Muonphilic Dark Matter explanation of gamma-ray galactic center excess

Chih-Ting Lu (KIAS)

Ref : 2111.02946

Collaborators : Yi-Zhong Fan, Yue-Lin Sming Tsai, Murat Abdughani, Tian-Peng Tang (PMO group in China)

Workshop on particle physics and cosmology 2021

26-28 November 2021 Jeju Hidden Cliff (제주 히든 클리프 호텔)

Content

- 1. Motivation
- 2. The muonphilic DM explanation to the GCE
- 3. The simplified muonphilic DM models
- 4. The global fitting with GCE, DM relic density, DM direct detection and muon g-2 excess
- 5. Conclusion

Content

1. Motivation

- 2. The muonphilic DM explanation to the GCE
- 3. The simplified muonphilic DM models
- 4. The global fitting with GCE, DM relic density, DM direct detection and muon g-2 excess
- 5. Conclusion

Motivation – Dark Matter

Evidences for Dark Matter (DM)

- WMAP measurement (Ω_m=0.25)
- rotation curves of galaxies
- the "bullet" cluster

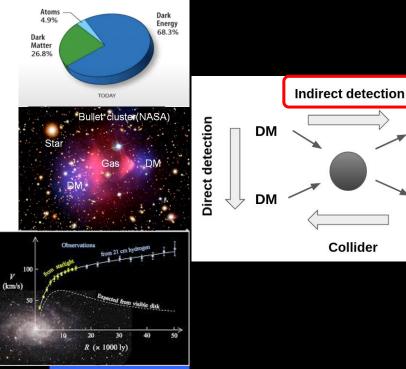
Open Problems

- DM nature
- DM interactions
- DM formation mechanism

Detection techniques

- signals from colliders
- direct detection

 indirect detection of annihilation products such as neutrinos, antiprotons or gamma-rays

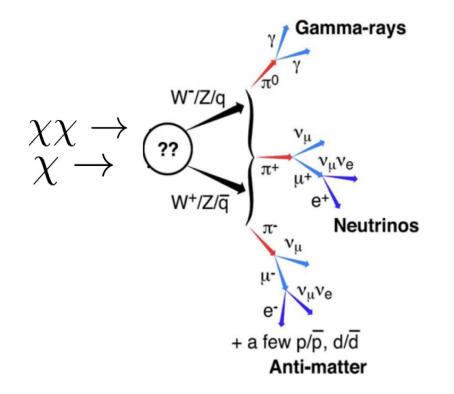


SM

SM

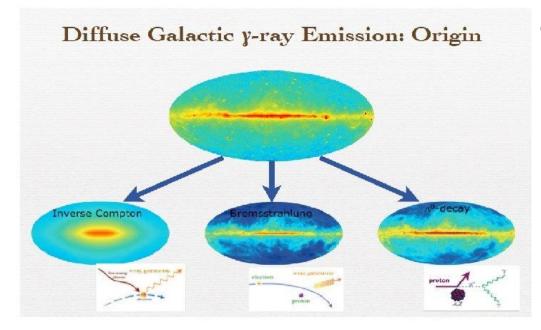
Mattia Fornasa and Marco Taoso

DM indirect detection



Pamela , ATIC, Fermi, HESS, AMSO2, DAMPE and so on

Fermi LAT Gamma-rays can provide good test of the DM models

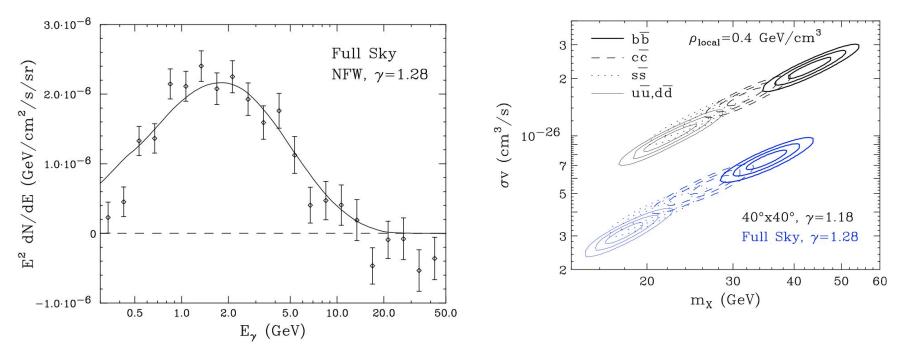


Other explanations :

- (1) From some undetected point sources(pulsars) in the inner Galaxy
- (2) The stellar origin in the Galactic bulge

Leane 2019/2020, Macias 2018/2019, Bartels 2018

The GeV excess



a 36.6 GeV dark matter particle annihilating to $b\bar{b}$ with a cross section of $\sigma v = 0.75 \times 10^{-26} \text{ cm}^3/\text{s} \times [(0.4 \text{ GeV/cm}^3)/\rho_{\text{local}}]^2$.

Gamma-ray galactic center excess

The systematic uncertainties of these GCE analyses are still unclear. It can be a challenge to discover or exclude the DM origin by only using GCE Fermi data.

However,

with the help from other astrophysical data, such as Fermi-LAT observations of dwarf spheroidal galaxies (dSphs) and AMS-02 cosmic-ray data, we can abandon the DM explanation of GCE if all the above data do not support DM annihilation.

 \rightarrow The strategy in Di Mauro and Winkle (2021)

"Multimessenger constraints on the dark matter interpretation of the Fermi-LAT Galactic center excess"

Gamma-ray galactic center excess

"However, we find that the GCE DM signal is excluded by the <u>AMS-02 anti-proton flux data</u> for all hadronic and semi-hadronic annihilation channels unless the vertical size of the diffusion halo is smaller than 2 kpc -- which is in tension with radioactive cosmic ray fluxes and radio data. Furthermore, <u>AMS-02 e+ data</u> rule out pure or mixed channels with a component of e+ e-. The only DM candidate that fits the GCE spectrum and is compatible with constraints obtained with the combined dSphs analysis and the AMS-02 anti-proton and e+ data annihilates purely into μ + μ -, has a mass of 60 GeV and roughly a thermal cross section."

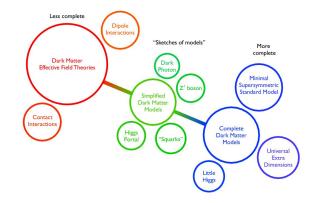
 \rightarrow Di Mauro and Winkle (2021)

Motivation of this work

Based on their claim, the muonphilic DM is the natural choice to explain the GCE.

The next question is what kind of interactions can explain <u>GCE</u> and also satisfy the <u>relic</u> <u>density</u>, <u>DM direct detection</u>, <u>collider</u> constraints and (maybe) <u>muon g-2 excess</u>.

We start from the simplified muonphilic DM models and do a comprehensive study.



Content

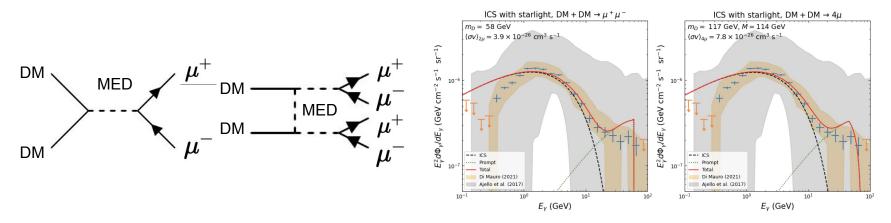
- 1. Motivation
- 2. The muonphilic DM explanation to the GCE
- 3. The simplified muonphilic DM models
- 4. The global fitting with GCE, DM relic density, DM direct detection and muon g-2 excess
- 5. Conclusion

The muonphilic DM explanation to the GCE

1. The favoured annihilation cross sections ($\mu+\mu-$ final state) and DM masses are

$$\langle \sigma v \rangle_{2\mu} = 3.9^{+0.5}_{-0.6} \times 10^{-26} \text{ cm}^3 s^{-1}$$
, and $m_D = 58^{+11}_{-9} \text{ GeV}$.

If requiring the same ICS gamma ray fluxes to explain GCE, a twice higher annihilation cross section is needed for 4µ final state. Therefore, it will be difficult to explain the <u>GCE</u> and <u>relic</u> <u>density</u> measurement simultaneously in the sceanrio of DM + DM → MED + MED.



Content

- 1. Motivation
- 2. The muonphilic DM explanation to the GCE
- 3. The simplified muonphilic DM models
- 4. The global fitting with GCE, DM relic density, DM direct detection and muon g-2 excess
- 5. Conclusion

We restrict ourselves to only concern SM singlet DM and MED with

spin-0 (real/complex), ¹/₂ (Majorana/Dirac), 1(real/complex) DM candidates

- (1) Z2 even meidator : spin-0(real), 1(real)
- (2) Z2 odd mediator : spin-0 (complex), ¹/₂ (Dirac), 1(complex)

	Scalar	Fermion	Vector
Dark Matter	S	X	X^{μ}
Mediator	ϕ	ψ	V^{μ}

Z_2 even mediator				s-channel				
types	Lag	rangian	$\langle \sigma v \rangle_{2\mu}$	$\langle \sigma v angle_{4\mu}$	a.			
			$\simeq a + bv^2$	$\simeq a + bv^2$	_			
$\chi ~{ m and}~ \phi$	$egin{aligned} \mathcal{L}_1 &= (g_D ar{\chi} \chi + g_f ar{f} f) \phi \ \mathcal{L}_2 &= (g_D ar{\chi} \chi + g_f ar{f} i \gamma^5 f) \phi \ \mathcal{L}_3 &= (g_D ar{\chi} i \gamma^5 \chi + g_f ar{f} f) \phi \end{aligned}$		a = 0	a = 0	$S ext{ and } V_{\mu}$	$\mathcal{L}_{11} = (ig_D S^{\dagger} \overleftrightarrow{\partial_{\mu}} S + g_D^2 S^{\dagger} S V_{\mu} + g_f \bar{f} \gamma_{\mu} f) V^{\mu}$	a = 0	Case (C)
			a = 0	a = 0		$\mathcal{L}_{12} = (ig_D S^{\dagger} \overleftrightarrow{\partial_{\mu}} S + g_D^2 S^{\dagger} S V_{\mu} + g_f \bar{f} \gamma_{\mu} \gamma^5 f) V^{\mu}$	a = 0	Case (C)
			Case (i)	a = 0		${\cal L}_{13}=(M_{D\phi}X^{\mu}X^{\dagger}_{\mu}+g_far{f}f)\phi$	Case (i)	Case (D)
	${\cal L}_4 = (g_D ar\chi i \gamma$	$^{5}\chi + g_{f}ar{f}i\gamma^{5}f)\phi$	Case (i)	a = 0	- V and d	${\cal L}_{14}=(M_{D\phi}X^{\mu}X^{\dagger}_{\mu}+g_far{f}i\gamma^5f)\phi$	Case (i)	Case (D)
χ and V_{μ}	${\cal L}_5 = (g_D ar\chi \gamma^\mu \gamma^\mu \gamma^\mu \gamma^\mu \gamma^\mu \gamma^\mu \gamma^\mu \gamma^\mu \gamma^\mu \gamma^\mu$	$\gamma^5 \chi + g_f ar f \gamma^\mu f) V_\mu$	a = 0	Case (A)	$X_{\mu} \text{ and } \phi$	${\cal L}_{13'}=(g_D X^\mu X^\dagger_\mu \phi +g_f ar f f)\phi$	_	b = 0
	${\cal L}_6 = (g_D ar\chi \gamma^\mu \gamma^5)$	$^5\chi + g_far{f}\gamma^\mu\gamma^5f)V_\mu$	Case (ii)	Case (A)		${\cal L}_{14'}=(g_D X^\mu X^\dagger_\mu \phi +g_f ar f i \gamma^5 f)\phi$		b = 0
	${\cal L}_7 = (g_D ar\chi \gamma^\mu$	$^{\mu}\chi + g_{f}ar{f}\gamma^{\mu}f)V_{\mu}$	Case (i)	Case (C)		$\mathcal{L}_{15} = ig_D \{ X^{\mu\nu} X^{\dagger}_{\mu} V_{\nu} - X^{\mu\nu\dagger} X_{\mu} V_{\nu} + X_{\mu} X^{\dagger}_{\nu} V^{\mu\nu} \}$	a = 0	Case (C)
	${\cal L}_8 = (g_D ar\chi \gamma^\mu)$	$\chi + g_f ar{f} \gamma^\mu \gamma^5 f) V_\mu$	Case (i)	Case (C)	X_{μ} and V_{μ}	$+g_D^2 \{X_\mu^\dagger X^\mu V_\nu V^\nu - X_\mu^\dagger V^\mu X_\nu V^\nu\} + g_f \bar{f} \gamma^\mu f V_\mu$		
$S ext{ and } \phi$	$\mathcal{L}_9 = (M_{D\phi}$	$_{S}S^{\dagger}S + g_{f}ar{f}f)\phi$	Case (i)	Case (B)	M_{μ} and V_{μ}	$\mathcal{L}_{16} = ig_D \{ X^{\mu\nu} X^{\dagger}_{\mu} V_{\nu} - X^{\mu\nu\dagger} X_{\mu} V_{\nu} + X_{\mu} X^{\dagger}_{\nu} V^{\mu\nu} \}$	a = 0	Case (C)
	$\mathcal{L}_{10} = (M_{D\phi}S)$	$S^{\dagger}S + g_f ar{f} i \gamma^5 f) \phi$	Case (i)	Case (B)		$+g_D^2\{X_\mu^{\dagger}X^\mu V_\nu V^\nu - X_\mu^{\dagger}V^\mu X_\nu V^\nu\} + g_f \bar{f}\gamma^\mu\gamma^5 fV_\mu$		
	$\mathcal{L}_{9'} = (g_D S$	$d^{\dagger}S\phi + g_far{f}f)\phi$	_	b = 0				
	$\mathcal{L}_{10'} = (g_D S^\dagger$	$S\phi + g_far{f}i\gamma^5f)\phi$	_	b = 0	-			

First, for 2μ final state, we can simplify the analytical expressions of σv [39] near resonance as

$$\sigma v \propto \frac{C_0}{(4R - R^2)^2} \left(\mathcal{C}_1 - \frac{\mathcal{C}_2}{4R - R^2} v^2 \right),$$
 (12)

where C_0 (in GeV⁻²) and $C_{1,2}$ are positive coefficients. The resonance parameter R is defined as $R \equiv (2m_D - M)/m_D$. The conditions $C_2 v^2 \leq C_1 (4R - R^2)$ is to be kinematics allowed and $R \leq 2$ is for a physical mass M.

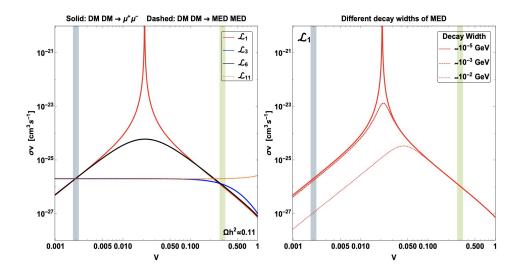


FIG. 2. The schematic demonstration of σv as function of v. The parameters of benchmark $\mathcal{L}_{1,3,6}$ are $m_D/\text{GeV} = (72.99, 73.11, 73.02), M/\text{GeV} = (146.0, 143.5, 146.0), and <math>g_D g_f \times 10^3 = (3.319, 2.494, 3.030)$, respectively. For \mathcal{L}_{11} , the corresponding parameters are $(m_D, M, g_D) = (68.64 \text{ GeV}, 5.85 \text{ GeV}, 8.53 \times 10^{-3})$. The right panel is the result of \mathcal{L}_1 for different decay widths of mediator.

t-channel

		$Z_2 ext{ odd n}$						
	types	Lagrangian	$\langle \sigma v angle_{2\mu}$	DM field				
	$\chi ~{ m and}~ \phi$	$\mathcal{L}_{17} = g_D \bar{\chi} P_R f \phi + \text{h.c.}$	s	Dirac				
	$\chi ~{ m and}~ V_{\mu}$	$\mathcal{L}_{18} = g_D ar{\chi} \gamma^\mu P_R f V_\mu + ext{h.c.}$	s	Dirac				
\bigotimes	$\chi ~{ m and}~ \phi$	$\mathcal{L}_{19}=g_Dar{\chi}P_Rf\phi ext{+h.c.}$	p	Majorana				
\bigotimes	$\chi ~{ m and}~ V_{\mu}$	$\mathcal{L}_{20} = g_D ar{\chi} \gamma^\mu P_R f V_\mu + ext{h.c.}$	p	Majorana				
	$S \ { m and} \ \psi$	$\mathcal{L}_{21}=g_Dar{\psi}P_RfS{+} ext{h.c.}$	Case (i)	Real				
\bigotimes	S and ψ	$\mathcal{L}_{22} = g_D ar{\psi} P_R f S + ext{h.c.}$	p	Complex				
	$X_{\mu} ext{ and } \psi$	$\mathcal{L}_{23} = g_D \bar{\psi} \gamma^\mu P_R f X^{\dagger}_{\mu} + \text{h.c.}$	s	Real/Complex				

Compared with the Z2-even mediator case, there is no resonance enhancement in t-channel models.

Thus, we are safe to exclude the p-wave interactions L_19, L_20, L_22 because they are not able to simultaneously generate the correct relic density and the DM annihilation cross section required by GCE.

The charged mediator such as slepton suffers from the stringent lower mass limit 103.5 GeV from LEP.

Therefore, we fouce on L_21 only with the following scaned parameters :

30 GeV $< m_D < 100$ GeV, $m_D < M < 1000$ GeV, $10^{-6} < g_D < 2$.

Content

- 1. Motivation
- 2. The muonphilic DM explanation to the GCE
- 3. The simplified muonphilic DM models
- 4. The global fitting with GCE, DM relic density, DM direct detection and muon g-2 excess
- 5. Conclusion

THE LIKELIHOODS

$$\chi^2_{\rm tot} = \chi^2_{\rm GCE} + \chi^2_{\Omega h^2} + \chi^2_{\rm DD}.$$

1. Fermi GCE:

$$\chi^2_{\rm GCE} = \sum_{i=1}^{19} \left(\frac{dN}{dE_i} - \frac{dN_0}{dE_i} \right)^2 / 19\sigma_i^2,$$

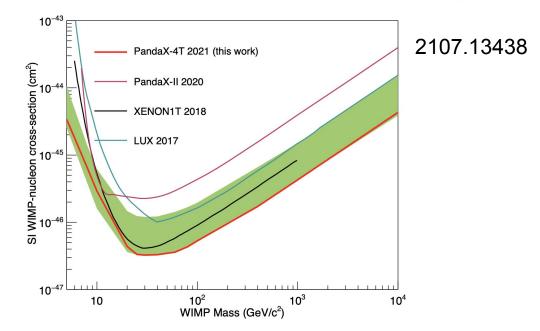
2. PLANCK Relic density: $\Omega h^2 = 0.1186 \pm 0.002. \qquad \chi^2_{\Omega h^2} = \left(\frac{\mu_t - \mu_0}{\sqrt{\sigma_{\text{theo}}^2 + \sigma_{\text{exp}}^2}}\right)^2, \qquad \tau = 10\%$

3. PandaX-4T:

$$\chi^2_{\rm DD} = \left(\frac{\sigma^{\rm SI}_{\chi p}}{\sigma^{\rm SI,90\%}_{\chi p}/1.64}\right)^2, \ 1.64 \text{ is the unit of } 90\% \text{ confidence level.}$$

PandaX-4T

a stringent limit to the dark matter-nucleon spin-independent interactions, with a lowest excluded cross section (90% C.L.) of 3.3×10^{-47} cm² at a dark matter mass of 30 GeV/ c^2 .



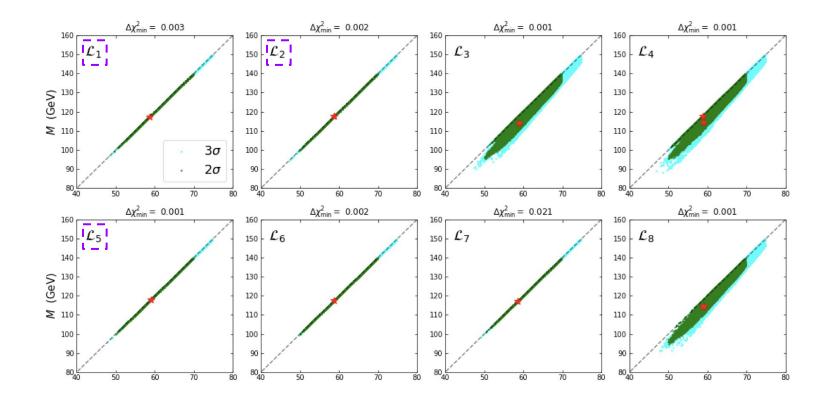
The range for the scaned parameters in s-channel models

For each model, we perform several MCMC scans individually to optimize the coverage and the parameters are scanned in the following range

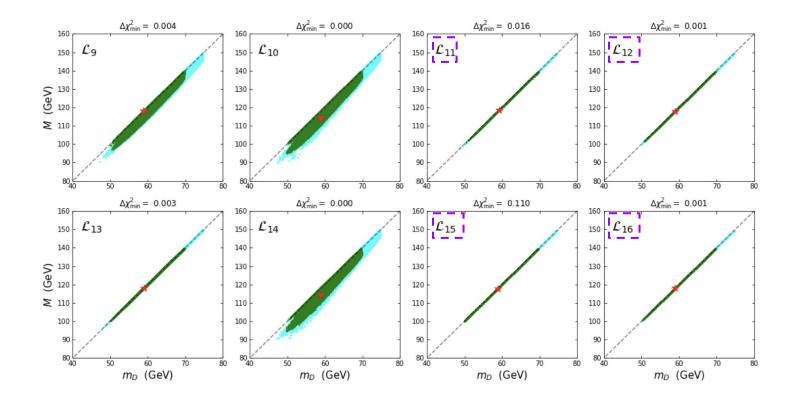
 $\begin{aligned} 30 \text{ GeV} &< m_D < 200 \text{ GeV}, \ 10^{-4} \text{ GeV} < M < 1000 \text{ GeV}, \\ 10^{-6} &< g_f < 2, \ 10^{-6} < g_D < 2, \ 10^{-6} \text{ GeV} < M_{D\phi} < 1000 \text{ GeV}. \end{aligned} \tag{13}$ $\Delta \chi^2_{\min} = \chi^2_{\min} - \chi^2_0.$

 $\chi_0^2 = 5.15,$

The parameter space in s-channel models



The parameter space in s-channel models



The parameter space in L_21 (t-channel model)

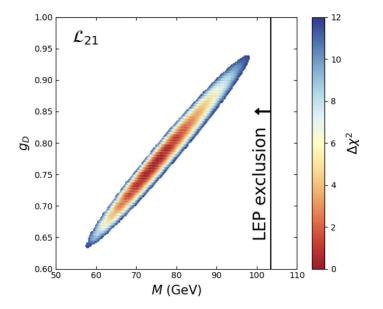
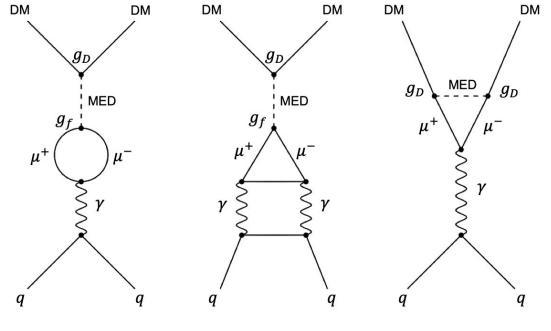


FIG. 5. Samples with $\Delta \chi^2 = \chi^2 - \chi^2_{\min} < 12$ for \mathcal{L}_{21} . The color bar is $\Delta \chi^2$. The vertical black solid line is the LEP upper limit 103.5 GeV [25].

- 1. For the simplified muonphilic DM models, there is no tree level DM-nuclei elastic scattering.
- 2. First, we consider the Z2-even mediator case and define the general lepton current as $\bar{l}\Gamma_l l$. The one loop contributions are nonzero only for vector and tensor lepton currents, namely $\Gamma_l = \gamma_{\mu}, \sigma_{\mu\nu}$. Therefore, only L_5, L_7, L_11, L_15 can generate one loop contributions to the DM-nuclei elastic scattering.
- 3. For the scalar lepton current, $\Gamma_l = 1$, the one loop contribution vanishes since a scalar current cannot couple to a vector current. The DM-quark interaction can only be induced at two loop level for L_1, L_3, L_9, L_13.
- 4. For pseudo-scalar and axial vector lepton currents $\Gamma_l = \gamma_5, \gamma_\mu \gamma_5$, the diagrams vanish to all loop orders. The interaction with γ_5 gives either zero or a fully anti-symmetric tensor $\epsilon^{\alpha\beta\mu\nu}$. Since there are only three independent momenta in the 2 \rightarrow 2 scattering process, two indices can be contracted with the same momentum and return a zero amplitude square. Therefore, we can ignore the DM-nuclei elastic scattering for L_2, L_4, L_6, L_8, L_10, L_12, L_14, L_16.

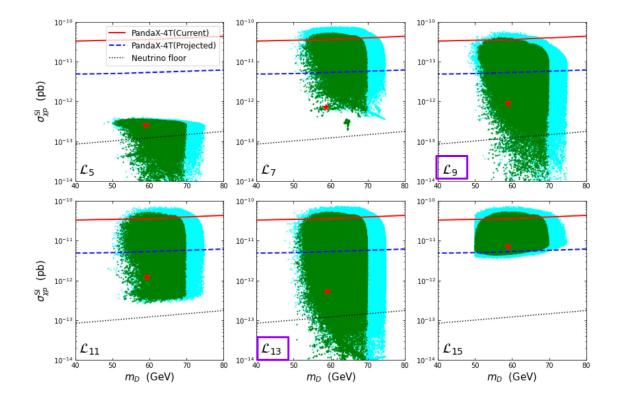
- For the Z2-odd mediator case, the DM-nuclei scattering cross sections are suppressed for the self-conjugate DM, namely real scalar, Majorana fermion, and real vector, since the self-conjugate DM couples to a single photon in t-channel simplified models only through the anapole moment. This leads to that DM-quark scattering amplitude is suppressed in the non-relativistic limit as for L_19, L_20, L_21, L_23.
- 2. On the other hand, if the muonphilic DM are <u>complex scalar</u>, <u>Dirac fermion</u> and <u>complex vector</u>, the one-loop induced DM-quark interactions cannot be ignored.



Z₂ even 1 loop diagram

Z₂ even 2 loop diagram

Z2 odd 1 loop diagram



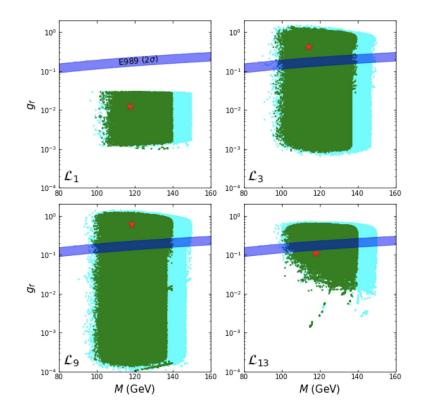
THE MUON g - 2 EXCESS

A deviation $\delta a_{\mu} = (2.51 \pm 0.59) \times 10^{-9}$ with 4.2σ significance deviating from the value of the SM prediction.

- (1) The contribution from pseudo-scalar and axial-vector mediator are negative at one loop level.
- (2) For the contributions from vector mediator, δa_{μ} is too small to reach 2σ region.
- (3) Thus, only the contributions form scalar mediators are considered.

Therefore, as long as the E989 result can be confirmed in the near future, only L_3 (fermionic DM), L_9 (scalar DM) and L_13 (vector DM) are allowed to explain the correct <u>DM</u> relic density, <u>GCE</u> and <u>muon g - 2 excess</u> simultaneously.

THE MUON g – 2 EXCESS



Content

- 1. Motivation
- 2. The muonphilic DM explanation to the GCE
- 3. The simplified muonphilic DM models
- 4. The global fitting with GCE, DM relic density, DM direct detection and muon g-2 excess
- 5. Conclusion

Conclusion

- 1. According to Di Mauro and Winkle (2021), only $\chi\chi \rightarrow \mu\mu$ annihilation can explain all the astrophysical observations consistently.
- 2. Motivated by such a claim, we perform a comprehensive analysis for the muonphilic DM from the particle physics point of view.
- 3. For muonphilic DM models with Z2-even mediators, the favoured regions show an interesting feature that only the narrow phase spaces of resonances are remained to accommodate both GCE and DM relic density.
- 4. For the muonphilic DM models with Z2-odd mediators, all of interaction types with Z2-odd mediators are excluded.

Conclusion

5. Although the muonphlic DM can only scatter with proton via loop contributions, the current PandaX-4T σ si upper limit is still sensitive to this kind of models.

 If muon g – 2 result from E989 can be confirmed, only the scalar mediator is allowed and the possible interaction types are L_3 (fermionic DM), L_9 (scalar DM) and L_13 (vector DM). Among these three models, only L_3 cannot be tested by future DD experiments.

Thank you for your attention

Back-up

The GCE fitting results from Di Mauro and Winkle (2021)

