Workshop on particle physics and cosmology 2021

Probing EWPT in 2HDM with Future Lepton Colliders

Wei Su

KIAS

1808.02037 (N. Chen, T. Han, S. Su, WS, Y. Wu) 1912.01431 (N. Chen, T. Han, S. Li, S. Su, WS, Y. Wu) <u>2011.04540</u> (WS, A G. Williams, M. Zhang)

Outline

*2HDM and Phase Transition

Higgs/Z-pole : Loop-level studies

PT Results: cases and general scan

* Conclusion

Electroweak Phase Transition

SM: Cross-over around T=100 GeV BSM: bubble formation — asymmetry

Electroweak Phase Transition

Collider	$\Delta \mu$ (hbb)
LHC Run-I	50% (wh)
LHC 14 TeV $300 f b^{-1}$	26%
LHC 14 TeV $3000 f b^{-1}$	12%
CEPC 240 GeV $5ab^{-1}$ (zh)	0.28%
FCC-ee 240 GeV $10ab^{-1}$ (zh)	0.2%
ILC 240 GeV $2ab^{-1}$ (zh)	0.42%
ILC 350 GeV $0.2ab^{-1}$ (zh)	1.6%
ILC 500 GeV $4ab^{-1}$ (vvh)	0.24%

3

2HDM: Brief Introduction

• Parameters (CP-conserving, Flavor Limit, Z_2 Symmetry)

2HDM: One-Loop Level

(1) Loop + degenerate: $\cos (\beta - \alpha) = 0$, $m_{\Phi} \equiv m_{H} = m_{A} = m_{H^{\pm}}$ (2) Tree + Loop + degenerate: $\cos (\beta - \alpha) \neq 0$, $m_{\Phi} \equiv m_{H} = m_{A} = m_{H^{\pm}}$ (3) Tree + Loop + non-degenerate: $\Delta m_{a} = m_{A} - m_{H}$, $\Delta m_{c} = m_{H^{\pm}} - m_{H}$

2HDM: theoretical consideration

$$\cos (\beta - \alpha) \neq 0,$$

$$m_{\Phi} \equiv m_H = m_A = m_{H^{\pm}}$$

Z Pole Precision

	Current $(1.7 \times 10^7 Z's)$				CEPC $(10^{10}Z's)$			FCC-ee $(7 \times 10^{11} Z's)$			ILC $(10^9 Z's)$					
	-		correlation		σ	correlation		σ	correlation			σ	correlation			
	0	S	T	U	(10^{-2})	S	T	U	(10^{-2})	S		U	(10^{-2})	S	T	U
S	0.04 ± 0.11	1	0.92	-0.68	2.46	1	0.862	-0.373	0.67	1	0.812	0.001	3.53	1	0.988	-0.879
T	0.09 ± 0.14	-	1	-0.87	2.55	-	1	-0.735	0.53	_	1	-0.097	4.89	-	1	-0.909
U	-0.02 ± 0.11	2 <u>—</u> 2		1	2.08			1	2.40	_		1	3.76	-	_	1

Z Pole Precision

Results: Case-1

 $\xi_c \equiv \frac{v_c}{T_c}$

Type-II fixed mass splitting 200 GeV $m_H < 710 \text{ GeV}$ $tan\beta \epsilon (1.8,10)$ Vacuum uplifting: arXiv:1705.09186 G. C. Dorsch, S. Huber, K. Mimasu, J. M. No $\Delta \mathcal{F}_0 = \frac{1}{64\pi^2} \left[\left(m_h^2 - 2M^2 \right)^2 \left(\frac{3}{2} + \frac{1}{2} \log \left[\frac{4m_A m_H m_{H^{\pm}}^2}{\left(m_h^2 - 2M^2 \right)^2} \right] \right)$ $+\frac{1}{2}\left(m_A^4 + m_H^4 + 2m_{H^{\pm}}^4\right) + \left(m_h^2 - 2M^2\right)\left(m_A^2 + m_H^2 + 2m_{H^{\pm}}^2\right)\right]$

Results: Case-2

 $m_A = m_{H^{\pm}} \tan \beta = 3$

$$\begin{aligned} \text{Results: Case-2/3} \\ F(\phi_h, T) &\approx (DT^2 - \mu^2)\phi_h^2 - ET\phi_h^3 + \frac{\tilde{\lambda}}{4}\phi_h^4 \\ D &= \frac{1}{24} \left[6\frac{m_W^2}{v^2} + 3\frac{m_Z^2}{v^2} + \frac{m_h^2}{v^2} + 6\frac{m_t^2}{v^2} + \frac{m_H^2 - M^2}{v^2} + \frac{m_A^2 - M^2}{v^2} + 2\frac{m_{H^\pm}^2 - M^2}{v^2} \right] \\ E &= \frac{1}{12\pi} \left[6\frac{m_W^3}{v^3} + 3\frac{m_Z^3}{v^3} + \frac{m_h^3}{v^3} \right] + E_{(H/A/H^\pm)} \\ E_{(\alpha)} &\approx \left\{ \frac{1}{12\pi} \lambda_{\alpha}^{3/2} = \frac{1}{12\pi} \frac{m_A^3}{v^3}, M^2 \ll \lambda_{\alpha} \phi_h^2 \\ 0, &M^2 \gg \lambda_{\alpha} \phi_h^2 \right\} \quad \lambda_{A/H^\pm} v^2 = (\Delta m)^2 + 2m_H \Delta m \end{aligned}$$
Vacuum uplifting:
$$\Delta \mathcal{F}_0 &= \frac{1}{64\pi^2} \left[(m_h^2 - 2M^2)^2 \left(\frac{3}{2} + \frac{1}{2} \log \left[\frac{4m_A m_H m_{H^\pm}^2}{(m_h^2 - 2M^2)^2} \right] \right) \\ &+ \frac{1}{2} \left((m_A^4 + m_H^4 + 2m_{H^\pm}^4) + (m_h^2 - 2M^2) (m_A^2 + m_H^2 + 2m_{H^\pm}^2) \right] \end{aligned}$$

Too large or small mass splitting can not generate SFOEWPT

Too large or small mass splitting can not generate SFOEWPT

Results: Type-II

Future

Results: Type-I

Thanks for your attention!

Questions ?

Backup

2HDM: theoretical consideration

Vacuum Stability

$$\begin{split} \lambda_1 &> 0, \quad \lambda_2 > 0, \quad \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \\ \lambda_3 &+ \lambda_4 - |\lambda_5| > -\sqrt{\lambda_1 \lambda_2}. \\ &\uparrow \text{Unitary} \qquad |\lambda_i| \leq 4\pi^{i} \\ &\uparrow \text{Perturbativity} \qquad |\Lambda_i \leq 16\pi| \\ \end{split}$$

2HDM: theoretical consideration

Vacuum Stability

$$\begin{array}{ll} \lambda_1 > 0, & \lambda_2 > 0, & \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \\ \lambda_3 + \lambda_4 - |\lambda_5| > -\sqrt{\lambda_1 \lambda_2}. \end{array}$$

Unitary $|\lambda_i| \leq 4\pi$

Perturbativity $|\Lambda_i \leq 16\pi|$

 $\cos (\beta - \alpha) = 0,$ $m_{\Phi} \equiv m_H = m_A = m_{H^{\pm}}$

$$v^{2}\lambda_{1} = m_{h}^{2} + t_{\beta}^{2}\lambda v^{2},$$

$$v^{2}\lambda_{2} = m_{h}^{2} + \lambda v^{2}/t_{\beta}^{2},$$

$$v^{2}\lambda_{3} = m_{h}^{2} + \lambda v^{2},$$

$$v^{2}\lambda_{4} = -\lambda v^{2},$$

$$v^{2}\lambda_{5} = -\lambda v^{2}.$$

2 Free parameters