Higgs to dimuon discovery using quark / gluon tagging of ISR

Nov 27, 2021

SuBin Han

Collaboration with Won Sang Cho, Hyung Do Kim, Dongsub Lee

- $H \rightarrow \tau \tau$: 6.4 σ
- H $\rightarrow bb$: 5.6 σ
- ttH : 5.8σ

- PRD 99(2019) 072001
- PRL 121(2018) 1218081
- PLB 784(2018) 173

- $H \rightarrow \tau \tau$: 6.4 σ PRD 99(2019) 072001
- H $\rightarrow bb$: 5.6 σ PRL 121(2018) 1218081
- ttH : 5.8*σ* PLB 784(2018) 173

Higgs ~ 2nd generation fermions @LHC? : $h \rightarrow \mu \mu$!

• CMS : 3.0σ excess (Expected : 2.5σ ; VBF ~ 1.8σ / ggH ~ 1.6σ)

• CMS : 3.0σ excess (Expected : 2.5σ ; VBF ~ 1.8σ / ggH ~ 1.6σ)

Cross-section : ggH >> VBF Significance : $VBF \gtrsim ggH$

• CMS : 3.0σ excess (Expected : 2.5σ ; VBF ~ 1.8σ / ggH ~ 1.6σ)

dominant background

dominant background

dominant background

dominant background

large $\Delta \eta_{jj}$, m_{jj}

enhanced significance

enhanced significance

Intro / Motivation \rightarrow Saving ggH !

want to save ggH and exploit it well !

ex) ggH leading jets

ex) DY leading jets

H

ex) ggH leading jets

ex) DY leading jets

Quark Jet Gluon Jet

ex) ggH leading jets

ex) DY leading jets

Quark Jet Gluon Jet

ex) ggH leading jets

ex) DY leading jets

ex) ggH leading jets

ex) DY leading jets

Backup; kinematic consideration

• Gluon jet : broader than quark jet

- Gluon jet : broader than quark jet
 - \rightarrow jet-substructure variables
 - : Girth, EEC, track multiplicity, ...

- Gluon jet : broader than quark jet
 - \rightarrow jet-substructure variables
 - : Girth, EEC, track multiplicity, ...

Ex) Girth $\equiv \sum_{i \in jet} \left(\frac{p_T^i}{p_T^{jet}} \Delta r^i \right)$

- Gluon jet : broader than quark jet
 - \rightarrow jet-substructure variables
 - : Girth, EEC, track multiplicity, ...

Ex) Girth $\equiv \sum_{i \in jet} \left(\frac{p_T^i}{p_T^{jet}} \Delta r^i \right)$

- Gluon jet : broader than quark jet
 - \rightarrow jet-substructure variables
 - : Girth, EEC, track multiplicity, ...

Benchmark : CMS result (JHEP 01(2021) 148)

Benchmark : CMS result (JHEP 01(2021) 148)

MVA method = BDT (Boosted Decision Tree)

Benchmark : CMS result (JHEP 01(2021) 148)

- MVA method = BDT (Boosted Decision Tree)
- Variables \equiv CMS
 - = kinematic and geometric variables related to
 - [each μ or $\mu\mu$ system (0jet)
 - + leading jet (1jet)
 - + sub-leading jet & dijet system (multi-jet)]

Benchmark : CMS result (JHEP 01(2021) 148)

- MVA method = BDT (Boosted Decision Tree)
- Variables \equiv CMS

= kinematic and geometric variables related to

[each μ or $\mu\mu$ system (0jet)

+ leading jet (1jet)

+ sub-leading jet & dijet system (multi-jet)]

Ours

Benchmark : CMS result (JHEP 01(2021) 148)

- MVA method = BDT (Boosted Decision Tree)
- Variables \equiv CMS

= kinematic and geometric variables related to

[each μ or $\mu\mu$ system (0jet)

+ leading jet (1jet)

+ sub-leading jet & dijet system (multi-jet)]

Ours

MVA method = BDT / DNN (Deep Neural Network)

Benchmark : CMS result (JHEP 01(2021) 148)

- MVA method = BDT (Boosted Decision Tree)
- Variables \equiv CMS
 - = kinematic and geometric variables related to
 - [each μ or $\mu\mu$ system (0jet)
 - + leading jet (1jet)
 - + sub-leading jet & dijet system (multi-jet)]

Ours

- MVA method = BDT / DNN (Deep Neural Network)
- Variables \equiv jetsub = CMS + jet-substructure variables

Benchmark : CMS result (JHEP 01(2021) 148)

- MVA method = BDT (Boosted Decision Tree)
- Variables \equiv CMS
 - = kinematic and geometric variables related to
 - [each μ or $\mu\mu$ system (0jet)
 - + leading jet (1jet)
 - + sub-leading jet & dijet system (multi-jet)]

Ours

- MVA method = BDT / DNN (Deep Neural Network)
- Variables \equiv jetsub = CMS + jet-substructure variables

• Uniformly binned template of $m_{\mu\mu}$ w/ sub-categorization using MVA scores. \rightarrow Profile likelihood ratio test

- Uniformly binned template of $m_{\mu\mu}$ w/ sub-categorization using MVA scores. \rightarrow Profile likelihood ratio test
- Test statistics : $\lambda(\mu) = -2\text{Log}\frac{L(\text{data} \mid \mu, \hat{\theta}_{\mu})}{L(\text{data} \mid \hat{\mu}, \hat{\theta})}$

• Uniformly binned template of $m_{\mu\mu}$ w/ sub-categorization using MVA scores. \rightarrow Profile likelihood ratio test

• Test statistics :

$$\lambda(\mu) = -2 \text{Log} \frac{L(\text{data} \mid \mu, \hat{\theta}_{\mu})}{L(\text{data} \mid \hat{\mu}, \hat{\theta})}$$

 Uniform systematic uncertainty 10% for both signal and background is included.

• Uniformly binned template of $m_{\mu\mu}$ w/ sub-categorization using MVA scores. \rightarrow Profile likelihood ratio test

• Test statistics :

$$\lambda(\mu) = -2 \text{Log} \frac{L(\text{data} \mid \mu, \hat{\theta}_{\mu})}{L(\text{data} \mid \hat{\mu}, \hat{\theta})}$$

 Uniform systematic uncertainty 10% for both signal and background is included.

Summary

Summary

ggH has largest cross-section but has less contribution to $h \rightarrow \mu \mu$ than VBF

Summary

ggH has largest cross-section but has less contribution to $h \rightarrow \mu \mu$ than VBF

- $h \rightarrow \mu\mu$ significance can be enhanced
- by exploiting ggH channel more efficiently,
 - by quark / gluon tagging of ISR jet,
 - by including jet-substructure variables

Thanks

Backup; Roguh Estimation of Quark/Gluon ratio

DY

 $\propto 2C_F \mathcal{L}_{qq}$

$\mathcal{L}_{F}\mathcal{L}_{gq}$	$rac{\sigma_g}{\sigma_q} \propto rac{(2C_A + 3C_F)\mathcal{L}_{gg}}{C_F\mathcal{L}_{gq}} \simeq 7rac{\mathcal{L}_{gg}}{\mathcal{L}_{gq}} (\sim 3-4)$
$-\mathcal{L}_{gq}$	$\frac{\sigma_g}{\sigma_q} \propto \frac{2C_F \mathcal{L}_{gg}}{C_F \mathcal{L}_{gq}} \sim \frac{1}{7} - \frac{1}{1} + \text{next order gluon jets through glue} \\ \rightarrow \text{ quark triangle loop diagram}$

Backup; CMS variables

4 Dimuon system

 $p_T^{\mu\mu}$, $y^{\mu\mu}$

 ϕ_{CS} , cos θ_{CS} : azimuthal and polar angle in Collins-Soper rest frame.

• 4 Each muon $\eta^{\mu}, \frac{p_T^{\mu}}{m^{\mu\mu}}$

• 3 (+2) Each jet p_T^j , η^j $\Delta R(\mu\mu, j_1)$: distance between the leading jet and dimuon in $\eta - \phi$ space

- 3 Dijet system m^{jj} : dijet invariant mass $\Delta \eta^{jj}$ $\Delta \phi^{jj}$
- 5 Dimuon ~ jets $\Delta \eta(\mu\mu, j_1), \Delta \eta(\mu\mu, j_2)$ $\Delta \phi(\mu\mu, j_1), \Delta \phi(\mu\mu, j_2)$ $z_* = \frac{y^{\mu\mu} - (y^{j_1} + y^{j_2})/2}{|y^{j_1} - y^{j_2}|}$: Zepenfeld variable

Backup; jet-substructure variables

Backup; Multi-Variate Analysis (MVA)

Score Plots

Backup; Mutual information

