Workshop on Particle Physics and Cosmology 2021

Comprehensive study of the light charged Higgs boson in Type-I 2HDM

Jeonghyeon Song, 2021. 11. 17. With K.Cheung, A.Jueid, C.Lu, S.Lee, J.Kim

Why do we study H+? H+ in 2HDM

3. Full scan for a light H+ in Type-I

- 4. Signal-Background Analysis
- **5. Conclusions**

n Type-I lysis

1. Why do we study H+?

Current status of the Higgs boson measurements at the LHC

Gain from LHC Run-1 to Run-2

1. Why?

Higgs decays in the SM

1. Why?

ALL SM-like

LHC began to measure challenging modes for the Higgs decays.

1. Why?

Unanswered Questions

A. Dark matter

- **B. Baryogenesis & Strong EW phase transition**
- C. Neutrino mass
- **D. Flavor physics**
- E. Stability of the Higgs vacuum

Unanswered Questions

A. Dark matter

- **B.** Baryogenesis & Strong EW phase transition
- **C.** Neutrino mass
- **D.** Flavor physics
- E. Stability of the Higgs vacuum

A New Higgs sector can solve all.

1. Why? DM

Freeze-in genesis of Dark matter: Feebly Interacting Massive Particles

- DM interacts with the SM so weakly that it cannot come into equilibrium \Rightarrow Feebly interaction
 - \Rightarrow g below 10^(-7)
- heat bath particles

The population of χ is initially zero, but can be produced by the decays of the

1. Why? DM

Freeze-in genesis of Dark matter: Feebly Interacting Massive Particles

- DM interacts with the SM so weakly that it cannot come into equilibrium \Rightarrow Feebly interaction
 - \Rightarrow g below 10^(-7)
- heat bath particles

Simplest FIMP: Higgs portal

The population of χ is initially zero, but can be produced by the decays of the

1. Why? Baryogenesis

Baryogengesis ← strong EW phase transition

- Explaining the origin of the cosmic matter-antimatter asymmetry
- Very probably, it is connected with EWSB
- 2 key ingredients that the SM cannot offer:
 - First-order strong EW phase transition
 - adequate sources of CP-violation
- 125 GeV Higgs mass \Rightarrow Second-order EWPT

1. Why? Neutrino

Neutrino mass generation

Various NP modes to explain the neutrino masses and mixing angles

Parameter

$$\begin{array}{l} \Delta m_{21}^2 \ [10^{-5} \ eV \\ \Delta m_{31(23)}^2 \ [10^{-3} \\ \sin^2 \theta_{12} \\ \sin^2 \theta_{12} \\ \sin^2 \theta_{23}, \ \Delta m_{31}^2 \\ \sin^2 \theta_{23}, \ \Delta m_{32}^2 \\ \sin^2 \theta_{13}, \ \Delta m_{32}^2 \\ \sin^2 \theta_{13}, \ \Delta m_{32}^2 \\ \delta/\pi \end{array}$$

er	best-fit
- 2]	7.37
eV^2]	2.56(2.54)
	0.297
$_{32)} > 0$	0.425
(31) < 0	0.589
(32) > 0	0.0215
$(31)^{\prime} < 0$	0.0216
	1.38(1.31)

1. Why? Neutrino

Neutrino mass generation

Various NP modes to explain the neutrino masses and mixing angles

Parameter

 $\sin^2 \theta_{12}$

1. Why? Flavor

Flavor puzzles

- How to explain the structure (smallness and hierarchy) in the charged fermion masses and the CKM mixing angles?
- Why no structure (no hierarchy, degeneracy, or smallness) in the neutrinorelated flavor parameters?
- Measure new flavor parameters beyond CKM, especially in the Higgs sector

1. Why? Stabiliy

Stability of the Higgs vaccum

- The Higgs potential determines whether the Universe is in a true vacuum, or a false vacuum.
- If it is metastable, we shall meet the most quick, clean, and efficient extinction.
- In the SM, the measurements of the Higgs boson mass seem to indicate the vacuum is metastable.

Lifetime > Universe age

1. Why? Stabiliy

New Higgs Sector Clean signal? Charged Higgs boson

^{1. Why?} Two kinds of NP for charged Higgs

- Doublet models
 - 5 scalars

Triplet riplet models

- AdGreengi-MachageksModel
 - Georgi-Machacek model:

 •aadohonenraal and one

 coophplex(2) ଧା(ଥ)etriplet
- H⁺ phenomenology different from the phenomenology different
 - HERE TO THE HERE T
 - Double-charged Higgs
 - ●bbstorky A+couplings at tree level
 - Double-charged Higgs bosons H++

Two Higgs doublets

 Φ_1 and Φ_2

 $\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0\\ v_1 \end{array} \right) \,,$

$v^2 \equiv v_1^2 + v_2^2 = (246)$

$$\left<\Phi_2\right> = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0\\ v_2\end{array}\right)$$

$$6 \text{ GeV})^2, \qquad \frac{v_2}{v_1} = \tan\beta.$$

Mixing angle!

Five physical Higgs bosons

Winks Starting the solution refail in a river the second son be so refail in a river the h^0, H^0, A^0, H^{\pm}

Two Higgs doublets

- Φ_1 and Φ_2
- In order to suppress FCNC at tree level, we impose Z2 symmetry

 $\Phi_1 \rightarrow \Phi_1$ and $\Phi_2 \rightarrow -\Phi_2$

Four types according to the charge assignment under Z2 symmetry

	Φ_1	Φ_2
Type I	+	
Type II	+	
Type X	+	
Type Y	+	

2. H+ in 2HDM

u_R	d_R	ℓ_R	Q_L, L_L
			+
	+	+	+
		+	+
	+		+

FCNC constraint

Misiak et al, Eur.Phys.J. C77 (2017) no.3, 201

Special limit: Higgs Alignment

For $h^0 = h_{125}$

$$\sin(eta-lpha)$$
 : $g_{hW+W-},$
 $\cos(eta-lpha)$: $g_{HW+W-},$

$$_{-\alpha}h^0 + c_{\beta-\alpha}H^0$$

 $g_{hZZ}, g_{ZAH}, g_{W^{\pm}H^{\mp}H},$

 $g_{HZZ}, g_{ZAh}, g_{W^{\pm}H^{\mp}h}, g_{Hhh}.$

ZERO!

3. Full scan for a light H+ in Type-I

Decay Production	$\left\ \left[\tau^{\pm} \nu \right] \right\ $	[cb]	$\begin{bmatrix} CS \end{bmatrix}$	$[W^{\pm}\varphi^0/A]$	$\left[W^{\pm}h_{\rm SM}/A\right]$
	Type-I			IS Type-I	Type-I [?]
	Type-X			N2HDM	
$t \to H^{\pm}b$	ATLAS	ATLAS	ATLAS		
	$\ CMS$		CMS		
$W^{\pm *} \to H^{\pm} \varphi^0$				IS Type-I	
$W^{\pm *} \to H^{\pm}A$	Type-X			IS Type-I,X	
$pp \to H^+ H^-$				IS Type-I,X	
$qb \to q'bH^{\pm}$	MSSM				
$cs/cb \to H^{\pm}$	Type-III				
$W^{\pm *}W^{\pm *} \to H^{\pm}H^{\pm}$	$\ \mathcal{B}_{\tau\nu} = 1$			Type-I,X	

how can we cover all the viable parameter space?

If the charged Higgs boson is light in Type-I,

3. Type-I for light H+ [GeV]

(i) Theoretical stabilities (ii) Electroweak precision data (iii) $b \rightarrow s\gamma$ constraints (iv) Higgs precision data

We fix $M_{H\pm} = 110 \text{ GeV}$

(v) Direct searches at the LEP, Tevatron, and LHC

We fix $M_{H^{\pm}} = 110$ GeV

(i) Theoretical stabilities (ii) Electroweak precision data

(iii) $b \rightarrow s\gamma$ constraints

(iv) Higgs precision data

(v) Direct searches at the LEP, Tevatron, and LHC

)())()

Key parameter: MA

 $M_{H^{\pm}} = 110$ (

CS

 10^{-2}

cb

light A case	heavy A case
$H^{\pm} \to AW^{\pm}$	$H^{\pm} \to \tau \nu$
$A \to b\overline{b}$	$A \to H^{\pm} W^{\mp(*)}$
$H \to H^{\pm}$	$=W^{\mp}$
Final st	ates
$[b\bar{b}W^{\pm}]W^{\mp}$	$[\tau\nu]W^{\pm}$
$[b\overline{b}W^{\pm}]h$	[au u]h
$[b\overline{b}W^{\pm}]W^{\mp}Z$	$[\tau\nu]W^{\pm}Z$
$[b\overline{b}W^{\pm}]W^{\mp}Z$	$[\tau\nu]W^{\pm}Z$
$[b\bar{b}W^{\pm}]b\bar{b}$	$[\tau\nu][\tau\nu]W^{\pm}$
$[b\bar{b}W^{\pm}][b\bar{b}W^{\pm}]W^{\mp}\checkmark$	$[\tau\nu][\tau\nu]W^{\pm}$
$[b\bar{b}W^{\pm}][b\bar{b}W^{\mp}]\checkmark$	$[\tau\nu][\tau\nu]\checkmark$
$[b\bar{b}W^{\pm}]b\bar{b}W^{\mp}$	$[\tau\nu][\tau\nu]W^{\pm}W^{\pm}\checkmark$
$[b\bar{b}W^{\pm}][b\bar{b}W^{\pm}]W^{\mp}W^{\mp}$	$[\tau\nu][\tau\nu]W^{\pm}W^{\pm}\checkmark$
$b\overline{b}b\overline{b}$	$\boxed{[\tau\nu][\tau\nu]W^{\pm}W^{\pm}}\checkmark$

3. Type-I for light H+

4. Signal-Background Analysis

$$au - tagging$$

 $P_{\tau \to \tau} = 0.85, \quad P_{j \to \tau} =$
 $P_{\tau \to \tau} = 0.65, \quad P_{j,b \to \tau} =$

$$b - tagging$$

 $P_{b \to b} = 70\%, \quad P_{c \to b} = 10\%, \quad P_{j \to b} = 0.2\%.$

$$\mathcal{S} = \left[2(N_s + N_b) \log \left(\frac{(N_s + N_b)(N_b + \delta_b^2)}{N_b^2 + (N_s + N_b)\delta_b^2} \right) - \frac{2N_b^2}{\delta_b^2} \log \left(1 + \frac{\delta_b^2 N_s}{N_b(N_b + \delta_b^2)} \right) \right]^{1/2},$$

= 0.02, in the one-prong τ decays; = 0.01, in the three-prong τ decays.

• $pp \rightarrow W + jets$

- $t\bar{t}$ +jets;
- tW+jets.

A. $[\tau\nu][\tau\nu]$

Background

• VV'+jets including WW+jets, WZ+jets, and ZZ+jets.

[au
u][au
u]

			[au u][au u]			
Cut	$\parallel \qquad W j j$	Zjj	$tar{t}jj$	VV'jj	N_b	N_s
Initial	$\ 6.2 \times 10^{11}$	$4.39 imes 10^{10}$	1.33×10^9	4.41×10^8	$6.65 imes 10^{11}$	1.04×10^{6}
Basic cuts	1.45×10^{7}	1.96×10^8	92929	271570	2.11×10^8	36413
$E_T^{\rm miss} > 100 {\rm ~GeV}$	298782	208799	11158	14478	533217	6448
$ \Delta\phi(\tau_1,\tau_2) > 2.4$	$\left\ 202117 \right.$	36374	5914	5503	249908	3926
$\Delta R\tau_1, \tau_2 < 3$	$\left\ \begin{array}{c}114240\end{array}\right.$	8328	2926	2500	127994	2328
$M_{\tau_1 \tau_2} > 300 \text{ GeV}$	0	1054	182	183	1419	465
$p_T^{\tau_2} > 100 \text{ GeV}$	0	737	121	121	979	347
$M_T^{\tau_2} > 50 \text{ GeV}$	$\parallel 0$	0	121	101	222	284

Significance = 19.06, 10.2(10% uncertainty)

A. $[\tau\nu][\tau\nu]$

B. $[\tau\nu][\tau\nu]WW$

• $pp \to ZZ \to \tau_{\ell+}^+ \tau_{h}^- \tau_{\ell+}^+ \tau_{h}^-$

B. $[\tau\nu][\tau\nu]WW$

Background

• $pp \to t\bar{t} + W^+ \to b\ell^+\nu b\tau^-\nu + \ell^+\nu$ • $pp \to W^-W^+W^+ \to \tau_{\rm h}^- \nu \ell^+ \nu \ell^+ \nu$

• $pp \to t\bar{t} + Z \to b\ell^+ \nu b\tau^- \nu + \tau_{\ell^+}^+ \tau^-$.

• $pp \rightarrow h_{\rm SM} + Z \rightarrow \tau_{\ell^+}^+ \tau_{\rm h}^- + \tau_{\ell^+}^+ \tau_{\rm h}^-$.

B .	

<i>ttW</i> 4560 15.14	WWW 1290	ZZ 16567	$t\bar{t}Z$ 1825	$h_{\rm SM}Z$	N_b	N_s
$4560 \\ 15.14$	1290	16567	1825			
15.14			1040	1407	25649	426
	0.63	35.37	17.04	6.42	74.6	15.6
2.7	0.62	34.97	3.42	6.35	48.06	15.43
2.07	0.47	7.47	2.64	2.09	14.74	10.73
0.94	0.19	5.33	1.53	1.43	9.42	9.59
0.77	0.15	4.36	1.25	1.29	7.82	9.09
0.17	0.03	1.49	0.38	0.37	2.44	6.56
0.16	0.03	1.31	0.35	0.35	2.2	6.43
0.1	0.01	1.24	0.28	0.35	1.98	6.36
0.04 nifican	0 ce <u>= 3.5</u>3	1.04 3.48(1	0.14 0% un	0.24 certaint	1.46	6.04
	15.14 2.7 2.07 0.94 0.77 0.17 0.16 0.1 0.04 hiftherefore an	15.14 0.63 2.7 0.62 2.07 0.47 0.94 0.19 0.77 0.15 0.17 0.03 0.16 0.03 0.1 0.01 0.04 0 0.04 0 0.04 0	15.14 0.63 35.37 2.7 0.62 34.97 2.07 0.47 7.47 0.94 0.19 5.33 0.77 0.15 4.36 0.17 0.03 1.49 0.16 0.03 1.31 0.1 0.01 1.24 0.04 0 1.04	15.14 0.63 35.37 17.04 2.7 0.62 34.97 3.42 2.07 0.47 7.47 2.64 0.94 0.19 5.33 1.53 0.77 0.15 4.36 1.25 0.17 0.03 1.49 0.38 0.16 0.03 1.31 0.35 0.1 0.01 1.24 0.28 0.04 0 1.04 0.14 $nificance$ $= 3.53, 3.48$ (10% uncession)	15.14 0.63 35.37 17.04 6.42 2.7 0.62 34.97 3.42 6.35 2.07 0.47 7.47 2.64 2.09 0.94 0.19 5.33 1.53 1.43 0.77 0.15 4.36 1.25 1.29 0.17 0.03 1.49 0.38 0.37 0.16 0.03 1.31 0.35 0.35 0.1 0.01 1.24 0.28 0.35 0.04 0 1.04 0.14 0.24	15.14 0.63 35.37 17.04 6.42 74.6 2.7 0.62 34.97 3.42 6.35 48.06 2.07 0.47 7.47 2.64 2.09 14.74 0.94 0.19 5.33 1.53 1.43 9.42 0.77 0.15 4.36 1.25 1.29 7.82 0.17 0.03 1.49 0.38 0.37 2.44 0.16 0.03 1.31 0.35 0.35 2.2 0.1 0.01 1.24 0.28 0.35 1.98 0.04 0 1.04 0.14 0.24 1.46

 $[\tau\nu][\tau\nu]WW$

$[b\bar{b}W][b\bar{b}W]$									
Cut	HV	$tV + t\bar{t}H/V$	VV + ZZbb	$t\bar{t} + jets$	Signal	N_s/N_b			
Initial events	6.09×10^{6}	97.4×10^6	440.9×10^6	1.34×10^9	6.33×10^5	3.34×10^{-4}			
One lepton	7.19×10^5	21.2×10^6	$71.3 imes 10^6$	283.9×10^6	1.20×10^5	3.18×10^{-4}			
$ au_h$ veto	6.56×10^5	$19.7 imes 10^6$	$68.5 imes 10^6$	259.46×10^6	1.10×10^5	3.18×10^{-4}			
$E_T^{\rm miss} > 30 {\rm ~GeV}$	4.27×10^5	$15.1 imes 10^6$	46.42×10^6	206.42×10^6	8.01×10^4	2.98×10^{-4}			
$N_{\rm jets} \ge 4, N_b \ge 2$	1.06×10^4	$1.0 imes 10^6$	$1.52 imes 10^5$	55.56×10^6	1.06×10^4	1.87×10^{-4}			
$M_T^W < 150 { m ~GeV}$	1.04×10^4	$9.65 imes 10^5$	$1.45 imes 10^5$	54.11×10^6	1.03×10^4	1.86×10^{-4}			
$M_{bb} < 100 { m ~GeV}$	5.86×10^{3}	4.59×10^5	$1.13 imes 10^5$	20.29×10^6	7.21×10^3	3.45×10^{-4}			
$p_T^\ell < 350 { m ~GeV}$	5.85×10^{3}	4.59×10^5	$1.13 imes 10^5$	20.28×10^6	7.21×10^3	3.46×10^{-4}			
$p_T^{\text{jet}} < p_T^{\max}$	5.81×10^{3}	$4.56 imes 10^5$	$1.10 imes 10^5$	20.18×10^{6}	7.11×10^3	3.42×10^{-4}			
$E_T^{\text{miss}} < 0.7 H_T$	5.72×10^{3}	$4.49 imes 10^5$	$1.09 imes 10^5$	20.00×10^6	7.06×10^3	3.43×10^{-4}			
$H_T^W < 0.9 H_T$	5.39×10^{3}	4.33×10^5	$1.06 imes 10^5$	19.61×10^6	6.92×10^3	3.43×10^{-4}			
$E_T^{\mathrm{miss}} < 0.4 M_{\mathrm{eff}}$	5.39×10^{3}	4.33×10^5	$1.06 imes 10^5$	19.61×10^6	6.92×10^3	3.43×10^{-4}			
$H_T^W < 0.5 M_{\rm eff}$	5.39×10^{3}	4.33×10^5	1.06×10^5	19.61×10^6	6.92×10^3	3.43×10^{-4}			
Top veto	5.11×10^{3}	$4.14 imes 10^5$	$1.00 imes 10^5$	$18.67 imes 10^6$	6.78×10^3	3.54×10^{-4}			
$ M_{bbjj} - 110 < 10 \text{ GeV}$	2.20×10^{2}	$1.45 imes 10^4$	2.49×10^3	6.08×10^5	3.90×10^2	6.24×10^{-4}			
$H_T < 400 \text{ GeV}$	1.92×10^{2}	1.21×10^4	1.84×10^3	5.18×10^5	3.08×10^2	5.78×10^{-4}			
$N_b = 2$	$ 1.60 \times 10^2$	1.08×10^4	1.68×10^3	4.40×10^5	2.36×10^2	5.21×10^{-4}			
$N_b = 3$	3.2×10^1	1.16×10^3	1.54×10^2	7.12×10^4	5.73×10^1	7.90×10^{-4}			
$N_b = 4$	0	1.40×10^2	0	6.08×10^3	1.42×10^1	2.28×10^{-3}			

$\mathbf{C}. \quad [bbW][bbW]$

Significance $= 0.2 \sim 0.4$

Conclusions

- A light H^{\pm} is an interesting NP signal at the LHC.
- In Type-I 2HDM, imposing the light $M_{H^{\pm}}$ restricts the model significantly.
- The smoking-gun signals cover most of the parameter space:
 - $-pp \rightarrow H^+H^- \rightarrow [\tau\nu][\tau\nu]$ $-pp \rightarrow HA/HH/AA \rightarrow H^-W^+H^-W^+ + c.c$
 - $-pp \rightarrow H^+H^- \rightarrow AW^+AA^- \rightarrow bbbb\ell\nu qq'$

