Non-Standard neutrino Interaction (NSI) and future atmospheric neutrino oscilation experiments

Pouya Bakhti

Jeonbuk National University, Jeonju, South Korea

pouya_bakhti@jbnu.ac.kr

November 27-29, 2021

 P. Bakhti and M. Rajaee, S. Shin, "Non-Standard Interaction of atmospheric neutrino in future experiments".

- ∢ ⊒ →

2/51

4 A 1

Overview

Introduction

- 2 Non-Standard neutrino Interaction (NSI)
- 3 Atmospheric neutrinos
 - Details of the Experiments
- Oscillation probabilities
- Constraints on NSI 6

Summary

э

- Neutrinos are massive elementary particles which their mass is much less than other massive elementary particles
- Neutrinos are produced via weak interaction in: reactor, sun, supernova, atmosphere, accelarator, ...
- There are three flavours of neutrino ($\nu_{e},~\nu_{\mu},~\nu_{\tau})$
- Flavour of neutrinos are changed during their propagation

Neutrino Oscillation

There is a mixing between mass and flavor states

$$|
u_{lpha}
angle = \sum_{i} U^{*}_{\alpha i} |
u_{i}
angle, \ lpha = e, \mu, \tau, \ \ i = 1, 2, 3$$

PMNS mixing matrix

$$U = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix}$$
(2)

Neutrino oscillation in vacuum

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sum_{k,j} U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^* e^{-i \frac{\Delta m_{kj}^2 L}{2E}}$$
(3)

Pouya Bakhti (JBNU)

NSI and future oscilation experiments

(1)

Neutrino Oscillation in Vacuum

$$H |\nu_k\rangle = E_k |\nu_k\rangle = i \frac{d}{dt} |\nu_k(t)\rangle$$
(4)

$$|\nu_k(t)
angle = e^{-iE_k t} |\nu_k
angle$$
 (5)

$$|
u_{\alpha}(t)\rangle = \sum_{k} U_{\alpha k}^{*} e^{-iE_{k}t} |
u_{k}\rangle$$
 (6)

$$|\nu_{\alpha}(t)\rangle = \sum_{\beta} \sum_{k} U_{\alpha k}^{*} e^{-iE_{k}t} U_{\beta k} |\nu_{\beta}\rangle$$
(7)

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sum_{k,j} U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^* e^{-i(E_k - E_j)t}$$
(8)

$$E_k \simeq E + rac{m_k^2}{2E}, \; E_k - E_j \simeq rac{\Delta m_{kj}^2}{2E} \equiv rac{m_k^2 - m_j^2}{2E}$$

Pouya Bakhti (JBNU)

э

Neutrino Oscillation parameters

NuFIT 2.2 (2016)

	Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 0.56)$		Any Ordering
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range
$\sin^2 \theta_{12}$	$0.308^{+0.013}_{-0.012}$	$0.273 \rightarrow 0.348$	$0.308^{+0.013}_{-0.012}$	$0.273 \rightarrow 0.349$	$0.273 \rightarrow 0.348$
$\theta_{12}/^{\circ}$	$33.72^{+0.79}_{-0.76}$	$31.52 \rightarrow 36.18$	$33.72^{+0.79}_{-0.76}$	$31.52 \rightarrow 36.18$	$31.52 \rightarrow 36.18$
$\sin^2 \theta_{23}$	$0.440^{+0.023}_{-0.019}$	$0.388 \rightarrow 0.630$	$0.584^{+0.018}_{-0.022}$	$0.398 \rightarrow 0.634$	$0.388 \rightarrow 0.632$
$\theta_{23}/^{\circ}$	$41.5^{+1.3}_{-1.1}$	$38.6 \rightarrow 52.5$	$49.9^{+1.1}_{-1.3}$	$39.1 \rightarrow 52.8$	$38.6 \rightarrow 52.7$
$\sin^2 \theta_{13}$	$0.02163\substack{+0.00074\\-0.00074}$	$0.01938 \rightarrow 0.02388$	$0.02175\substack{+0.00075\\-0.00074}$	$0.01950 \to 0.02403$	$0.01938 \rightarrow 0.02396$
$\theta_{13}/^{\circ}$	$8.46^{+0.14}_{-0.15}$	$8.00 \rightarrow 8.89$	$8.48^{+0.15}_{-0.15}$	$8.03 \rightarrow 8.92$	$8.00 \rightarrow 8.90$
$\delta_{ m CP}/^{\circ}$	289^{+38}_{-51}	$0 \rightarrow 360$	269^{+39}_{-45}	$146 \rightarrow 377$	$0 \rightarrow 360$
$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.49^{+0.19}_{-0.17}$	$7.02 \rightarrow 8.08$	$7.49^{+0.19}_{-0.17}$	$7.02 \rightarrow 8.08$	$7.02 \rightarrow 8.08$
$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.526^{+0.039}_{-0.037}$	$+2.413 \rightarrow +2.645$	$-2.518^{+0.038}_{-0.037}$	$-2.634 \rightarrow -2.406$	$ \begin{bmatrix} +2.413 \to +2.645 \\ -2.630 \to -2.409 \end{bmatrix} $

イロト イポト イヨト イヨト

7/51

2

Neutrino Oscillation in Matter

• Forward elastic scattering processes affect neutrino oscillation

$$\mathcal{H}_f = \mathcal{H}_{vac} + \mathcal{H}_{mat} \tag{9}$$

$$\mathcal{H}_{mat} = \sqrt{2} G_F N_e diag(1,0,0) \tag{10}$$

$$\mathcal{H}_{vac} = U_{PMNS} \cdot \text{Diag}(0, \Delta m_{21}^2, \Delta m_{31}^2) \cdot U_{PMNS}^{\dagger}$$
(11)

• Considering 2ν Oscillation

$$i\frac{d}{dx}\psi_{\alpha} = \mathcal{H}_{f}\psi_{\alpha} \tag{12}$$

$$\psi^{T} = (\psi_{ee}, \psi_{e\mu}) \tag{13}$$

Neutrino Oscillation in Matter

$$\mathcal{H}_{F} = \begin{bmatrix} -\Delta m^{2} \cos 2\theta + A_{CC} & \Delta m^{2} \sin 2\theta \\ \Delta m^{2} \sin 2\theta & \Delta m^{2} \cos 2\theta - A_{CC} \end{bmatrix}$$
(14)

$$A_{CC} = 2\sqrt{2}EG_F N_E \tag{15}$$

$$\mathcal{H}_M = U_M \mathcal{H}_F U_M \tag{16}$$

$$U_{M} = \begin{bmatrix} \cos 2\theta_{M} & \sin \theta_{M} \\ -\sin \theta_{M} & \cos 2\theta_{M} \end{bmatrix}$$
(17)

$$\mathcal{H}_M = diag(-\Delta m_M^2, \Delta m_M^2) \tag{18}$$

< 17 >

Pouya Bakhti (JBNU)

NSI and future oscilation experiments

э November 27-29, 2021 9/51

Neutrino Oscillation in Matter

$$\Delta m_M^2 = \sqrt{(\Delta m^2 \cos 2\theta - A_{CC})^2 + (\Delta m^2 \sin 2\theta)^2}$$
(19)

$$\tan 2\theta_M = \frac{\tan 2\theta}{1 - \frac{A_{CC}}{\Delta m^2 \cos 2\theta}}$$
(20)

$$A_{CC}^R = \Delta m^2 \cos 2\theta$$
(21)

$$N_e^R = \frac{\Delta m^2 \cos 2\theta}{2\sqrt{2}EG_F}$$
(22)
In the case of anti-neutrino $V_{CC} \rightarrow -V_{CC} (A_{CC} = 2EV_{CC})$

э

10 / 51

A D N A B N A B N A B N

NC NSI

$$\mathcal{L}_{\mathrm{NSI}}^{NC} = -2\sqrt{2}G_{F}\varepsilon_{\alpha\beta}^{fC}\left(\overline{\nu_{\alpha}}\gamma^{\mu}P_{L}\nu_{\beta}\right)\left(\overline{f}\gamma_{\mu}P_{C}f\right)$$
(23)

$$\epsilon_{\alpha\beta} = \epsilon^{e}_{\alpha\beta} + (N_d/N_e)\epsilon^{d}_{\alpha\beta} + (N_u/N_e)\epsilon^{u}_{\alpha\beta}$$
(24)

• CC NSI (pion decay)

$$\mathcal{L}_{\rm NSI}^{CC} = -2\sqrt{2}G_{F}\varepsilon_{\alpha\beta}^{udL}(\overline{I_{\alpha}}\gamma_{\lambda}P_{L}U_{\beta a}\nu_{a})(\bar{d}\gamma^{\lambda}P_{L}u)^{\dagger}$$
(25)

• CC NSI (muon decay)

$$\mathcal{L}_{\rm NSI}^{CC} = -2\sqrt{2}G_F \varepsilon^L_{\alpha\beta} (\overline{e}\gamma_\lambda P_L U_{\alpha a}\nu_a) (\overline{\mu}\gamma^\lambda P_L U_{\beta b}\nu_b)^{\dagger}$$
(26)

• Assuming neutral-current non-standard neutrino interaction

$$H_{mat} = \sqrt{2} G_F N_e \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon^*_{e\mu} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon^*_{e\tau} & \epsilon^*_{\mu\tau} & \epsilon_{\tau\tau} \end{pmatrix}$$
(27)

• Current constraints on NC NSI parameters (arXiv:1307.3092)

$$|\epsilon_{e\mu}| < 0.16$$

 $|\epsilon_{e\tau}| < 0.26$
 $|\epsilon_{\mu\tau}| < 0.02$
(28)

and

$$\begin{array}{rcl} -0.018 & < & \epsilon_{\tau\tau} - \epsilon_{\mu\mu} & < & 0.054 \\ 0.35 & < & \epsilon_{ee} - \epsilon_{\mu\mu} & < & 0.93. \end{array}$$
(29)

- NC NSI affect neutrino oscillation during propagation in matter
- CC NSI affect flavour change in neutrino production and detection
- MSW effect of ν and DM interaction, K. Y. Choi, E. J. Chun and J. Kim, "Neutrino Oscillations in Dark Matter, Phys. Dark Univ. **30** (2020), 100606 [arXiv:1909.10478 [hep-ph]].

(D) (A)

Constraints on CC NSI by near and far detectors of DUNE

Parameters	Far Detector	Near Detector	Current Constraints
ϵ_{ee}	0.046	0.003	0.041
$ \epsilon_{\mu\mu} $	0.015	0.002	0.078
$ \epsilon_{\mu e} $	0.009	0.006	0.026
$ \epsilon_{\mu au} $	0.074	-	0.013
$\epsilon_{e\mu}$	0.049	-	0.026
$ \epsilon_{\tau\mu} $	0.076	-	0.013
$\epsilon_{\tau e}$	0.113	-	0.041

P. Bakhti , A. N. Khan and W. Wang, "Sensitivities to charged-current nonstandard neutrino interactions at DUNE," J. Phys. G 44 (2017) no.12, 125001 [arXiv:1607.00065 [hep-ph]].

	$E < 10 \mathrm{GeV}$	10 GeV < E < 200 GeV	<i>E</i> >200 GeV
depends on δ_{CP}	Yes	No	No
ν_{atm} Statistics	High	High	Low
ν_{LBL} Statistics	High	Low	Non

Pouya Bakhti (JBNU)

November 27-29, 2021

A D N A B N A B N A B N

14 / 51

э

Atmospheric neutrino experiments

Carlo Giunti, Chung W. Kim - Fundamentals of Neutrino Physics and Astrophysics-Oxford University Press, USA (2007)

Pouya Bakhti (JBNU)

NSI and future oscilation experiments

November 27-29, 2021

Atmospheric neutrino experiments

Carlo Giunti, Chung W. Kim - Fundamentals of Neutrino Physics and Astrophysics-Oxford University Press, USA (2007)

Pouya Bakhti (JBNU)

NSI and future oscilation experiments

November 27-29, 2021

Atmospheric neutrino experiments

https://universe-review.ca/I15-24-neutrino3.jpg

Pouva Bakhti (JBNU)

NSI and future oscilation experiments

< ∃⇒ November 27-29, 2021 17 / 51

э

Oscillation probability of atmospheric neutrinos

•
$$P_{\mu\mu} = 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{1.267 \Delta m^2 (eV^2) L(km)}{E(GeV)} \right)$$

• $P_{\mu e} = \sin^2 2\theta_{23} \sin^2 2\theta_{13}^m \sin^2 \left(\frac{1.267 \Delta m^2 (eV^2) L(km)}{E(GeV)} \right)$
• $\sin^2 2\theta_{13}^m = \frac{\sin^2 2\theta_{13}}{(\cos 2\theta_{13} - \frac{2V_e^C C E_V}{\Delta_{31}^2})^2 + \sin^2 2\theta_{13}}$

 resonant features are not present for antineutrinos when the mass hierarchy is normal

- ∢ ⊒ →

Atmospheric neutrino oscillation

THE STATE OF THE ART OF NEUTRINO PHYSICS, ISBN 9813226080

Pouya Bakhti (JBNU)

NSI and future oscilation experiments

November 27-29, 2021 19 / 51

DUNE

http://lbnf.fnal.gov/

- Deep Underground Neutrino Experiment (DUNE)
- 1300 km baseline and 250 MeV < E < 8 GeV peak around 3 GeV
- Atmosphric neutrino, Solar neutrino and SN neutrino
- Liquid Argon Time-Projection Chamber(LArTPC) with 40 kton fiducial mass

Hyper Kamikande

• fiducial mass of HK: 200 kton

November 27-29, 2021

21/51

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Korea Neutrino Observatory (KNO)

• fiducial mass of KNO: 200 kton

Pouya Bakhti (JBNU)

NSI and future oscilation experiments

November 27-29, 2021

22 / 51

・ 何 ト ・ ヨ ト ・ ヨ ト

Korea Neutrino Observatory (KNO)

Korea Neutrino Observatory (KNO)

Pouya Bakhti (JBNU)

NSI and future oscilation experiments

November 27-29, 2021

A D N A B N A B N A B N

24 / 51

э

ORCA

• 6 Mton fiducial mass, Energy threshold of 3 GeV, 50% efficiency for ν detection with energies lower than 10 GeV

Pouya Bakhti (JBNU)

NSI and future oscilation experiments

November 27-29, 2021

For higher energies oscillation probability does not depends on $\delta_{C\!P}$

For higher energies oscillation probability does not depends on $\delta_{C\!P}$

Pouya Bakhti (JBNU)

Pouva Bakhti (JBNU)

▲ 同 ▶ → 三 ▶ November 27-29, 2021

- ∢ ⊒ →

3

э

э

November 27-29, 2021

→ ∃ →

э

31 / 51

< 1[™] >

November 27-29, 2021

- ∢ ⊒ →

э

< 1[™] >

10 12 14

November 27-29, 2021

▶ < ∃ >

э

33 / 51

< 47 ▶

Constraints on $\epsilon_{\mu\tau}$ with DUNE

Tau neutrino detection efficiency of 30% and 100%

イロト イポト イヨト イヨト

3

Constraints on $|\epsilon_{\mu\mu} - \epsilon_{\tau\tau}|$ with DUNE

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

35 / 51

0.10

Constraints on $\epsilon_{\mu\tau}$

Pouya Bakhti (JBNU)

November 27-29, 2021

3

Constraints on $|\epsilon_{\mu\mu} - \epsilon_{\tau\tau}|$

Pouya Bakhti (JBNU)

November 27-29, 2021

Constraints on δ_{CP} vs. $\epsilon_{e\mu}$ with DUNE

Pouya Bakhti (JBNU)

November 27-29, 2021

Constraints on δ_{CP} vs. $\epsilon_{e\mu}$ with HK(KNO)

Pouya Bakhti (JBNU)

November 27-29, 2021

Constraints on δ_{CP} vs. $\epsilon_{e\mu}$ with HK+KNO

Pouya Bakhti (JBNU)

November 27-29, 2021 40 / 51

Constraints on δ_{CP} vs. $\epsilon_{e\mu}$ with ORCA

Pouya Bakhti (JBNU)

November 27-29, 2021

Constraints on δ_{CP} vs. $\epsilon_{e\mu}$ with Long Baseline experiments

P. Bakhti and M. Rajaee, "Sensitivities of future reactor and long-baseline neutrino experiments to NSI," Phys. Rev. D **103** (2021) no.7, 075003 [arXiv:2010.12849 [hep-ph]].

Pouya Bakhti (JBNU)

November 27-29, 2021

Constraints on δ_{CP} vs. $\epsilon_{e\tau}$ with HK+KNO

The results for constraining δ_{CP} vs. $\epsilon_{e\tau}$ is similar to constraints on δ_{CP} vs. $\epsilon_{e\mu}$

Constraints on δ_{CP} vs. $\epsilon_{e\tau}$ with Long Baseline experiments

P. Bakhti and M. Rajaee, "Sensitivities of future reactor and long-baseline neutrino experiments to NSI," Phys. Rev. D **103** (2021) no.7, 075003 [arXiv:2010.12849 [hep-ph]].

Pouya Bakhti (JBNU)

Constraints on $\delta_{C\!P}$ vs. $|\epsilon_{\mu\mu}-\epsilon_{ee}|$ with DUNE

Pouya Bakhti (JBNU)

NSI and future oscilation experiments

November 27-29, 2021

3

Constraints on δ_{CP} vs. $|\epsilon_{\mu\mu} - \epsilon_{ee}|$ with HK(KNO)

Pouya Bakhti (JBNU)

NSI and future oscilation experiments

November 27-29, 2021

46 / 51

э

Constraints on δ_{CP} vs. $|\epsilon_{\mu\mu} - \epsilon_{ee}|$ with HK+KNO

Pouya Bakhti (JBNU)

NSI and future oscilation experiments

November 27-29, 2021 47 / 51

Constraints on $\delta_{C\!P}$ vs. $|\epsilon_{\mu\mu}-\epsilon_{ee}|$ with ORCA

Pouya Bakhti (JBNU)

NSI and future oscilation experiments

November 27-29, 2021

Constraints on δ_{CP} vs. $\epsilon_{e\tau}$ with Long Baseline experiments

P. Bakhti and M. Rajaee, "Sensitivities of future reactor and long-baseline neutrino experiments to NSI," Phys. Rev. D **103** (2021) no.7, 075003 [arXiv:2010.12849 [hep-ph]].

Pouya Bakhti (JBNU)

Summary

- We have investigated the impact of the NSI parameters $\epsilon_{\mu\tau}$ and $|\epsilon_{\mu\mu} \epsilon_{\tau\tau}|$ on the future atmospheric neutrino experiments DUNE, HK, ORCA and KNO using 10 years of simulated data.
- Our analysis shows that ORCA and HK+KNO can improve the current constraints on $\epsilon_{\mu\tau}$ and $|\epsilon_{\mu\mu} \epsilon_{\tau\tau}|$ by two orders of magnitudes.
- HK+KNO can improve the constraints on ε_{eµ}, ε_{eτ} and |ε_{µµ} − ε_{ee}| by one order of magnitude.
- HK+KNO can determine δ_{CP} in presence of NSI with 3σ C.L.

Thank you for your attention.

Pouya Bakhti (JBNU)

NSI and future oscilation experiments

✓ ⓓ ▷ < ≧ ▷ < ≧ ▷</p>
November 27-29, 2021

51/51

э