacy classes 
C1: 1                        h=1 
C3: S, T2ST, TST2            h=2 
C4: T, ST, TS, STS       h=3 
C4’: T2, ST2, T2S, ST2S   h=3 

Irreducible representations: 1, 1’, 1”, 3　　 
The minimum group containing triplet that is identified as 3 
flavor.

5

Symmetry of tetrahedron

A4 group 
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Multiplication rule of A4 group 

(LL)1 = L1L1 + L2L3 + L3L2

Irreducible representations: 1, 1’, 1”, 3　　

A4 invariant Majorana neutrino mass term

A4 invariant
3 x 3

for triplet
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Concrete realization

20

There appears a Neutrino Mass Sum Rule.

Flavor mixing is determined: Tri-bimaximal mixing. θ13=0

3L ×  3L ×  1flavon →  1

Adding A4 singlet flavon        　　　　flavor mixing matrix is fixed.

,  which preserves S symmetry.

This is a minimal framework of A4 symmetry predicting mixing angles and masses.

Z2 (1,S) is preserved 

Prototype A4 flavor model should be modified !

19

Residual symmetries lead to specific Vacuum Alingnments

3L  ×  3L ×  3flavon →  1 3L  ×  1R (1R’, 1R”) ×  3flavon →  1 

Flavor symmetry G is broken by  VEV of flavons

Z3 (1,T,T2) in charged leptons
Z2 (1,S) in neutrinos          

mE is a diagonal matrix, on the other hand, mνLL is

two generated masses and  
one massless neutrinos ! 
(0, 3y, 3y) 
Flavor mixing is not fixed !

⇒

Rank 2

Neutrino sector

Charged-lepton sector

19

Residual symmetries lead to specific Vacuum Alingnments

3L  ×  3L ×  3flavon →  1 3L  ×  1R (1R’, 1R”) ×  3flavon →  1 

Flavor symmetry G is broken by  VEV of flavons

Z3 (1,T,T2) in charged leptons
Z2 (1,S) in neutrinos          

mE is a diagonal matrix, on the other hand, mνLL is

two generated masses and  
one massless neutrinos ! 
(0, 3y, 3y) 
Flavor mixing is not fixed !

⇒

Rank 2

If the following conditions, diagonal mass matrix if obtained!



　In 2012, θ13 was measured by Daya Bay, RENO,  
          Double Chooz, T2K, MINOS,  

        Tri-bimaximal mixing was ruled out !

22

Predictions are consistent with the data of mixing angles 
for both normal and inverted mass hierarchies.

Additional Matrix

Predictability is reduced  because of  additional parameters.

More flavors are needed!
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να= (UPMNS)αiνi
 α=e,μ,τ             i=1,2,3 
 flavor eigenstates            mass eigenstates  

NuFIT5.0 (2020)         Δm2atm = m32-m12    ,     Δm2sol = m22-m12 

Neutrino mixing matrix

m1 < m2 < m3 m3 < m1< m2

w
it
h
o
u
t
S
K

a
t
m
o
s
p
h
e
r
ic

d
a
t
a

Normal Ordering (best fit) Inverted Ordering (��2
= 2.7)

bfp ±1� 3� range bfp ±1� 3� range

sin
2 ✓12 0.304+0.013

�0.012 0.269 ! 0.343 0.304+0.013
�0.012 0.269 ! 0.343

✓12/
�

33.44+0.78
�0.75 31.27 ! 35.86 33.45+0.78

�0.75 31.27 ! 35.87

sin
2 ✓23 0.570+0.018

�0.024 0.407 ! 0.618 0.575+0.017
�0.021 0.411 ! 0.621

✓23/
�

49.0+1.1
�1.4 39.6 ! 51.8 49.3+1.0

�1.2 39.9 ! 52.0

sin
2 ✓13 0.02221+0.00068

�0.00062 0.02034 ! 0.02430 0.02240+0.00062
�0.00062 0.02053 ! 0.02436

✓13/
�

8.57+0.13
�0.12 8.20 ! 8.97 8.61+0.12

�0.12 8.24 ! 8.98

�CP/
�

195
+51
�25 107 ! 403 286

+27
�32 192 ! 360

�m2
21

10�5 eV
2 7.42+0.21

�0.20 6.82 ! 8.04 7.42+0.21
�0.20 6.82 ! 8.04

�m2
3`

10�3 eV
2 +2.514+0.028

�0.027 +2.431 ! +2.598 �2.497+0.028
�0.028 �2.583 ! �2.412

w
it
h
S
K

a
t
m
o
s
p
h
e
r
ic

d
a
t
a

Normal Ordering (best fit) Inverted Ordering (��2
= 7.1)

bfp ±1� 3� range bfp ±1� 3� range

sin
2 ✓12 0.304+0.012

�0.012 0.269 ! 0.343 0.304+0.013
�0.012 0.269 ! 0.343

✓12/
�

33.44+0.77
�0.74 31.27 ! 35.86 33.45+0.78

�0.75 31.27 ! 35.87

sin
2 ✓23 0.573+0.016

�0.020 0.415 ! 0.616 0.575+0.016
�0.019 0.419 ! 0.617

✓23/
�

49.2+0.9
�1.2 40.1 ! 51.7 49.3+0.9

�1.1 40.3 ! 51.8

sin
2 ✓13 0.02219+0.00062

�0.00063 0.02032 ! 0.02410 0.02238+0.00063
�0.00062 0.02052 ! 0.02428

✓13/
�

8.57+0.12
�0.12 8.20 ! 8.93 8.60+0.12

�0.12 8.24 ! 8.96

�CP/
�

197
+27
�24 120 ! 369 282

+26
�30 193 ! 352

�m2
21

10�5 eV
2 7.42+0.21

�0.20 6.82 ! 8.04 7.42+0.21
�0.20 6.82 ! 8.04

�m2
3`

10�3 eV
2 +2.517+0.026

�0.028 +2.435 ! +2.598 �2.498+0.028
�0.028 �2.581 ! �2.414

Table 3. Three-flavor oscillation parameters from our fit to global data. The numbers in the 1st
(2nd) column are obtained assuming NO (IO), i.e., relative to the respective local minimum. Note
that �m2

3` ⌘ �m2
31 > 0 for NO and �m2

3` ⌘ �m2
32 < 0 for IO. The results shown in the upper

(lower) table are without (with) adding the tabulated SK-atm ��2.

– 12 –



1. A large number of scalars(flavons) are needed.

2. Vacuum alignment for bosons are imposed. 

Unsatisfactory points for traditional flavor models

Modular flavor symmetries can 
resolve these issues!!!
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  2   Modular Group and its application

        It is well known that the superstring theory  
        on certain compactifications lead to  
        non-Abelian finite groups. 

Indeed, two dimensional torus compactification leads to Modular 

symmetry, which includes S3, A4, S4, A5 as its congruence subgroup.  

Advantages:
1. Additional scalar bosons contributing to mass matrix are not 
needed, because Yukawa coupling has its structure originated 
from a modular group; More predictions without assumptions!

2. DM stability can be assured by modular number that is required by a 
modular group; Additional symmetry (Z2) is not needed!
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Two-dimensional torus T2  is obtained   
　　　as　　T2 = ℝ2 / Λ 
Λ is two-dimensional lattice
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Modular transformation
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The modular transformation is generated by S and T .

α1

α2
α’2

TS
α’2

α2

α1 α’1

= =

τ =α2/α1 

translation

Schematical Form

Matrix Form
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generate infinite discrete group
Modular group

30

generate infinite discrete group
Modular group

4D effective theory 
 　　・ depends on a modulus τ 
      ・ is independent  under modular transformation
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Modular group has interesting subgroups 

Infinite discrete group

Impose  TN=1   congruence condition

Γ(N) ≡  Γ / Γ(N)
ー

ー
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��

����A4 triplet of modular forms with weight 2 �

|q|�1�

F. Feruglio, arXiv:1706.08749�

Dedekind eta-function�

���

Let us consider Modular forms with higher weights k=4, 6 …�

Modular forms with higher weights are 
constructed by the  tensor product of 
modular forms of weight 2�

# of modular forms is k+1�

Weight 2  
3 Modular forms �

Weight 4 
5 Modular forms �

Weight 6 
7 Modular forms �

J.T.Penedo, S.T.Petcov, Nucl.Phys.B939(2019)292�

Concrete forms of 
Yukawa couplings 

of A4

���

Let us consider Modular forms with higher weights k=4, 6 …�

Modular forms with higher weights are 
constructed by the  tensor product of 
modular forms of weight 2�

# of modular forms is k+1�

Weight 2  
3 Modular forms �

Weight 4 
5 Modular forms �

Weight 6 
7 Modular forms �

J.T.Penedo, S.T.Petcov, Nucl.Phys.B939(2019)292�

●Yukawa couplings  
with higher orders 
 are constructed  

by multiplication rules 
 of A4 symmetry!

●Singlet Yukawa starts at 
k=4.  



A concrete model

Zee model

A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscillation 
    A. Zee(Pennsylvania U.) 

Feb, 1980 
1 page 

Published in: 
   Phys.Lett.B 93 (1980) 389, Phys.Lett.B 95 (1980) 461 (erratum) 

    Published: 1980

New particles: h^-,H2

Notice here that we have four real parameters; a`, b`, c`, c and the five complex ones;

a0
`
, b0

`
, c0

`
, a, b after phase redefinition of fields without loss of generality in the Yukawa sector.

a`, b`, c` are fixed when we fit masses of the charged-leptons. The non-trivially valid Higgs

potential is given by

V = µ(HT

1
·H2)s

� + µ0'H†
1
H2 + h.c., (II.2)

where µ ⌘ µ0Y
(6)

1
is a complex mass scale parameter contributing to the neutrino mass ma-

trix and µ0 ⌘ µ0
0
Y (4)

1
. The quadratic terms V tri

2
and quartic terms V tri

4
are respectively given

by V tri

2
=

P
�=H1,H2,s

�,'
µ2

�
|�|2, V tri

4
=

P
�
(0)

=H1,H2,s
�
,'

�0�
���0 |�†�0|2+�0

H1H2
(H†

1
H2)(H

†
2
H1)+

�00
H1H2

(H†
1
H2)2 + h.c.. Thus the total scalar potential is given by V = V tri

2
+ V tri

4
+ V . Here

we assume ' get VEV at scale much higher than electroweak one and scalar potential at

electroweak scale is described by H1,2 and s+ with new term M̃2H†
1
H2 + h.c. (M̃2 = µ0v');

mixing among ' and H1,2 is also assumed to be negligibly small. Inserting the condi-

tions @V/@vi = 0 (i = 1, 2), we find two by two CP-even mass matrix M2

even
in ba-

sis (h1, h2), two by two CP-odd mass matrix M2

odd
in basis (z1, z2), and three by three

singly-charged mass matrix M2

C
in basis (w+

1
, w+

2
, s+). These are respectively diagonalized

by orthogonal matrix as OhM2

even
OT

h
= diag[m2

h
,m2

H
], OzM2

odd
OT

z
= diag[m2

z
(= 0),m2

A
],

and OCM2

C
OT

C
= diag[m2

w+(= 0),m2

h+ ,m2

H+ ]. Since these mixings and mass eigenval-

ues contribute to the neutrino mass matrix, we provide the relations between the flavor

eigenstates and mass eigenstates as follows: h±
1

= (OT

C
)1a(h±

m
)a, h

±
2

= (OT

C
)2a(h±

m
)a, and

s± = (OT

C
)3a(h±

m
)a , where h±

m
⌘ (w+, h+, H+)T . Moreover, we select parameters in the

potential to satisfy the mass of SM Higgs mh ⇡ 125.5 and consistent with constraints of two

Higgs doublet model 5 where mass eigenvalues are given as

diag[mh,mH ] ⇡ diag[125, 373] GeV, diag[mz,mA] ⇡ diag[0, 331] GeV,

diag[mw+ ,mh+ ,mH+ ] ⇡ diag[0, 204, 269] GeV. (II.3)

Here we explicitly give mass matrix and mixing matrix for charged scalar bosons since we

5 Even though we fix the scalar boson sector, the lepton mixings and the mass ratios among neutrino masses

do not a↵ect.

5

One of the simplest neutrino model

FIG. 1: The diagram inducing active neutrino mass.

where rαR/I ≡
m2

R/I

M2
α
. Neutrino mass eigenvalues (Dν) are given by Dν = UMNSmνUT

MNS, where

UMNS is the MNS matrix. Once we define mν ≡ fMfT , one can rewrite f in terms of the

other parameters [21, 22] as follows:

fik =
6∑

α=1

U †
ij

√
DνjjOjα

√
MααV

∗
αk, (9)

where O is a three by six arbitrary matrix, satisfying OOT = 1, and |f | !
√
4π is imposed

not to exceed the perturbative limit.

C. Analysis of other phenomenological formulas

Beta function of SU(2)L gauge coupling g2: Here we estimate the running of gauge coupling

of g2 in the presence of several new multiplet fields of SU(2)L. The new contribution to g2

from fermions (with three families) and bosons are respectively given by [13, 23]

∆bfg2 =
10

3
, ∆bbg2 =

43

3
. (10)

Then one finds that the resulting flow of g2(µ) is then given by the Fig. 2. This figure shows

that the red line is relevant up to the mass scale µ = O(1) PeV in case of mth =0.5 TeV,

while the blue line is relevant up to the mass scale µ = O(10) PeV in case of mth =5 TeV.

Lepton flavor violations(LFVs): LFV decays "i → "jγ arise from the term associated with

coupling f at one-loop level, and its form can be given by [24, 25]

BR("i → "jγ) =
48π3αemCij

G2
Fm

2
#i

(
|aRij |2 + |aLij |2

)
, (11)

6

H1 H2 s
�

'

SU(2)L 2 2 1 1

U(1)Y
1

2

1

2
�1 0

A4 1 1 1 1

�kI 0 �2 �4 �2

TABLE II: Charge assignments for boson sector in Zee-Babu model under SU(2)L ⇥ U(1)Y .

and �2 modular weights. 3 These new bosons H2 and s+ are needed to induce physical

singly-charged bosons running inside the neutrino loop in the Zee model, where Hi(i = 1, 2)

is denoted by Hi = [w+

i
, (vi + hi + izi)/

p
2]T with vH ⌘

p
v2
1
+ v2

2
= 246 GeV. The massless

states of mass eigenstates from w+

i
(zi) are Nambu-Goldstone(NG) bosons eaten by the

SM gauge vector bosons W+(Z). ' is added to induce H†
1
H2 term in two Higgs doublet

sector after developing its VEV h'i = v'. The symmetry assignments for scalar fields are

summarized in Talbe II. Renormalizable Yukawa Lagrangian under these symmetries is

given by

�LY = a`L̄LeH1(y1eR + y2⌧R + y3µR) + b`L̄LµH1(y3⌧R + y1µR + y2eR)

+ c`L̄L⌧H1(y
(4)

2
µR + y(4)

1
⌧R + y(4)

3
eR)

+ a0
`
L̄LeH2(y

(4)

1
eR + y(4)

2
⌧R + y(4)

3
µR) + b0

`
L̄LµH2(y

(4)

3
⌧R + y(4)

1
µR + y(4)

2
eR)

+ c0
`
L̄L⌧H2(y

(6)

2
µR + y(6)

1
⌧R + y(6)

3
eR) + d0

`
L̄L⌧H2(y

0
(6)

2
µR + y

0
(6)

1
⌧R + y

0
(6)

3
eR)

+ aL̄Le(i�2)L
C

Lµ
s� + bL̄Le(i�2)L

C

L⌧
s� + cL̄Lµ(i�2)L

C

L⌧
s� + h.c., (II.1)

where Y (2)

3
⌘ [y1, y2, y3]T , Y (4)

3
⌘ [y(4)

1
, y(4)

2
, y(4)

3
]T , Y (6)

3
⌘ [y(6)

1
, y(6)

2
, y(6)

3
]T , Y

0
(6)

3
⌘

[y
0
(6)

1
, y

0
(6)

2
, y

0
(6)

3
]T , a ⌘ a0Y (8)

10 , b ⌘ b0Y (10)

100 , c ⌘ c0Y (10)

1

4, and �2 is the second component

of the Pauli matrix. In this model quarks are chosen to be trivial singlet of A4 with 0 mod-

ular weight. Then quarks have Yukawa interactions only with H1 and get their masses as

in the SM case. Remarkably we can avoid flavor changing neutral current (FCNC) in quark

sector thanks to the nature of modular A4 symmetry. In this work we do not discuss quark

sector and focus on neutrino mass production.

3 We have checked that this assignment for each of fields gives the minimum model that satisfies neutrino

oscillation data.
4 See e.g. ref. [43] for their concrete forms of modular forms that are functions of modulus ⌧ .

4

Notice here that we have four real parameters; a`, b`, c`, c and the five complex ones;

a0
`
, b0

`
, c0

`
, a, b after phase redefinition of fields without loss of generality in the Yukawa sector.

a`, b`, c` are fixed when we fit masses of the charged-leptons. The non-trivially valid Higgs

potential is given by

V = µ(HT

1
·H2)s

� + µ0'H†
1
H2 + h.c., (II.2)

where µ ⌘ µ0Y
(6)

1
is a complex mass scale parameter contributing to the neutrino mass ma-

trix and µ0 ⌘ µ0
0
Y (4)

1
. The quadratic terms V tri

2
and quartic terms V tri

4
are respectively given

by V tri

2
=

P
�=H1,H2,s

�,'
µ2

�
|�|2, V tri

4
=

P
�
(0)

=H1,H2,s
�
,'

�0�
���0 |�†�0|2+�0

H1H2
(H†

1
H2)(H

†
2
H1)+

�00
H1H2

(H†
1
H2)2 + h.c.. Thus the total scalar potential is given by V = V tri

2
+ V tri

4
+ V . Here

we assume ' get VEV at scale much higher than electroweak one and scalar potential at

electroweak scale is described by H1,2 and s+ with new term M̃2H†
1
H2 + h.c. (M̃2 = µ0v');

mixing among ' and H1,2 is also assumed to be negligibly small. Inserting the condi-

tions @V/@vi = 0 (i = 1, 2), we find two by two CP-even mass matrix M2

even
in ba-

sis (h1, h2), two by two CP-odd mass matrix M2

odd
in basis (z1, z2), and three by three

singly-charged mass matrix M2

C
in basis (w+

1
, w+

2
, s+). These are respectively diagonalized

by orthogonal matrix as OhM2

even
OT

h
= diag[m2

h
,m2

H
], OzM2

odd
OT

z
= diag[m2

z
(= 0),m2

A
],

and OCM2

C
OT

C
= diag[m2

w+(= 0),m2

h+ ,m2

H+ ]. Since these mixings and mass eigenval-

ues contribute to the neutrino mass matrix, we provide the relations between the flavor

eigenstates and mass eigenstates as follows: h±
1

= (OT

C
)1a(h±

m
)a, h

±
2

= (OT

C
)2a(h±

m
)a, and

s± = (OT

C
)3a(h±

m
)a , where h±

m
⌘ (w+, h+, H+)T . Moreover, we select parameters in the

potential to satisfy the mass of SM Higgs mh ⇡ 125.5 and consistent with constraints of two

Higgs doublet model 5 where mass eigenvalues are given as

diag[mh,mH ] ⇡ diag[125, 373] GeV, diag[mz,mA] ⇡ diag[0, 331] GeV,

diag[mw+ ,mh+ ,mH+ ] ⇡ diag[0, 204, 269] GeV. (II.3)

Here we explicitly give mass matrix and mixing matrix for charged scalar bosons since we

5 Even though we fix the scalar boson sector, the lepton mixings and the mass ratios among neutrino masses

do not a↵ect.

5

L R

H1 H2 s− ϕ

SU(2)L 2 2 1 1

U(1)Y
1
2

1
2 −1 0

A4 1 1 1 1

−kI 0 −2 −4 −2

TABLE II: Charge assignments for boson sector in Zee-Babu model under SU(2)L × U(1)Y .

summarized in Talbe II. Renormalizable Yukawa Lagrangian under these symmetries is given

by

−LY = y!ijL̄LiH1eRj + y′!ijL̄LiH2eRj + fabL̄La(iσ2)L
C
Lb
s− + h.c., (I.1)

where Y (2)
3 ≡ [y1, y2, y3]T , Y (4)

3 ≡ [y(4)1 , y(4)2 , y(4)3 ]T , Y (6)
3 ≡ [y(6)1 , y(6)2 , y(6)3 ]T , Y

′(6)
3 ≡

[y
′(6)
1 , y

′(6)
2 , y

′(6)
3 ]T , a ≡ a′Y (8)

1′ , b ≡ b′Y (10)
1′′ , c ≡ c′Y (10)

1
3, and σ2 is the second component

of the Pauli matrix. In this model quarks are chosen to be trivial singlet of A4 with 0 mod-

ular weight. Then quarks have Yukawa interactions only with H1 and get their masses as

in the SM case. Remarkably we can avoid flavor changing neutral current (FCNC) in quark

sector thanks to the nature of modular A4 symmetry. In this work we do not discuss quark

sector and focus on neutrino mass production.

Notice here that we have four real parameters; a!, b!, c!, c and the five complex ones;

a′!, b
′
!, c

′
!, a, b after phase redefinition of fields without loss of generality in the Yukawa sector.

a!, b!, c! are fixed when we fit masses of the charged-leptons. The non-trivially valid Higgs

potential is given by

V = µ(HT
1 ·H2)s

− + µ′ϕH†
1H2 + h.c., (I.2)

where µ ≡ µ0Y
(6)
1 is a complex mass scale parameter contributing to the neutrino mass ma-

trix and µ′ ≡ µ′
0Y

(4)
1 . The quadratic terms V tri

2 and quartic terms V tri
4 are respectively given

by V tri
2 =

∑
φ=H1,H2,s−,ϕ µ

2
φ|φ|2, V tri

4 =
∑φ(′)=H1,H2,s−,ϕ

φ′≤φ λφφ′ |φ†φ′|2+λ′
H1H2

(H†
1H2)(H

†
2H1)+

λ′′
H1H2

(H†
1H2)2 + h.c.. Thus the total scalar potential is given by V = V tri

2 + V tri
4 + V . Here

we assume ϕ get VEV at scale much higher than electroweak one and scalar potential at

electroweak scale is described by H1,2 and s+ with new term M̃2H†
1H2 + h.c. (M̃2 = µ′vϕ);

3 See e.g. ref. [? ] for their concrete forms of modular forms that are functions of modulus τ .

2

Anti-symmetric!

No additional 
symmetries 
are needed!
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A4 triplet   3 ( eRe, eRµ, eRτ )…with zero modular weight.

A4 singlets   Le_bar 1;  Lµ_bar 1” ; Lτ_bar 1’…with [-2-2-4] modular 
weight.

Fermions:

 H1, H2… doublet bosons with [0-2] modular weight,  
 s-, φ … singlet bosons with [-4-2] modular weight.  

Bosons: all the bosons are trivial singlets with different modular weights!

Field contents and their assignments

Zee model in a modular A_4 symmetry 
T. Nomura, HO, Yong-hui Qi (2111.10944)
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Leptons

[L̄Le , L̄Lµ , L̄Lτ ] [eR, µR, τR]

SU(2)L 2 1

U(1)Y
1
2 −1

A4 [1, 1′′, 1′] 3

−kI [−2,−2,−4] 0

TABLE I: Field contents and their charge assignments in Zee model under SU(2)L × U(1)Y ×A4

where −kI is the number of modular weight.

I. MODEL

A. Model setup

Here, we formulate our Zee model imposing the modular A4 symmetry. At first, we

assign [1−2, 1′′−2, 1
′
−4] for left-handed leptons [L̄Le , L̄Lµ , L̄Lτ ] under the modular A4 symmetry,

where the lower indices represent the number of modular weight. 1 Here, LLa ≡ [νLa , "La ]
T

(a ≡ e, µ, τ). The fermion assignments are summarized in Table I. In scalar sector, we

introduce two isospin doublets of Higgses H1, H2, a singly-charged boson s− and singlet

ϕ, where H1 is supposed to be SM-like Higgs and H2, s− and ϕ respectively have −2, −4

and −2 modular weights. 2 These new bosons H2 and s+ are needed to induce physical

singly-charged bosons running inside the neutrino loop in the Zee model, where Hi(i = 1, 2)

is denoted by Hi = [w+
i , (vi + hi + izi)/

√
2]T with vH ≡

√
v21 + v22 = 246 GeV. The massless

states of mass eigenstates from w+
i (zi) are Nambu-Goldstone(NG) bosons eaten by the

SM gauge vector bosons W+(Z). ϕ is added to induce H†
1H2 term in two Higgs doublet

sector after developing its VEV 〈ϕ〉 = vϕ. The symmetry assignments for scalar fields are

1 Note that assigning the same way of −2 modular weight for LLe,µ,τ is experimentally forbidden.
2 We have checked that this assignment for each of fields gives the minimum model that satisfies neutrino

oscillation data.

1

H1 H2 s− ϕ

SU(2)L 2 2 1 1

U(1)Y
1
2

1
2 −1 0

A4 1 1 1 1

−kI 0 −2 −4 −2

TABLE II: Charge assignments for boson sector in Zee-Babu model under SU(2)L × U(1)Y .

summarized in Talbe II. Renormalizable Yukawa Lagrangian under these symmetries is given

by

−LY = y!ijL̄LiH1eRj + fabL̄La(iσ2)L
C
Lb
s− + h.c., (I.1)

where Y (2)
3 ≡ [y1, y2, y3]T , Y (4)

3 ≡ [y(4)1 , y(4)2 , y(4)3 ]T , Y (6)
3 ≡ [y(6)1 , y(6)2 , y(6)3 ]T , Y

′(6)
3 ≡

[y
′(6)
1 , y

′(6)
2 , y

′(6)
3 ]T , a ≡ a′Y (8)

1′ , b ≡ b′Y (10)
1′′ , c ≡ c′Y (10)

1
3, and σ2 is the second component

of the Pauli matrix. In this model quarks are chosen to be trivial singlet of A4 with 0 mod-

ular weight. Then quarks have Yukawa interactions only with H1 and get their masses as

in the SM case. Remarkably we can avoid flavor changing neutral current (FCNC) in quark

sector thanks to the nature of modular A4 symmetry. In this work we do not discuss quark

sector and focus on neutrino mass production.

Notice here that we have four real parameters; a!, b!, c!, c and the five complex ones;

a′!, b
′
!, c

′
!, a, b after phase redefinition of fields without loss of generality in the Yukawa sector.

a!, b!, c! are fixed when we fit masses of the charged-leptons. The non-trivially valid Higgs

potential is given by

V = µ(HT
1 ·H2)s

− + µ′ϕH†
1H2 + h.c., (I.2)

where µ ≡ µ0Y
(6)
1 is a complex mass scale parameter contributing to the neutrino mass ma-

trix and µ′ ≡ µ′
0Y

(4)
1 . The quadratic terms V tri

2 and quartic terms V tri
4 are respectively given

by V tri
2 =

∑
φ=H1,H2,s−,ϕ µ

2
φ|φ|2, V tri

4 =
∑φ(′)=H1,H2,s−,ϕ

φ′≤φ λφφ′ |φ†φ′|2+λ′
H1H2

(H†
1H2)(H

†
2H1)+

λ′′
H1H2

(H†
1H2)2 + h.c.. Thus the total scalar potential is given by V = V tri

2 + V tri
4 + V . Here

we assume ϕ get VEV at scale much higher than electroweak one and scalar potential at

electroweak scale is described by H1,2 and s+ with new term M̃2H†
1H2 + h.c. (M̃2 = µ′vϕ);

3 See e.g. ref. [? ] for their concrete forms of modular forms that are functions of modulus τ .

2

H1 H2 s
�

'

SU(2)L 2 2 1 1

U(1)Y
1

2

1

2
�1 0

A4 1 1 1 1

�kI 0 �2 �4 �2

TABLE II: Charge assignments for boson sector in Zee-Babu model under SU(2)L ⇥ U(1)Y .

and �2 modular weights. 3 These new bosons H2 and s+ are needed to induce physical

singly-charged bosons running inside the neutrino loop in the Zee model, where Hi(i = 1, 2)

is denoted by Hi = [w+

i
, (vi + hi + izi)/

p
2]T with vH ⌘

p
v2
1
+ v2

2
= 246 GeV. The massless

states of mass eigenstates from w+

i
(zi) are Nambu-Goldstone(NG) bosons eaten by the

SM gauge vector bosons W+(Z). ' is added to induce H†
1
H2 term in two Higgs doublet

sector after developing its VEV h'i = v'. The symmetry assignments for scalar fields are

summarized in Talbe II. Renormalizable Yukawa Lagrangian under these symmetries is

given by

�LY = a`L̄LeH1(y1eR + y2⌧R + y3µR) + b`L̄LµH1(y3⌧R + y1µR + y2eR)

+ c`L̄L⌧H1(y
(4)

2
µR + y(4)

1
⌧R + y(4)

3
eR)

+ a0
`
L̄LeH2(y

(4)

1
eR + y(4)

2
⌧R + y(4)

3
µR) + b0

`
L̄LµH2(y

(4)

3
⌧R + y(4)

1
µR + y(4)

2
eR)

+ c0
`
L̄L⌧H2(y

(6)

2
µR + y(6)

1
⌧R + y(6)

3
eR) + d0

`
L̄L⌧H2(y

0
(6)

2
µR + y

0
(6)

1
⌧R + y

0
(6)

3
eR)

+ aL̄Le(i�2)L
C

Lµ
s� + bL̄Le(i�2)L

C

L⌧
s� + cL̄Lµ(i�2)L

C

L⌧
s� + h.c., (II.1)

where Y (2)

3
⌘ [y1, y2, y3]T , Y (4)

3
⌘ [y(4)

1
, y(4)

2
, y(4)

3
]T , Y (6)

3
⌘ [y(6)

1
, y(6)

2
, y(6)

3
]T , Y

0
(6)

3
⌘

[y
0
(6)

1
, y

0
(6)

2
, y

0
(6)

3
]T , a ⌘ a0Y (8)

10 , b ⌘ b0Y (10)

100 , c ⌘ c0Y (10)

1

4, and �2 is the second component

of the Pauli matrix. In this model quarks are chosen to be trivial singlet of A4 with 0 mod-

ular weight. Then quarks have Yukawa interactions only with H1 and get their masses as

in the SM case. Remarkably we can avoid flavor changing neutral current (FCNC) in quark

sector thanks to the nature of modular A4 symmetry. In this work we do not discuss quark

sector and focus on neutrino mass production.

3 We have checked that this assignment for each of fields gives the minimum model that satisfies neutrino

oscillation data.
4 See e.g. ref. [43] for their concrete forms of modular forms that are functions of modulus ⌧ .

4

Notice here that we have four real parameters; a`, b`, c`, c and the five complex ones;

a0
`
, b0

`
, c0

`
, a, b after phase redefinition of fields without loss of generality in the Yukawa sector.

a`, b`, c` are fixed when we fit masses of the charged-leptons. The non-trivially valid Higgs

potential is given by

V = µ(HT

1
·H2)s

� + µ0'H†
1
H2 + h.c., (II.2)

where µ ⌘ µ0Y
(6)

1
is a complex mass scale parameter contributing to the neutrino mass ma-

trix and µ0 ⌘ µ0
0
Y (4)

1
. The quadratic terms V tri

2
and quartic terms V tri

4
are respectively given

by V tri

2
=

P
�=H1,H2,s

�,'
µ2

�
|�|2, V tri

4
=

P
�
(0)

=H1,H2,s
�
,'

�0�
���0 |�†�0|2+�0

H1H2
(H†

1
H2)(H

†
2
H1)+

�00
H1H2

(H†
1
H2)2 + h.c.. Thus the total scalar potential is given by V = V tri

2
+ V tri

4
+ V . Here

we assume ' get VEV at scale much higher than electroweak one and scalar potential at

electroweak scale is described by H1,2 and s+ with new term M̃2H†
1
H2 + h.c. (M̃2 = µ0v');

mixing among ' and H1,2 is also assumed to be negligibly small. Inserting the condi-

tions @V/@vi = 0 (i = 1, 2), we find two by two CP-even mass matrix M2

even
in ba-

sis (h1, h2), two by two CP-odd mass matrix M2

odd
in basis (z1, z2), and three by three

singly-charged mass matrix M2

C
in basis (w+

1
, w+

2
, s+). These are respectively diagonalized

by orthogonal matrix as OhM2

even
OT

h
= diag[m2

h
,m2

H
], OzM2

odd
OT

z
= diag[m2

z
(= 0),m2

A
],

and OCM2

C
OT

C
= diag[m2

w+(= 0),m2

h+ ,m2

H+ ]. Since these mixings and mass eigenval-

ues contribute to the neutrino mass matrix, we provide the relations between the flavor

eigenstates and mass eigenstates as follows: h±
1

= (OT

C
)1a(h±

m
)a, h

±
2

= (OT

C
)2a(h±

m
)a, and

s± = (OT

C
)3a(h±

m
)a , where h±

m
⌘ (w+, h+, H+)T . Moreover, we select parameters in the

potential to satisfy the mass of SM Higgs mh ⇡ 125.5 and consistent with constraints of two

Higgs doublet model 5 where mass eigenvalues are given as

diag[mh,mH ] ⇡ diag[125, 373] GeV, diag[mz,mA] ⇡ diag[0, 331] GeV,

diag[mw+ ,mh+ ,mH+ ] ⇡ diag[0, 204, 269] GeV. (II.3)

Here we explicitly give mass matrix and mixing matrix for charged scalar bosons since we

5 Even though we fix the scalar boson sector, the lepton mixings and the mass ratios among neutrino masses

do not a↵ect.

5

H1 H2 s− ϕ

SU(2)L 2 2 1 1

U(1)Y
1
2

1
2 −1 0

A4 1 1 1 1

−kI 0 −2 −4 −2

TABLE II: Charge assignments for boson sector in Zee-Babu model under SU(2)L × U(1)Y .

summarized in Talbe II. Renormalizable Yukawa Lagrangian under these symmetries is given

by

−LY = y!ijL̄LiH1eRj + y′!ijL̄LiH2eRj + fabL̄La(iσ2)L
C
Lb
s− + h.c., (I.1)

where Y (2)
3 ≡ [y1, y2, y3]T , Y (4)

3 ≡ [y(4)1 , y(4)2 , y(4)3 ]T , Y (6)
3 ≡ [y(6)1 , y(6)2 , y(6)3 ]T , Y

′(6)
3 ≡

[y
′(6)
1 , y

′(6)
2 , y

′(6)
3 ]T , a ≡ a′Y (8)

1′ , b ≡ b′Y (10)
1′′ , c ≡ c′Y (10)

1
3, and σ2 is the second component

of the Pauli matrix. In this model quarks are chosen to be trivial singlet of A4 with 0 mod-

ular weight. Then quarks have Yukawa interactions only with H1 and get their masses as

in the SM case. Remarkably we can avoid flavor changing neutral current (FCNC) in quark

sector thanks to the nature of modular A4 symmetry. In this work we do not discuss quark

sector and focus on neutrino mass production.

Notice here that we have four real parameters; a!, b!, c!, c and the five complex ones;

a′!, b
′
!, c

′
!, a, b after phase redefinition of fields without loss of generality in the Yukawa sector.

a!, b!, c! are fixed when we fit masses of the charged-leptons. The non-trivially valid Higgs

potential is given by

V = µ(HT
1 ·H2)s

− + µ′ϕH†
1H2 + h.c., (I.2)

where µ ≡ µ0Y
(6)
1 is a complex mass scale parameter contributing to the neutrino mass ma-

trix and µ′ ≡ µ′
0Y

(4)
1 . The quadratic terms V tri

2 and quartic terms V tri
4 are respectively given

by V tri
2 =

∑
φ=H1,H2,s−,ϕ µ

2
φ|φ|2, V tri

4 =
∑φ(′)=H1,H2,s−,ϕ

φ′≤φ λφφ′ |φ†φ′|2+λ′
H1H2

(H†
1H2)(H

†
2H1)+

λ′′
H1H2

(H†
1H2)2 + h.c.. Thus the total scalar potential is given by V = V tri

2 + V tri
4 + V . Here

we assume ϕ get VEV at scale much higher than electroweak one and scalar potential at

electroweak scale is described by H1,2 and s+ with new term M̃2H†
1H2 + h.c. (M̃2 = µ′vϕ);

3 See e.g. ref. [? ] for their concrete forms of modular forms that are functions of modulus τ .

2

H1 H2 s− ϕ

SU(2)L 2 2 1 1

U(1)Y
1
2

1
2 −1 0

A4 1 1 1 1

−kI 0 −2 −4 −2

TABLE II: Charge assignments for boson sector in Zee-Babu model under SU(2)L × U(1)Y .

summarized in Talbe II. Renormalizable Yukawa Lagrangian under these symmetries is given

by

−LY = y!ijL̄LiH1eRj + y′!ijL̄LiH2eRj + fabL̄La(iσ2)L
C
Lb
s− + h.c., (I.1)

where Y (2)
3 ≡ [y1, y2, y3]T , Y (4)

3 ≡ [y(4)1 , y(4)2 , y(4)3 ]T , Y (6)
3 ≡ [y(6)1 , y(6)2 , y(6)3 ]T , Y

′(6)
3 ≡

[y
′(6)
1 , y

′(6)
2 , y

′(6)
3 ]T , a ≡ a′Y (8)

1′ , b ≡ b′Y (10)
1′′ , c ≡ c′Y (10)

1
3, and σ2 is the second component

of the Pauli matrix. In this model quarks are chosen to be trivial singlet of A4 with 0 mod-

ular weight. Then quarks have Yukawa interactions only with H1 and get their masses as

in the SM case. Remarkably we can avoid flavor changing neutral current (FCNC) in quark

sector thanks to the nature of modular A4 symmetry. In this work we do not discuss quark

sector and focus on neutrino mass production.

Notice here that we have four real parameters; a!, b!, c!, c and the five complex ones;

a′!, b
′
!, c

′
!, a, b after phase redefinition of fields without loss of generality in the Yukawa sector.

a!, b!, c! are fixed when we fit masses of the charged-leptons. The non-trivially valid Higgs

potential is given by

V = µ(HT
1 ·H2)s

− + µ′ϕH†
1H2 + h.c., (I.2)

where µ ≡ µ0Y
(6)
1 is a complex mass scale parameter contributing to the neutrino mass ma-

trix and µ′ ≡ µ′
0Y

(4)
1 . The quadratic terms V tri

2 and quartic terms V tri
4 are respectively given

by V tri
2 =

∑
φ=H1,H2,s−,ϕ µ

2
φ|φ|2, V tri

4 =
∑φ(′)=H1,H2,s−,ϕ

φ′≤φ λφφ′ |φ†φ′|2+λ′
H1H2

(H†
1H2)(H

†
2H1)+

λ′′
H1H2

(H†
1H2)2 + h.c.. Thus the total scalar potential is given by V = V tri

2 + V tri
4 + V . Here

we assume ϕ get VEV at scale much higher than electroweak one and scalar potential at

electroweak scale is described by H1,2 and s+ with new term M̃2H†
1H2 + h.c. (M̃2 = µ′vϕ);

3 See e.g. ref. [? ] for their concrete forms of modular forms that are functions of modulus τ .

2

H1 H2 s− ϕ

SU(2)L 2 2 1 1

U(1)Y
1
2

1
2 −1 0

A4 1 1 1 1

−kI 0 −2 −4 −2

TABLE II: Charge assignments for boson sector in Zee-Babu model under SU(2)L × U(1)Y .

summarized in Talbe II. Renormalizable Yukawa Lagrangian under these symmetries is given

by

−LY = y!ijL̄LiH1eRj + y′!ijL̄LiH2eRj + fabL̄La(iσ2)L
C
Lb
s− + h.c., (I.1)

where Y (2)
3 ≡ [y1, y2, y3]T , Y (4)

3 ≡ [y(4)1 , y(4)2 , y(4)3 ]T , Y (6)
3 ≡ [y(6)1 , y(6)2 , y(6)3 ]T , Y

′(6)
3 ≡

[y
′(6)
1 , y

′(6)
2 , y

′(6)
3 ]T , a ≡ a′Y (8)

1′ , b ≡ b′Y (10)
1′′ , c ≡ c′Y (10)

1
3, and σ2 is the second component

of the Pauli matrix. In this model quarks are chosen to be trivial singlet of A4 with 0 mod-

ular weight. Then quarks have Yukawa interactions only with H1 and get their masses as

in the SM case. Remarkably we can avoid flavor changing neutral current (FCNC) in quark

sector thanks to the nature of modular A4 symmetry. In this work we do not discuss quark

sector and focus on neutrino mass production.

Notice here that we have four real parameters; a!, b!, c!, c and the five complex ones;

a′!, b
′
!, c

′
!, a, b after phase redefinition of fields without loss of generality in the Yukawa sector.

a!, b!, c! are fixed when we fit masses of the charged-leptons. The non-trivially valid Higgs

potential is given by

V = µ(HT
1 ·H2)s

− + µ′ϕH†
1H2 + h.c., (I.2)

where µ ≡ µ0Y
(6)
1 is a complex mass scale parameter contributing to the neutrino mass ma-

trix and µ′ ≡ µ′
0Y

(4)
1 . The quadratic terms V tri

2 and quartic terms V tri
4 are respectively given

by V tri
2 =

∑
φ=H1,H2,s−,ϕ µ

2
φ|φ|2, V tri

4 =
∑φ(′)=H1,H2,s−,ϕ

φ′≤φ λφφ′ |φ†φ′|2+λ′
H1H2

(H†
1H2)(H

†
2H1)+

λ′′
H1H2

(H†
1H2)2 + h.c.. Thus the total scalar potential is given by V = V tri

2 + V tri
4 + V . Here

we assume ϕ get VEV at scale much higher than electroweak one and scalar potential at

electroweak scale is described by H1,2 and s+ with new term M̃2H†
1H2 + h.c. (M̃2 = µ′vϕ);

3 See e.g. ref. [? ] for their concrete forms of modular forms that are functions of modulus τ .

2

Singlets have non-zero coupling in case of 4=k.
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Higgs sector:

Notice here that we have four real parameters; a`, b`, c`, c and the five complex ones;

a0
`
, b0

`
, c0

`
, a, b after phase redefinition of fields without loss of generality in the Yukawa sector.

a`, b`, c` are fixed when we fit masses of the charged-leptons. The non-trivially valid Higgs

potential is given by

V = µ(HT

1
·H2)s

� + µ0'H†
1
H2 + h.c., (II.2)

where µ ⌘ µ0Y
(6)

1
is a complex mass scale parameter contributing to the neutrino mass ma-

trix and µ0 ⌘ µ0
0
Y (4)

1
. The quadratic terms V tri

2
and quartic terms V tri

4
are respectively given

by V tri

2
=

P
�=H1,H2,s

�,'
µ2

�
|�|2, V tri

4
=

P
�
(0)

=H1,H2,s
�
,'

�0�
���0 |�†�0|2+�0

H1H2
(H†

1
H2)(H

†
2
H1)+

�00
H1H2

(H†
1
H2)2 + h.c.. Thus the total scalar potential is given by V = V tri

2
+ V tri

4
+ V . Here

we assume ' get VEV at scale much higher than electroweak one and scalar potential at

electroweak scale is described by H1,2 and s+ with new term M̃2H†
1
H2 + h.c. (M̃2 = µ0v');

mixing among ' and H1,2 is also assumed to be negligibly small. Inserting the condi-

tions @V/@vi = 0 (i = 1, 2), we find two by two CP-even mass matrix M2

even
in ba-

sis (h1, h2), two by two CP-odd mass matrix M2

odd
in basis (z1, z2), and three by three

singly-charged mass matrix M2

C
in basis (w+

1
, w+

2
, s+). These are respectively diagonalized

by orthogonal matrix as OhM2

even
OT

h
= diag[m2

h
,m2

H
], OzM2

odd
OT

z
= diag[m2

z
(= 0),m2

A
],

and OCM2

C
OT

C
= diag[m2

w+(= 0),m2

h+ ,m2

H+ ]. Since these mixings and mass eigenval-

ues contribute to the neutrino mass matrix, we provide the relations between the flavor

eigenstates and mass eigenstates as follows: h±
1

= (OT

C
)1a(h±

m
)a, h

±
2

= (OT

C
)2a(h±

m
)a, and

s± = (OT

C
)3a(h±

m
)a , where h±

m
⌘ (w+, h+, H+)T . Moreover, we select parameters in the

potential to satisfy the mass of SM Higgs mh ⇡ 125.5 and consistent with constraints of two

Higgs doublet model 5 where mass eigenvalues are given as

diag[mh,mH ] ⇡ diag[125, 373] GeV, diag[mz,mA] ⇡ diag[0, 331] GeV,

diag[mw+ ,mh+ ,mH+ ] ⇡ diag[0, 204, 269] GeV. (II.3)

Here we explicitly give mass matrix and mixing matrix for charged scalar bosons since we

5 Even though we fix the scalar boson sector, the lepton mixings and the mass ratios among neutrino masses

do not a↵ect.

5

Notice here that we have four real parameters; a`, b`, c`, c and the five complex ones;

a0
`
, b0

`
, c0

`
, a, b after phase redefinition of fields without loss of generality in the Yukawa sector.

a`, b`, c` are fixed when we fit masses of the charged-leptons. The non-trivially valid Higgs

potential is given by

V = µ(HT

1
·H2)s

� + µ0'H†
1
H2 + h.c., (II.2)

where µ ⌘ µ0Y
(6)

1
is a complex mass scale parameter contributing to the neutrino mass ma-

trix and µ0 ⌘ µ0
0
Y (4)

1
. The quadratic terms V tri

2
and quartic terms V tri

4
are respectively given

by V tri

2
=

P
�=H1,H2,s

�,'
µ2

�
|�|2, V tri

4
=

P
�
(0)

=H1,H2,s
�
,'

�0�
���0 |�†�0|2+�0

H1H2
(H†

1
H2)(H

†
2
H1)+

�00
H1H2

(H†
1
H2)2 + h.c.. Thus the total scalar potential is given by V = V tri

2
+ V tri

4
+ V . Here

we assume ' get VEV at scale much higher than electroweak one and scalar potential at

electroweak scale is described by H1,2 and s+ with new term M̃2H†
1
H2 + h.c. (M̃2 = µ0v');

mixing among ' and H1,2 is also assumed to be negligibly small. Inserting the condi-

tions @V/@vi = 0 (i = 1, 2), we find two by two CP-even mass matrix M2

even
in ba-

sis (h1, h2), two by two CP-odd mass matrix M2

odd
in basis (z1, z2), and three by three

singly-charged mass matrix M2

C
in basis (w+

1
, w+

2
, s+). These are respectively diagonalized

by orthogonal matrix as OhM2

even
OT

h
= diag[m2

h
,m2

H
], OzM2

odd
OT

z
= diag[m2
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where e0
`
⌘ d

0
`

c
0
`
. The charged-lepton mass matrix is diagonalized by bi-unitary mixing matrix

as De ⌘ diag(me,mµ,m⌧ ) = V †
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MeVeR. To fit the mass eigenvalues of charged-leptons, we
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Neutrino sector:

Charged-NGB does not contribute to the neutrino 
mass since 1-3 component of Oc is zero.  

giving complex values of a0
`
, b0

`
, c0

`
, ⌧ in our numerical analysis later.

C. Active neutrino mass matrix

Now we write the renormalizable Lagrangian for the neutrino sector in terms of mass

eigenstates of charged-leptons and singly -charged bosons, and it is is found as follows:
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where m⌫ ⌘ |c|m̃⌫ , (a, i0, j0) run 1 � 3. While ↵ = 2, 3, since ↵ = 1 is always propor-

tional to (OC)13. It implies that CNGB does not contribute to the neutrino mass ma-

trix. Therefore, the loop function does not a↵ect structure of the neutrino mass matrix

because of me,µ,⌧ << m
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. m̃⌫ is diagonalized by a unitary matrix U⌫ as UT
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m̃⌫U⌫ = D̃⌫

with D̃⌫ = diag[m̃1, m̃2, m̃3]. Then, the Pontecorvo-Maki-Nakagawa-Sakata unitary matrix

UPMNS [103] is defined by V †
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U⌫ . The observed atmospheric mass squared di↵erence �m2
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Numerical results:

where NH(IH) represents normal(inverted) hierarchy. The solar mass squared di↵erence

�m2

sol
is given by

�m2

sol
= |cNH(IH)|2(m̃2

2
� m̃2

1
). (II.18)

D. Numerical analysis

Now we move on to the numerical analysis in terms of ��2 fit, applying NuFit5.0 [104],

where we suppose the charged-lepton masses to be Gaussian distribution, and randomly

select the theoretical complex parameters within the following ranges:

[|a0
`
|, |b0

`
|, |c0

`
|, |e0

`
|] 2 [10�10, 1], [|✏|, |✏0|] 2 [10�2, 1], (II.19)

and we work on fundamental region of ⌧ .

1. NH

In Fig. 1, we show the allowed space of ⌧ , and find it is localized at nearby 2.1i � 2.3i,

where the blue color represents the region within 2, green 2-3, and, red 3-5 of
p
��2. It is

close to one of the fixed points i⇥1.

FIG. 1: Allowed space for real ⌧ and imaginary ⌧ in the ��
2 analysis, where the blue color

represents the region within 2, green 2-3, and, red 3-5 of
p
��2.

In Fig. 2, we show the allowed space for phases of ↵21��CP in the left figure and ↵21�↵31

in the right figure in the ��2 analysis, where the legend is the same as the one of Fig. 1. This

clearly demonstrates that the allowed regions localized at ↵21 = [20� 50, 320� 360] [deg],

8

τ=2.1i~2.3i is favored. 

2. IH

We find that there is no allowed region within 5 of
p
��2. Thus, we just show a bench-

mark point at nearby 5 in Tab. III. According to the bench mark point, the lightest neutrino

mass is almost zero, because
P

mi is two times
p
�m2

atm. Therefore, we find degenerated

mass hierarchy m1 ⇠ m2 >> m3.

NH IH

⌧ 0.000117 + 2.21i �0.00201 + 2.18i

|cNH/IH |2 2.54⇥ 10�16 1.24⇥ 10�16

[✏, ✏0] [1.14 + 0.621i, 0.0288 + 0.0622i] [�39.7� 0.653i,�27.3 + 2.69i]

[a`, b`, c`, e0`] [0.0708, 0.00214, 0.00569, 0.263 + 0.0300i] [0.000255, 0.00473, 0.0101, �13.0� 17.6i]

� [a
0
`, b

0
`, c

0
`]

10�3 [359 + 0.187i, 10.7 + 0.0140i, 0.156 + 0.0334i] [0.675� 0.0225i, 23.6� 0.0329i, 0.226 + 1.94i]

�m
2
atm 2.51⇥ 10�3eV2 2.51⇥ 10�3eV2

�m
2

sol
7.41⇥ 10�5eV2 7.26⇥ 10�5eV2

sin ✓12 0.552 0.583

sin ✓23 0.759 0.668

sin ✓13 0.147 0.151

[�`
CP

, ↵21, ↵31] [286�, 356�, 208�] [184�, 182�, 234�]
P

mi 59.1meV 99.8meV

hmeei 3.79meV 15.2meV
p
��2 0.885 5.02

TABLE III: Numerical benchmark points in NH and IH, where they are selected such that
p

��2

be minimum.

3. Analytical evaluation

Since the allowed region of ⌧ is localized at nearby 2.2i for both cases, we can evaluate

the neutrino mass matrix in the limit of Y (2,4,6)

3
⇠ [1, 0, 0]T , Y (6

0
)

3
⇠ [0, 0, 0]T [7]. It directly

follows that the charged-lepton mass matrix comes to be diagonal. Also making appropri-

ate use of the degrees of freedom for the charged-lepton mass ordering, one could get the

10

The mass matrix is simplified!=> later! 

※IH is not favored up to 5 chi-square analysis. 
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Numerical results:
↵31 = [135� 165, 195� 225] [deg] and �CP = [30� 100, 260� 330] [deg]. In Fig. 3, we show
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2 analysis, where the legend is the same as the one of Fig. 1.

the allowed space for masses
P

mi eV and hmeei in the ��2 analysis, where the legend is the

same as the one of Fig. 1. It display that the allowed regions localized at
P

mi = [58� 61]

[meV] and hmeei = [2.6 � 4.4] [meV]. It implies that there is large hierarchy among three

neutrino mass eigenstates; m1 << m2 << m3, because
P

mi is close to
p

�m2

atm. In

FIG. 3: Allowed space for masses
P

mi eV and hmeei eV in the ��
2 analysis, where the legend is
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Tab. III, we show a bench mark point satisfying the neutrino oscillation data, where we

select that ��2 be minimum.
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Numerical results:
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Neutrino mass matrix in the limit of τ=i∞.

2. IH

We find that there is no allowed region within 5 of
p
��2. Thus, we just show a bench-

mark point at nearby 5 in Tab. III. According to the bench mark point, the lightest neutrino

mass is almost zero, because
P

mi is two times
p
�m2

atm. Therefore, we find degenerated

mass hierarchy m1 ⇠ m2 >> m3.

NH IH

⌧ 0.000117 + 2.21i �0.00201 + 2.18i

|cNH/IH |2 2.54⇥ 10�16 1.24⇥ 10�16

[✏, ✏0] [1.14 + 0.621i, 0.0288 + 0.0622i] [�39.7� 0.653i,�27.3 + 2.69i]

[a`, b`, c`, e0`] [0.0708, 0.00214, 0.00569, 0.263 + 0.0300i] [0.000255, 0.00473, 0.0101, �13.0� 17.6i]

� [a
0
`, b

0
`, c

0
`]

10�3 [359 + 0.187i, 10.7 + 0.0140i, 0.156 + 0.0334i] [0.675� 0.0225i, 23.6� 0.0329i, 0.226 + 1.94i]

�m
2
atm 2.51⇥ 10�3eV2 2.51⇥ 10�3eV2

�m
2

sol
7.41⇥ 10�5eV2 7.26⇥ 10�5eV2

sin ✓12 0.552 0.583

sin ✓23 0.759 0.668

sin ✓13 0.147 0.151

[�`
CP

, ↵21, ↵31] [286�, 356�, 208�] [184�, 182�, 234�]
P

mi 59.1meV 99.8meV

hmeei 3.79meV 15.2meV
p
��2 0.885 5.02

TABLE III: Numerical benchmark points in NH and IH, where they are selected such that
p

��2

be minimum.

3. Analytical evaluation

Since the allowed region of ⌧ is localized at nearby 2.2i for both cases, we can evaluate

the neutrino mass matrix in the limit of Y (2,4,6)

3
⇠ [1, 0, 0]T , Y (6

0
)

3
⇠ [0, 0, 0]T [7]. It directly

follows that the charged-lepton mass matrix comes to be diagonal. Also making appropri-

ate use of the degrees of freedom for the charged-lepton mass ordering, one could get the

10

The neutrino mass matrix is given by B1 form, since the loop 
function does not depend on the charged-lepton masses; me,  
mµ,mτ << mh±.

Notice here that we have four real parameters; a`, b`, c`, c and the five complex ones;

a0
`
, b0

`
, c0

`
, a, b after phase redefinition of fields without loss of generality in the Yukawa sector.

a`, b`, c` are fixed when we fit masses of the charged-leptons. The non-trivially valid Higgs

potential is given by

V = µ(HT

1
·H2)s

� + µ0'H†
1
H2 + h.c., (II.2)

where µ ⌘ µ0Y
(6)

1
is a complex mass scale parameter contributing to the neutrino mass ma-

trix and µ0 ⌘ µ0
0
Y (4)

1
. The quadratic terms V tri

2
and quartic terms V tri

4
are respectively given

by V tri

2
=

P
�=H1,H2,s

�,'
µ2

�
|�|2, V tri

4
=

P
�
(0)

=H1,H2,s
�
,'

�0�
���0 |�†�0|2+�0

H1H2
(H†

1
H2)(H

†
2
H1)+

�00
H1H2

(H†
1
H2)2 + h.c.. Thus the total scalar potential is given by V = V tri

2
+ V tri

4
+ V . Here

we assume ' get VEV at scale much higher than electroweak one and scalar potential at

electroweak scale is described by H1,2 and s+ with new term M̃2H†
1
H2 + h.c. (M̃2 = µ0v');

mixing among ' and H1,2 is also assumed to be negligibly small. Inserting the condi-

tions @V/@vi = 0 (i = 1, 2), we find two by two CP-even mass matrix M2

even
in ba-

sis (h1, h2), two by two CP-odd mass matrix M2

odd
in basis (z1, z2), and three by three

singly-charged mass matrix M2

C
in basis (w+

1
, w+

2
, s+). These are respectively diagonalized

by orthogonal matrix as OhM2

even
OT

h
= diag[m2

h
,m2

H
], OzM2

odd
OT

z
= diag[m2

z
(= 0),m2

A
],

and OCM2

C
OT

C
= diag[m2

w+(= 0),m2

h+ ,m2

H+ ]. Since these mixings and mass eigenval-

ues contribute to the neutrino mass matrix, we provide the relations between the flavor

eigenstates and mass eigenstates as follows: h±
1

= (OT

C
)1a(h±

m
)a, h

±
2

= (OT

C
)2a(h±

m
)a, and

s± = (OT

C
)3a(h±

m
)a , where h±

m
⌘ (w+, h+, H+)T . Moreover, we select parameters in the

potential to satisfy the mass of SM Higgs mh ⇡ 125.5 and consistent with constraints of two

Higgs doublet model 5 where mass eigenvalues are given as

diag[mh,mH ] ⇡ diag[125, 373] GeV, diag[mz,mA] ⇡ diag[0, 331] GeV,

diag[mw+ ,mh+ ,mH+ ] ⇡ diag[0, 204, 269] GeV. (II.3)

Here we explicitly give mass matrix and mixing matrix for charged scalar bosons since we

5 Even though we fix the scalar boson sector, the lepton mixings and the mass ratios among neutrino masses

do not a↵ect.

5

following patterns of mixing matrices 6

VeL ⇠

0

BBB@

0 0 1

1 0 0

0 1 0

1

CCCA
, VeR ⇠

0

BBB@

0 1 0

1 0 0

0 0 1

1

CCCA
. (II.21)

Then, we find the following mass texture:

m⌫ ⇠

0

BBB@

⇥ ⇥ 0

⇥ 0 ⇥

0 ⇥ ⇥

1

CCCA
. (II.22)

This texture is called type B1 in ref. [105], that provides some predictions and is allowed by

the neutrino oscillation data. The standard parametrization for UPMNS is given by

UPMNS =

0

BBB@

1 0 0

0 c23 s23

0 �s23 c23

1

CCCA

0

BBB@

c13 0 s13e�i�CP

0 0 0

�s13ei�CP 0 c13

1

CCCA

0

BBB@

c12 s12 0

�s12 c12 0

0 0 1

1

CCCA

0

BBB@

1 0 0

0 ei
↵21
2 0

0 0 ei
↵31
2

1

CCCA
,

(II.23)

where s(c)12,23,13 are abbreviations of sin(cos)✓12,23,13. In general, the neutrino mass matrix is

m⌫ = UPMNSdiag[m1,m2,m3]UT

PMNS
, where UPMNS is the PMNS matrix with components

6 If we simply consider VeL ⇠ VeR ⇠ diag[1, 1, 1], one finds the following three zero neutrino mass texture:

m⌫ ⇠

0

B@
0 ⇥ ⇥
⇥ 0 ⇥
⇥ ⇥ 0

1

CA , (II.20)

that is ruled out by neutrino oscillation data [105].

11

as

(UPMNS)11 = c12c13,

(UPMNS)12 = c13s12e
i
2↵21 ,

(UPMNS)13 = s13e
�i�CP e

i
2↵31 ,

(UPMNS)21 = �c23s12 � c12s13s23e
i�CP ,

(UPMNS)22 = (c12c23 � s12s13s23e
i�CP )e

i
2↵21 ,

(UPMNS)23 = c13s23e
i
2↵31 ,

(UPMNS)31 = s12s23 � c12c23s13e
i�CP ,

(UPMNS)32 = �(c12s23 + c23s12s13e
i�CP )e

i
2↵21 ,

(UPMNS)33 = c13c23e
i
2↵31 .

(II.24)

where �CP are Dirac type CP phase and ↵ij ⌘ ↵i � ↵j with i = 2, 3 and j = 1 denotes two

independent Majorana-type CP-violating phases.

By solving two independent equations

3X

i=1

(UPMNS)ai(UPMNS)bi =
3X

i=1

(UPMNS)ci(UPMNS)di = 0, (II.25)

where (a, b) 6= (c, d), we obtain

m2

m1

ei↵21 =
(UPMNS)3a(UPMNS)3b(UPMNS)1c(UPMNS)1d � (UPMNS)1a(UPMNS)1b(UPMNS)3c(UPMNS)3d
(UPMNS)2a(UPMNS)2b(UPMNS)3c(UPMNS)3d � (UPMNS)3a(UPMNS)3b(UPMNS)2c(UPMNS)2d

,

m3

m1

ei↵31 =
(UPMNS)2a(UPMNS)2b(UPMNS)1c(UPMNS)1d � (UPMNS)1a(UPMNS)1b(UPMNS)2c(UPMNS)2d
(UPMNS)3a(UPMNS)3b(UPMNS)2c(UPMNS)2d � (UPMNS)2a(UPMNS)2b(UPMNS)3c(UPMNS)3d

.

(II.26)

where (UPMNS)ab = (UPMNS)cd = 0 but (a, b) 6= (c, d) with a, b, c, d = 1, 2, 3 for e, µ, ⌧ . For

pattern B1, we have (m⌫)22 = (m⌫)13 = 0, by substituting the PMNS matrix components in

Eq.(II.24), we can express the two Majorana-type CP-violating phases as

↵21 = arg

✓
�c2

12
c23s13s223e

2i�CP + c12s12s23 (c213s
2

23
� 2c2

23
s2
13
) ei�CP � c3

23
s2
12
s13

c23s212s13s
2

23
e2i�CP + c12s12s23 (c213s

2

23
� 2c2

23
s2
13
) ei�CP + c2

12
c3
23
s13

◆
,

↵31 = arg

✓
c3
23
s13 (c212 � s2

12
) ei�CP � c12 (c223 + 1) s12s213s23e

2i�CP � c12c223s12s23
c23s212s13s

2

23
e2i�CP + c12s12s23 (c213s

2

23
� 2c2

23
s2
13
) ei�CP + c2

12
c3
23
s13

ei�CP

◆
.

(II.27)

When we suppose ✓13 << ✓12, ✓23 from the experimental results, one finds approximation

form among phases:

↵21 ' �↵31 ' �CP � ⇡

2
. (II.28)

12

NH is favored.
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Numerical results:

In Fig. 4, we show the allowed space for phases of ↵21��CP in the left figure and ↵21�↵31

in the right figure in case of type B1 with black color, where we focus on NH only since IH

is disfavored by B1 [105]. For comparison with our predictions of Zee model, we combined

it with Fig. 2. It implies that our predictions for phases is in good agreement with the

ones of type B1. On the other hand, the sum of neutrino masses for type B1 predicts to be

150meV . P
mi that would conflict with the cosmological constant

P
mi  120 meV [106].

FIG. 4: Allowed space for phases of ↵21� �CP in the left figure and ↵21�↵31 in the right figure in

case of type B1 with black color. For comparison with our predictions, we combined it with Fig. 2.

E. Comment on collider physics

Here we briefly discuss signature of our model at collider such as the LHC experiments.

In addition to the SM-like Higgs boson, In this model, there are two charged scalar bosons,

heavy neutral CP-even boson and CP-odd boson which can be produced at the collider

similar to two Higgs doublet model. These scalar bosons decay into SM fermions via Yukawa

couplings. Interestingly we would have lepton flavor violating mode such as H ! `+`0� since

both H1 and H2 have Yukawa interactions with leptons. Analysis of collider signature is

beyond the scope of this work and it is left in future work.

13

Our predictions for phases are similar to the predictions for B1 texture!
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    ●  Neutrino mass matrix of A4 Zee-model favors τ~2i;  
                 Y~[1,0,0].    
                                                              
    ●  It leads to B1 two zero texture and similar predictions are 
obtained for phases. 
    

3  Summary
●  Modular non-Abelian discrete flavor symmetries provide several 
predictions without introducing so many Higgs fields.

Sum of neutrino mass is about 60 meV that is equal to square root 
of atmospheric neutrino mass squared difference; m1<<m2<<m3.

Thanks!


