QFT from Recursions

Kanghoon Lee

APCTP JRG

27 Apr 2022

Kyoungho Cho, Kwangeon Kim, KL JHEP 01 (2022) 186 KL 2202.08133 Accepted in JHEP

Yonsei University

In QFT course

Learn how to draw Feynman diagrams for computing amplitudes

- simple rules, Lagrangian derivation, work for all theories.
- act as bookkeepers, visual tools to keep track of the allowed interactions of a particular mode
- It provide physical insight into the nature of particle interactions

- However, Feynman diagrams are impractical!!
- Cumbersome to figure out all possible topologies of diagrams and their symmetric factors.
- Number of Feynman diagrams grows exponentially.

For 2 to \boldsymbol{n} tree-level gluon scattering amplitudes

$gg \Longrightarrow ng$	n=5 $n=6$		n = 7	n = 8	n = 9	
Diagrams	2,485	34,300	559,405	10,525,900	224, 449, 225	

- For seven gluons at one loop: 227, 585 Feynman diagrams.
- The expression for a single Feynman diagram can also be very complicated. For example, the three-graviton vertex has almost 100 terms
- However, the result of adding the contributions of many diagrams can be extraordinarily simple, when written in spinor-helicity variables – easy but stupid and inefficient expansion

- Two types of recursions for scattering amplitude: On-shell vs Off-shell
- On-shell: BCFW recursion relation [Britto, Cachazo, Feng, Witten '04, '05]
- It uses the analytic properties of tree-level scattering amplitudes via complex deformations of the external momenta without Feynman diagrams (withtout Lagrangian)
- It gives a recursion for on-shell scattering amplitude (all external legs are on-shell).
- The only input data: three-point amplitudes
- Requirement: amplitudes should vanish quickly at asymptotics (not applicable for scalar theories etc)
- Note that these recursions were intended mainly for tree-level scattering amplitudes

Off-Shell Recursion Relation

- Off-Shell recursion relation: recursion relation for off-shell currents [Berends, Giele '87]
- Off-Shell current for scalar theory Φ₁₂...n: Sum of all (n + 1)-point Feynman graphs, where legs 1, 2, ..., n are on-shell gluons with amputations, and the (n + 1)-leg is off-shell

Recall the LSZ reduction formula

$$\mathcal{A}(1,2,\cdots,n) = i^{n-1}(2\pi)^4 \delta(k_1 + \cdots + k_n) \tilde{G}_c(k_1,k_2,\cdots,k_n) \prod_{i=1}^n (k_i^2 + m^2)$$

• (n + 1)-point scattering amplitude from the off-shell current $(k_{ijk} \dots = k_i + k_j + k_k + \dots)$

$$\mathcal{A}(1,2,\cdots,n+1) = \lim_{-k_1^2,\ldots,n \to m^2} \frac{i}{\hbar} (k_{12\ldots n}^2 + m^2) \Phi_{12\ldots n}$$

 Based on recursive structure of tree-level Feynmann diagrams (Finite number of interaction vertices)

require off-shell currents with repeated momenta vanish: $\Phi_{i_1 \cdots j \cdots j \cdots i_n} = 0$

Off-shell recursion relation for the off-shell currents

$$\Phi_{12...n} = -\frac{\lambda}{3!} \frac{1}{k_{12...n}^2 + m^2} \sum_{\substack{a,b=1\\a < b}}^n \sum_{i_1,i_n=1}^n \frac{1}{a!(b-a)!(n-b)!} \Phi_{i_1...i_a} \Phi_{i_{a+1}}...i_b \Phi_{i_{b+1}}...i_n \Phi_{i_{a+1}}...i_b \Phi_{i_{b+1}}...i_n \Phi_{i_{a+1}}...i_b \Phi_{i_{a+1}}...i_n \Phi_{i_{a+1}}...i_$$

• Initial condition: $\Phi_i = 1$

 Which one is more efficient? [Dinsdale, Ternick, Weinzierl '06] small number of legs: on-shell > off-shell

large number of legs: on-shell < off-shell

n	4	5	6	7	8	9	10	11	12
Berends-Giele	0.00005	0.00023	0.0009	0.003	0.011	0.030	0.09	0.27	0.7
BCFW	0.00001	0.00007	0.0003	0.001	0.006	0.037	0.19	0.97	5.5

• On-shell: Lagrangian is not necessary, not complitely general (standard model X) Off-shell: Lagrangian is crucial. SM is OK.,

- · We want to avoid the dependence on Feynmen vertices
- An alternative way to derive off-shell recursion relations systematically useful for theories with complicated Feynman vertices, such as GR [Cho, Kim, KL '21]
- Tree-level scattering amplitudes \longleftrightarrow on-shell \longleftrightarrow solutions of EoM
- How to relate the solutions of EoM and tree-level scattering amplitude?
- Perturbiner method connects solutions of classical EoM and tree-level scattering amplitude through the off-shell currents [Rosly, Selivanov '96,'97], [Mizera, Skrzypek '18]
- Key ingredient: perturbiner expansion, a generating function of the off-shell currents: using classical EoM instead of Feynman rules

- · We want to avoid the dependence on Feynmen vertices
- An alternative way to derive off-shell recursion relations systematically useful for theories with complicated Feynman vertices, such as GR [Cho, Kim, KL '21]
- Tree-level scattering amplitudes \longleftrightarrow on-shell \longleftrightarrow solutions of EoM
- How to relate the solutions of EoM and tree-level scattering amplitude?
- Perturbiner method connects solutions of classical EoM and tree-level scattering amplitude through the off-shell currents [Rosly, Selivanov '96,'97], [Mizera, Skrzypek '18]
- Key ingredient: perturbiner expansion, a generating function of the off-shell currents: using classical EoM instead of Feynman rules

· Consider the following ansatz, so-called perturbiner expansion

$$\phi(x) = \sum_{i=1}^{N} \Phi_i e^{-ik_i \cdot x} + \sum_{i < j}^{N} \Phi_{ij} e^{-ik_{ij} \cdot x} + \sum_{i < j < k}^{N} \Phi_{ijk} e^{-ik_{ijk} \cdot x} + \cdots$$

where k_i are on-shell, $k_i^2 + m^2 = 0$, and $k_{ijk\cdots} = k_i + k_j + k_k + \cdots$

- Permutation invariance (ex: $\Phi_{ijk} = \Phi_{jki} = \Phi_{kij} = \cdots$) use only plane waves $e^{-ik_{ijk}\dots\cdot x}$ to separate the terms in the expansion
- A compact expression,

$$\phi(x) = \sum_{\mathcal{P}} \Phi_{\mathcal{P}} e^{-ik_{\mathcal{P}} \cdot x}$$

- $i, j, \dots = 1, 2, \dots, N$ are letters labeling single particles.
- \mathcal{P} is an ordered word labeling the multi-particle states, $\mathcal{P} = ijkl\cdots$ The length of the words their 'rank' and denoted as $|\mathcal{P}|, |\mathcal{Q}|, |\mathcal{R}|$ etc
- · For non-commuting states (fermions, with color indices), we need unordered words

• Substitute the expansion into the classical EoM $(-\Box + m^2)\phi(x) = \frac{\lambda}{3!}\phi(x)^3$

$$\Phi_{\mathcal{P}} = -\frac{\lambda}{3!} \frac{1}{k_{\mathcal{P}}^2 + m^2} \sum_{\mathcal{P} = \mathcal{Q} \cup \mathcal{R} \cup \mathcal{S}} \Phi_{\mathcal{Q}} \Phi_{\mathcal{R}} \Phi_{\mathcal{S}} , \qquad |\mathcal{P}| > 1$$

- ∑_{P=Q∪R∪S} means to sum over all possible distributions of the letters of the ordered words P into non-empty ordered words Q, R and S.
- Ex: For $\mathcal{P} = 123$,

 $(\mathcal{Q}, \mathcal{R}, \mathcal{S}) \Longrightarrow \{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)\}$

- Interestingly, this is the same exactly as the previous off-shell recursion relation
- Thus, the coefficients are the off-shell currents.

Let's see a real example

Systematic derivation of the perturbiner expansion?

- How to derive the initial condition?
- How to generalise to loop levels?
- Is it possible to extend to other quantities other than scattering amplitudes?
- More general setup? (curved background generalisation)

Quantum Pertirbiner Expansion

KL 2202.08133

Consider ϕ^4 -theory

- 1 Define quantum off-shell currents
- Onstruct the quantum perturbiner expansion, a generating function of the quantum off-shell currents, by choosing the external source
- 3 looking for a quantum analogue of the classical EoM
- Oerive the recursion relation by substituting the quantum perturbiner expansion to the quantum EoM
- ⇒ Employ the quantum effective action formalism (1PI diagrams generating functional)

Classical field and field equation

• consider ϕ^4 -theory with an external source $j_x := j(x)$

$$S[\phi, j] = \int d^4x \left[-\frac{1}{2} (\partial_{\mu} \phi(x))^2 - \frac{1}{2} m^2 \phi(x)^2 - \frac{\lambda}{4!} \phi(x)^4 + j(x)\phi(x) \right],$$

The generating functional for connected diagrams, W[j]

$$e^{\frac{i}{\hbar}W[j]} = Z[j] = \int \mathcal{D}\phi \, e^{\frac{i}{\hbar}S[\phi,j]}$$

We denote the position and momentum space integrations

$$\int_{x,y\cdots} = \int \mathrm{d}^4 x \, \mathrm{d}^4 y \cdots \quad \text{and} \quad \int_{p,q,\cdots} = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \frac{\mathrm{d}^4 q}{(2\pi)^4} \cdots$$

• The free propagator $D_{xy} := D(x, y)$, the inverse of the kinetic operator $K_{xy} = (-\Box + m^2)\delta^4(x - y),$

$$\int_{y} K(x,y) D_{yz} = \delta^{4}(x-z) , \qquad D_{xy} = \int \frac{d^{4}p}{(2\pi)^{4}} \tilde{D}_{p} e^{ip \cdot (x-y)} ,$$

where \tilde{D}_p is the momentum space propagator,

$$\tilde{D}_p = \frac{1}{p^2 + m^2 - i\epsilon}$$

Classical fields

• Expansion of W[j] with respect to $j_x := j(x)$ around $j_x = 0$

$$W[j] = \sum_{n=2}^{\infty} \frac{1}{n!} \int_{x_1 x_2 \cdots x_n} \frac{\delta^n W[j]}{\delta j_{x_1} \delta j_{x_2} \cdots \delta j_{x_n}} \bigg|_{j=0} j_{x_1} j_{x_2} \cdots j_{x_n}$$
$$= -i\hbar \sum_{n=2}^{\infty} \frac{1}{n!} \int_{x_1 x_2 \cdots x_n} G_c(x_1, x_2, \cdots, x_n) \frac{i j_{x_1}}{\hbar} \frac{i j_{x_2}}{\hbar} \cdots \frac{i j_{x_n}}{\hbar} ,$$

• The classical field $\varphi_j(x)$: VEV of the scalar field $\phi(x)$ in the presence of j_x

$$\varphi_x := \frac{\delta W[j]}{\delta j_x} = \frac{\langle 0|\phi(x)|0\rangle_j}{\langle 0|0\rangle_j}, \qquad \varphi_x = \varphi_j(x)$$
$$\varphi_x = \sum_{n=1}^{\infty} \frac{1}{n!} \int_{y_1, y_2, \cdots, y_n} G_c(x, y_1, y_2, \cdots, y_n) \frac{ij_{y_1}}{\hbar} \frac{ij_{y_2}}{\hbar} \cdots \frac{ij_{y_n}}{\hbar}$$

Quantum effective action

• Legendre transformation of W[j] which interchanges the roles of j_x and φ_x

$$\Gamma[\varphi] = W[j] - \int_x j_x \varphi_x$$

• Variation of $\Gamma[\varphi]$ gives a field equation. At tree level, it reduces to the classical EoM

$$\frac{\delta\Gamma[\varphi]}{\delta\varphi_x} = \int_y \left[\frac{\delta W[j]}{\delta j_y} \frac{\delta j_y}{\delta\varphi_x} - \frac{\delta j_y}{\delta\varphi_x} \varphi_y \right] - j_x = -j_x$$

 \implies at least tree level, we may use φ_x for the perturbiner expansion

$$\phi(x) \Longrightarrow \varphi(x)$$

- We can compute Γ[φ] from functional integration. However, the explicit form of Γ[φ] is extremely complicated, and there is no closed form even in the one-loop level.
- It is not suitable for deriving recursion relations

Descendant fields

We further introduce the descendant fields ψ_{x,y}, ψ'_{x,y,z}, ψ''_{x,y,z,w}, · · · generated by acting multiple functional derivatives on φ_x:

$$\begin{split} \psi_{x,y} &= \frac{\delta \varphi_x}{\delta j_y} = \frac{\delta^2 W[j]}{\delta j_x \delta j_y} \,, \\ \psi'_{x,y,z} &= \frac{\delta^2 \varphi_x}{\delta j_y \delta j_z} = \frac{\delta^3 W[j]}{\delta j_x \delta j_y \delta j_z} \,, \\ \psi''_{x,y,z,w} &= \frac{\delta^3 \varphi_x}{\delta j_y \delta j_z \delta j_w} = \frac{\delta^4 W[j]}{\delta j_x \delta j_y \delta j_z \delta j_w} \end{split}$$

• We may continue to arbitrarily higher-order descendant fields

$$\psi_{x,x_1,x_2,\cdots,x_n}^{\stackrel{n}{\longrightarrow}} = \frac{\delta^n \varphi_x}{\delta j_{x_1} \delta j_{x_2} \cdots \delta j_{x_n}} = \frac{\delta^{n+1} W[j]}{\delta j_x \delta j_{x_1} \delta j_{x_2} \cdots \delta j_{x_n}} \,.$$

• Since the functional derivatives commute with each other, the ordering of the coordinates x, x_1, \cdots is irrelevant

- *h*-expansion = loop expansion
- We may expand φ_x and its descendants in \hbar ,

$$\varphi_x = \sum_{n=0}^{\infty} \left(\frac{\hbar}{i}\right)^n \varphi_x^{(n)}, \qquad \psi_{x,y} = \sum_{n=0}^{\infty} \left(\frac{\hbar}{i}\right)^n \psi_{x,y}^{(n)}, \qquad \psi'_{x,y,z} = \sum_{n=0}^{\infty} \left(\frac{\hbar}{i}\right)^n \psi'_{x,y,z}^{(n)}.$$

Let's go back to the expansion of W[j]

$$W[j] = -i\hbar \sum_{n=2}^{\infty} \frac{1}{n!} \int_{x_1 x_2 \cdots x_n} G_c(x_1, x_2, \cdots, x_n) \frac{ij_{x_1}}{\hbar} \frac{ij_{x_2}}{\hbar} \cdots \frac{ij_{x_n}}{\hbar} ,$$

• The external source j_x is completely arbitrary, and we are free to choose its form

The dressed propagator D_{xy} is related to the exact two-point function,

$$\begin{split} \mathbf{D}_{xy} &= \int_p e^{ip \cdot (x-y)} \tilde{\mathbf{D}}(p^2) = \frac{i}{\hbar} \langle 0 | T \phi(x) \phi(y) | 0 \rangle \ . \\ \\ \tilde{\mathbf{D}}(p^2) &= \frac{1}{p^2 + m^2 - \Pi(p^2)} \,, \qquad \Pi(p^2) : \text{self-energy} \end{split}$$

• Identify j_x to reproduce the LSZ reduction formula out of the expansion of W[j]

$$j_x = \sum_{i=1}^N \int_{y_i} \mathbf{K}_{xy_i} e^{-ik_i \cdot y_i} = \sum_{i=1}^N \tilde{\mathbf{K}}(-k_i) e^{-ik_i \cdot x}$$

 \mathbf{K}_{xy} : the inverse of the dressed propagator \mathbf{D}_{xy} , satisfying $\int_{y} \mathbf{D}_{xy} \mathbf{K}_{yz} = \delta_{x,y}$ or $\tilde{\mathbf{K}}(p)\tilde{\mathbf{D}}(p) = 1$ in momentum space

Substituting the jx, W[j] reduces to permutation sum of the LSZ reduction formula

$$\begin{split} \sum_{\mathsf{Perm}[1,\cdots,N]} &\mathcal{A}_{k_1,\cdots,k_N} \\ &= -i\hbar(2\pi)^4 \delta^4(k_{12\cdots n}) \sum_{i_1,i_2,\cdots,i_N} \tilde{G}_c(k_{i_1},k_{i_2},\cdots,k_{i_N}) \bigg(\frac{i}{\hbar}\bigg)^N \prod_{i=1}^N \tilde{\mathbf{K}}(-k_i) \end{split}$$

 Quantum off-shell current \$\Delta_{i_1 \ldots i_n}\$: amputated correlation function with on-shell momenta k_i except for one off-shell leg which is assigned the momentum k_{i1}...i_n

$$\Phi_{i_1\cdots i_n} = \tilde{G}_c(-k_{i_1\cdots i_n}, k_{i_1}, \cdots, k_{i_n}) \frac{i\tilde{\mathbf{K}}(-k_{i_1})}{\hbar} \cdots \frac{i\tilde{\mathbf{K}}(-k_{i_n})}{\hbar}$$

- This is consistent with the previous definition of the off-shell current at tree level. Here $\tilde{G}_c(-k_{i_1\cdots i_n}, k_{i_1}, \cdots, k_{i_n})$ is the exact connected correlation function.
- This leads to our definition of the quantum perturbiner expansion of the classical field φ_x

$$\begin{aligned} \rho_x &= \sum_{i=1} \Phi_i e^{-ik_i \cdot x} + \sum_{i < j} \Phi_{ij} e^{-ik_{ij} \cdot x} + \dots + \sum_{i_1 < i_2 < \dots < i_n} \Phi_{i_1 \cdots i_n} e^{-ik_{i_1} \cdots i_n \cdot x} + \dots , \\ &= \sum_{\mathcal{P}} \Phi_{\mathcal{P}} e^{-ik_{\mathcal{P}} \cdot x} , \end{aligned}$$

• The quantum perturbiner expansions for the descendant fields $\psi_{x,y}$ and $\psi'_{x,y,z}$

$$\psi_{x,y} = \int_{p} \Psi_{p|\emptyset} e^{ip \cdot (x-y)} + \sum_{\mathcal{P}} \int_{p} \Psi_{p|\mathcal{P}} e^{ip \cdot (x-y)} e^{-ik_{\mathcal{P}} \cdot x},$$
$$\psi'_{x,y,z} = \sum_{\mathcal{P}} \int_{p,q} \Psi'_{p,q|\mathcal{P}} e^{ip \cdot (x-y) + iq \cdot (x-z)} e^{-ik_{\mathcal{P}} \cdot x},$$

- Descendant currents: $\Psi_{p|P}$ and $\Psi'_{p,q|P}$ are the quantum off-shell currents for the descendant fields.
- Here p and q are off-shell loop momenta, thus $\Psi_{p|\mathcal{P}}$ and $\Psi'_{p,q|\mathcal{P}}$ are intrinsic one-loop and two-loop quantities respectively.
- Note that the first descendant $\psi_{x,y}$ contains the zero-mode term.

• The graphical representation of the off-shell currents

• $\Phi_{12\cdots n}$ has an off-shell leg

m-th descendant currents $\Psi_{p_1p_2\cdots p_m|12\cdots n}^{\prime\prime\ldots\prime}$ have m+1 off-shell legs.

Scattering amplitude from the currents

• Since $\tilde{G}_c(-k_{i_1\cdots i_n}, k_{i_1}, \cdots, k_{i_n})$ are expanded in powers of \hbar , the quantum off-shell currents are also expanded in \hbar

$$\Phi_{\mathcal{P}} = \sum_{n=0}^{\infty} \left(\frac{\hbar}{i}\right)^n \Phi_{\mathcal{P}}^{(n)}, \quad \Psi_{p|\mathcal{P}} = \sum_{n=0}^{\infty} \left(\frac{\hbar}{i}\right)^n \Psi_{p|\mathcal{P}}^{(n)}, \quad \psi_{p,q|\mathcal{P}}' = \sum_{n=0}^{\infty} \left(\frac{\hbar}{i}\right)^n \Psi_{p,q|\mathcal{P}}'^{(n)},$$

Scattering amplitude from the current

$$\mathcal{A}^{(n)}(k_1,\cdots,k_N) = \lim_{\substack{(k_1,\ldots,N)^2\\ \to -(m_{\mathsf{phys}})^2}} \frac{i}{\hbar} \sum_{p=0}^n \tilde{\mathbf{K}}^{(p)}(k_1\ldots_N) \Phi_{1\ldots_N}^{(n-p)}.$$

where $\tilde{\mathbf{K}}_{k_{1}\ldots N}^{(p)}$ is the inverse of the dressed propagator at p-loop order.

- It is convenient to define the amputated off-shell current $\hat{\Phi}_{1\cdots N}^{(n)}$ as

$$\hat{\Phi}_{1\cdots N}^{(n)} = \frac{i}{\hbar} \sum_{p=0}^{n} \tilde{\mathbf{K}}^{(p)}(k_{1\cdots N}) \Phi_{1\cdots N}^{(n-p)}.$$

Quantum Off-Shell Recursion Relation

- Recall that the off-shell recursion relation at tree-level is obtained from the classical EoM by substituting the perturbiner expansion
- Similarly, we shall construct the quantum off-shell recursion relation from the quantum perturbiner expansion we obtained
- We need to replace the classical EoM with its quantum counterpart
- Dyson–Schwinger (DS) equation as a quantum analogue of the classical EoM

Derivation of DS eq

- Several equivalent forms of DS eq. Here we represent in terms of φ_x [See QFT books by Ramnond or Brown]
- Identity for the total functional derivative within a functional integration

$$0 = \int \mathcal{D}\varphi_x \frac{\hbar}{i} \frac{\delta}{\delta\varphi_x} e^{\frac{i}{\hbar}S[\varphi,j]} = \int \mathcal{D}\varphi_x \frac{\delta S[\varphi,j]}{\delta\varphi_x} e^{\frac{i}{\hbar}S[\varphi,j]}$$

• Denote the classical EoM as $\mathcal{F}[\varphi] = rac{\delta S[\varphi,0]}{\delta \varphi}$

$$\mathcal{F}\left(\frac{\hbar}{i}\frac{\delta}{\delta j_x}\right)Z[j] + j_xZ[j] = 0\,,\qquad \varphi_x\iff \frac{\hbar}{i}\frac{\delta}{\delta j_x}$$

• Using this identiy $e^{-\frac{i}{\hbar}W[j]}\left(\frac{\hbar}{i}\frac{\delta}{\delta j_x}\right)e^{\frac{i}{\hbar}W[j]} = \varphi_x + \frac{\hbar}{i}\frac{\delta}{\delta j_x}$,

$$\mathcal{F}\left(\varphi_x + \frac{\hbar}{i}\frac{\delta}{\delta j_x}\right) + j_x = 0$$

- Thus the DS equation is a deformation of the classical EoM by $\varphi_x \rightarrow \varphi_x + \frac{\hbar}{i} \frac{\delta}{\delta j_x}$
- A quantization scheme?

For ϕ^4 -theory

• DS equation for ϕ^4 -theory:

$$\int_{\mathcal{Y}} K(x,y)\varphi_y + \frac{\lambda}{3!}\varphi_x^3 = j_x - \frac{\lambda}{2}\frac{\hbar}{i}\varphi_x\frac{\delta\varphi_x}{\delta j_x} + \hbar^2\frac{\lambda}{3!}\frac{\delta^2\varphi_x}{\delta j_x\delta j_x}$$

How to solve it? Recall the descendant fields!

$$\psi_{x,y} = \frac{\delta \varphi_x}{\delta j_y}, \qquad \psi'_{x,y,z} = \frac{\delta^2 \varphi_x}{\delta j_y \delta j_z}$$

• Strategy: Treat the functional derivatives for φ_x as new independent field variables

$$\varphi_x = \int_y D_{xy} \left(j_y - \frac{\lambda}{3!} \varphi_y^3 \right) + i\hbar \frac{\lambda}{2} \int_y D_{xy} \varphi_y \psi_{y,y} + \hbar^2 \frac{\lambda}{3!} \int_y D_{xy} \psi'_{y,y,y}$$

where $\psi_{x,x}=\lim_{y\to x}\psi_{x,y}$, and $\psi'_{x,x,x}=\lim_{y\to x\atop z\to x}\psi'_{x,y,z}$

• It is not sufficient to solve the equation: # of eq < # of variables

Field equations for descendant fields

• Descendant equations: acting $\frac{\delta}{\delta i_x}$ multiple times on the DS equation

$$\begin{split} \psi_{x,z} &= D_{xz} - \frac{\lambda}{2} \int_{y} D_{xy} \phi_{y}^{2} \psi_{y,z} + i\hbar \frac{\lambda}{2} \int_{y} D_{xy} \left(\phi_{y} \psi_{y,y,z}' + \psi_{y,z} \psi_{y,y} \right) \\ &+ \hbar^{2} \frac{\lambda}{3!} \int_{y} D_{xy} \psi_{y,y,y,z}'', \\ \psi_{x,z,w}' &= -\frac{\lambda}{2} \int_{y} D_{xy} \left(2\phi_{y} \psi_{y,w} \psi_{y,z} + \phi_{y}^{2} \psi_{y,z,w}' \right) \\ &+ i\hbar \frac{\lambda}{2} \int_{y} D_{xy} \left(\psi_{y,w} \psi_{y,y,z}' + \phi_{y} \psi_{y,y,z,w}'' + \psi_{y,z,w}' \psi_{y,y,y} + \psi_{y,z} \psi_{y,y,w}' \right) \\ &+ \hbar^{2} \frac{\lambda}{3!} \int_{y} D_{xy} \psi_{y,y,y,z,w}''. \end{split}$$

- However, we encounter new descendant fields, $\psi_{x,z}^{\prime\prime}$ and $\psi_{x,z,w}^{\prime\prime\prime}$
- Do we have to repeat this procedure forever??

• Substitute the $\hbar\text{-expansion}$ of all the fields and keep the terms at a fixed order in \hbar

$$\varphi_x = \sum_{n=0}^{\infty} \left(\frac{\hbar}{i}\right)^n \varphi_x^{(n)} \,, \qquad \psi_{x,y} = \sum_{n=0}^{\infty} \left(\frac{\hbar}{i}\right)^n \psi_{x,y}^{(n)} \,, \qquad \psi'_{x,y,z} = \sum_{n=0}^{\infty} \left(\frac{\hbar}{i}\right)^n {\psi'}_{x,y,z}^{(n)} \,.$$

- We can truncate the new descendant fields because these are higher *h*-order terms in general.
- Once we have the DS equation and its descendants at a specific order in ħ, the recursion relation for the quantum off-shell currents can be derived by substituting the quantum perturbiner expansions
- We will construct the quantum off-shell recursion relation up to two-loop level and solve the one-loop off-shell currents.

Expansion of DS equaiton: Tree

The tree-level DS equation is the same as the classical EoM without descendants

$$\varphi_x^{(0)} = \int_y D_{xy} \left(j_y^{(0)} - \frac{\lambda}{3!} \left(\varphi_y^{(0)} \right)^3 \right).$$

• Substitute the following perturbiner expansion at \hbar^0 -order

$$\varphi_x^{(0)} = \sum_{\mathcal{P}} \Phi_{\mathcal{P}}^{(0)} e^{-ik_{\mathcal{P}} \cdot x}$$

· We reproduce the conventional tree-level off-shell recursion relation

$$\Phi_{\mathcal{P}}^{(0)} = -\frac{\lambda}{3!} \frac{1}{k_{\mathcal{P}}^2 + m^2} \sum_{\mathcal{P} = \mathcal{Q} \cup \mathcal{R} \cup \mathcal{S}} \Phi_{\mathcal{Q}}^{(0)} \Phi_{\mathcal{R}}^{(0)} \Phi_{\mathcal{S}}^{(0)} \,, \qquad |\mathcal{P}| > 1 \,,$$

Initial condition: from the rank-1

$$\sum_{i} \Phi_{i}^{(0)} e^{-k_{i} \cdot x} = \int_{\mathcal{Y}} D_{xy} j^{(0)}(y) = \sum_{i=1}^{N} \int_{\mathcal{Y}, p} \frac{e^{ip \cdot (x-y)}}{p^{2} + m^{2}} (k_{i}^{2} + m^{2}) e^{-ik_{i} \cdot y}$$

and we have $\Phi_i^{(0)} = 1$.

• Substituting the h-expansion of φ_x and $\psi_{x,x}$ into the DS eq and keeping $(\hbar)^1$ -order terms

$$\phi_x^{(1)} = \int_y D_{xy} \left[j_y^{(1)} - \frac{\lambda}{2} \left(\left(\phi_y^{(0)} \right)^2 \phi_y^{(1)} + \phi_y^{(0)} \psi_{y,y}^{(0)} \right) \right].$$

• We need a field equation for $\psi_{y,y}^{(0)}$. Keeping the \hbar^0 -order terms in the first descendant equation

$$\psi_{x,z}^{(0)} = D_{xz} - \frac{\lambda}{2} \int_{y} D_{xy} \left(\phi_{y}^{(0)}\right)^{2} \psi_{y,z}^{(0)}$$

We have a pair of independent equations for the two unknown fields at one-loop.

One loop recursion relation

- The perturbiner expansion for $\varphi^{(1)}_x$ and $\psi^{(0)}_{p|\mathcal{P}}$ are

$$\begin{split} \varphi_x^{(1)} &= \sum_{\mathcal{P}} \Phi_{\mathcal{P}}^{(1)} e^{-ik_{\mathcal{P}} \cdot x} \,, \\ \psi_{x,y}^{(0)} &= \int_p \Psi_{p|\emptyset}^{(0)} e^{ip \cdot (x-y)} + \sum_{\mathcal{P}} \int_p \Psi_{p|\mathcal{P}}^{(0)} e^{ip \cdot (x-y)} e^{-ik_{\mathcal{P}} \cdot x} \,. \end{split}$$

 Substituting the perturbiner expansions into the pair of equations, we obtain the recursion relations at one-loop level

$$\begin{split} \Phi_{\mathcal{P}}^{(1)} &= -\frac{\lambda}{2} \frac{1}{(k_{\mathcal{P}})^2 + m^2} \bigg(\sum_{\mathcal{P} = \mathcal{Q} \cup \mathcal{R} \cup \mathcal{S}} \Phi_{\mathcal{Q}}^{(0)} \Phi_{\mathcal{R}}^{(1)} \Phi_{\mathcal{S}}^{(1)} + \sum_{\mathcal{P} = \mathcal{Q} \cup \mathcal{R}} \int_{p} \Phi_{\mathcal{Q}}^{(0)} \Psi_{p|\mathcal{R}}^{(0)} \bigg), \\ \Psi_{p|\mathcal{P}}^{(0)} &= \frac{\lambda}{2} \sum_{\mathcal{P} = \mathcal{Q} \cup \mathcal{R} \cup \mathcal{S}} \frac{1}{(p - k_{\mathcal{P}})^2 + m^2} \Phi_{\mathcal{Q}}^{(0)} \Phi_{\mathcal{R}}^{(0)} \Psi_{p|\mathcal{S}}^{(0)} \end{split}$$

Initial conditions at one loop

- Note that D_{xz} on the right-hand side of the first descendant equation does not depend on the external momenta k_i
- It corresponds to the zero-mode, $\Psi_{p|\emptyset}^{(0)}$ and we can determine $\Psi_{p|\emptyset}^{(0)}$

$$\Psi_{p|\emptyset}^{(0)} = \frac{1}{p^2 + m^2} \,,$$

• We can determine the rank-one current $\Phi_i^{(1)}$ from the DS equation at one-loop

$$\begin{split} \sum_{i} \Phi_{i}^{(1)} e^{-ik_{i} \cdot x} &= \int_{y} D_{xy} \bigg[j_{y}^{(1)} - \frac{\lambda}{2} \sum_{i} \Phi_{i}^{(0)} e^{-k_{i} \cdot x} \int_{p} \Psi_{p|\emptyset}^{(0)} \bigg] \\ &= \frac{i}{\hbar} \frac{\lambda}{2} \sum_{i} \int_{y} D_{xy} \bigg[\int_{p} \frac{1}{p^{2} + m^{2}} e^{-ik_{i} \cdot y} - \int_{p} \frac{1}{p^{2} + m^{2}} e^{-ik_{i} \cdot y} \bigg] \\ &= 0. \end{split}$$

Thus the initial condition for the one-loop off-shell current is trivial,

$$\Phi_i^{(1)} = 0$$

Consider the DS equation at second order in ħ,

$$\varphi_x^{(2)} = \int_y D_{xy} j_x^{(2)} - \frac{\lambda}{2} \int_y D_{xy} \bigg(\big(\varphi_y^{(0)}\big)^2 \varphi_y^{(2)} + 2\varphi_y^{(0)} \big(\varphi_y^{(1)}\big)^2 + \big(\varphi_y^{(0)} \psi_{y,y}^{(1)} + \varphi_y^{(1)} \psi_{y,y}^{(0)}\big) + \frac{1}{3} \psi_{y,y,y}^{\prime(0)} \bigg) \bigg) = \int_y D_{xy} \int_y D_{xy} \bigg(\int_y D_{xy} \int_y D_{xy} \bigg(\int_y D_{xy} \bigg(\int_y D_{xy} \int_y D_$$

The first descendant equation at one-loop order,

$$\psi_{x,z}^{(1)} = -\frac{\lambda}{2} \int_{y} D_{xy} \left(2\phi_{y}^{(0)} \phi_{y}^{(1)} \psi_{y,z}^{(0)} + \left(\phi_{y}^{(0)}\right)^{2} \psi_{y,z}^{(1)} \right) - \frac{\lambda}{2} \int_{y} D_{xy} \left(\phi_{y}^{(0)} \psi_{y,y,z}^{\prime(0)} + \psi_{y,y}^{(0)} \psi_{y,z}^{\prime(0)} \right)$$

• There is a new descendant field $\psi_{x,y,z}^{\prime(0)}$ satisfying the second descendant equation

$$\psi_{x,z,w}^{\prime(0)} = -\frac{\lambda}{2} \int_{y} D_{xy} \left(2\phi_{y}^{(0)}\psi_{y,z}^{(0)}\psi_{y,w}^{(0)} + \left(\phi_{y}^{(0)}\right)^{2}\psi_{y,z,w}^{\prime(0)} \right)$$

Two loop recursion relation

The quantum perturbiner expansion for the fields in the two-loop DS equation is

$$\begin{split} \varphi_x^{(2)} &= \sum_{\mathcal{P}} \Phi_{\mathcal{P}}^{(2)} e^{-ik_{\mathcal{P}} \cdot x} , \\ \psi_{x,y}^{(1)} &= \int_p \Psi_{p|\emptyset}^{(1)} e^{ip \cdot (x-y)} + \sum_{\mathcal{P}} \int_p \Psi_{p|\mathcal{P}}^{(1)} e^{ip \cdot (x-y)} e^{-ik_{\mathcal{P}} \cdot x} , \\ \psi_{x,y,z}^{\prime(0)} &= \sum_{\mathcal{P}} \int_{p,q} \Psi_{p,q|\mathcal{P}}^{(0)} e^{ip \cdot (x-y) + iq \cdot (x-z)} e^{-ik_{\mathcal{P}} \cdot x} . \end{split}$$

Substituting the perturbiner expansion into the two-loop DS equation and its descendants,

$$\begin{split} \Phi_{\mathcal{P}}^{(2)} &= -\frac{\lambda}{2} \frac{1}{k_{\mathcal{P}}^2 + m^2} \bigg(\sum_{\mathcal{P} = \mathcal{Q} \cup \mathcal{R} \cup \mathcal{S}} \left(\Phi_{\mathcal{Q}}^{(0)} \Phi_{\mathcal{R}}^{(0)} \Phi_{\mathcal{S}}^{(2)} + 2 \Phi_{\mathcal{Q}}^{(0)} \Phi_{\mathcal{R}}^{(1)} \Phi_{\mathcal{S}}^{(1)} \right) \\ &+ \sum_{\mathcal{P} = \mathcal{Q} \cup \mathcal{R}} \int_{p} \left(\Phi_{\mathcal{Q}}^{(0)} \Psi_{p|\mathcal{R}}^{(1)} + \Phi_{\mathcal{Q}}^{(1)} \Psi_{p|\mathcal{R}}^{(0)} \right) + \frac{1}{3} \int_{p,q} \Psi_{p,q|\mathcal{P}}^{(0)} \bigg) \,, \\ \Psi_{p|\mathcal{P}}^{(1)} &= -\frac{\lambda}{2} \frac{1}{(p - k_{\mathcal{P}})^2 + m^2} \sum_{\mathcal{P} = \mathcal{Q} \cup \mathcal{R} \cup \mathcal{S}} \left(2 \Phi_{\mathcal{Q}}^{(0)} \Phi_{\mathcal{R}}^{(1)} \Psi_{p|\mathcal{S}}^{(0)} + \Phi_{\mathcal{Q}}^{(0)} \Phi_{\mathcal{R}}^{(0)} \Psi_{p|\mathcal{S}}^{(1)} \right) \\ &- \frac{\lambda}{2} \frac{1}{(p - k_{\mathcal{P}})^2 + m^2} \sum_{\mathcal{P} = \mathcal{Q} \cup \mathcal{R}} \int_{q} \left(\Phi_{\mathcal{Q}}^{(0)} \Psi_{p,q|\mathcal{R}}^{(0)} + \Psi_{p|\mathcal{Q}}^{(0)} \Psi_{q|\mathcal{R}}^{(0)} \right) \,, \\ \Psi_{p,q|\mathcal{P}}^{\prime(0)} &= -\frac{\lambda}{2} \frac{1}{(p + q - k_{\mathcal{P}})^2 + m^2} \sum_{\mathcal{P} = \mathcal{Q} \cup \mathcal{R} \cup \mathcal{S}} \left(2 \Phi_{\mathcal{Q}}^{(0)} \Psi_{p|\mathcal{R}}^{(0)} \Psi_{q|\mathcal{S}}^{(0)} + \Phi_{\mathcal{Q}}^{(0)} \Phi_{\mathcal{R}}^{(0)} \Psi_{p,q|\mathcal{S}}^{(0)} \right) \,. \end{split}$$

Initial conditions at two loop

• The rank-1 current $\Phi_i^{(2)}$ satisfies

$$\sum_{i} \Phi_{i}^{(2)} e^{-ik_{i} \cdot x} = \int_{\mathcal{Y}} D_{xy} j_{y}^{(2)} - \frac{\lambda}{2} \int_{\mathcal{Y}} \sum_{i} D_{xy} \left(\Phi_{i}^{(0)} \int_{p} \Psi_{p|\emptyset}^{(1)} + \frac{1}{3} \int_{p,q} \Psi_{p,q|i}^{\prime(0)} \right) e^{-k_{i} \cdot y}$$

+ $\Psi_{p|\emptyset}^{(1)}$ satisfies the zero-mode sector of the first descendant of the DS equation,

$$\Psi_{p|\emptyset}^{(1)} = -\frac{\lambda}{2} \frac{1}{p^2 + m^2} \int_q \Psi_{p|\emptyset}^{(0)} \Psi_{q|\emptyset}^{(0)}, = -\frac{\lambda}{2} \left(\frac{1}{p^2 + m^2}\right)^2 \int_q \frac{1}{q^2 + m^2}$$

• The lowest rank of the second descendant field is $\Psi_{p,q|i}^{\prime(0)}$ satisfying

$$\begin{split} \Psi_{p,q|i}^{\prime(0)} &= -\frac{\lambda}{2} \frac{2}{(p+q-k_i)^2+m^2} \Phi_i^{(0)} \Psi_{p|\emptyset}^{(0)} \Psi_{q|\emptyset}^{(0)} \\ &= -\frac{\lambda}{2} \frac{2}{(p+q-k_i)^2+m^2} \frac{1}{p^2+m^2} \frac{1}{q^2+m^2} \,. \end{split}$$

• Combining all these, we can show the initial condition for $\Phi_i^{(2)}$ is also trivial,

$$\Phi_i^{(2)} = 0$$

We may expect that this is a general property of the loop-level currents,

$$\Phi_i^{(n)} = 0$$
, for $n > 1$.

Solving the recursion relation at one loop

- The recursion relation provides the integrand of the loop integral
- · We need to perform the loop integration separately
- Regularization and renormalization is required to get finite quantities
- It is easy to implement the recursions in computer programs (mathematica)

Rank two

- rank-one current is the initial condition : $\Phi_i^{(1)} = 0, \, \Phi_i^{(0)} = 1,$
- one-loop rank-2 current $\Phi_{ij}^{(1)}$ satisfies

$$\Phi_{ij}^{(1)} = -\frac{\lambda}{2} \frac{1}{k_{ij}^2 + m^2} \sum_{i,j} \left(\Phi_{ij}^{(0)} \int_p \Psi_{p|\emptyset}^{(0)} + 2\Phi_i^{(0)} \int_p \Psi_{p|j}^{(0)} \right).$$

• It is straightforward to show that $\Psi_{p|i}^{(0)} = 0$ using the recursion relations, and we have

$$\Phi_{ij}^{(1)} = 0$$

• This result is consistent with the fact that there is no one-loop three-point function in ϕ^4 -theory.

Rank three

• The one-loop rank-3 current from the recursion relation

$$\Phi_{ijk}^{(1)} = -\frac{\lambda}{2} \frac{1}{(k_{ijk})^2 + m^2} \sum_{\mathsf{Perm}[i,j,k]} \left(\frac{1}{2} \int_p \Phi_i^{(0)} \Psi_{p|jk}^{(0)} + \frac{1}{3!} \int_p \Phi_{ijk}^{(0)} \Psi_{p|\emptyset}^{(0)} \right)$$

• We need to determine $\Phi_{ijk}^{(0)}$ and $\Psi_{p|ij}^{(0)}$. From the tree-level recursion relation

$$\Phi_{ijk}^{(0)} = -\frac{\lambda}{3!} \frac{1}{k_{ijk}^2 + m^2} \sum_{\mathrm{Perm}[i,j,k]} \Phi_i^{(0)} \Phi_j^{(0)} \Phi_k^{(0)} = -\frac{\lambda}{k_{ijk}^2 + m^2} \, . \label{eq:poly}$$

• Next, we consider $\Psi^{(0)}_{p|ij}$

$$\begin{split} \Psi^{(0)}_{p|ij} &= -\lambda \frac{1}{(p-k_{ij})^2 + m^2} \Phi^{(0)}_i \Phi^{(0)}_j \Psi^{(0)}_{p|\emptyset} \\ &= -\lambda \frac{1}{(p-k_{ij})^2 + m^2} \frac{1}{p^2 + m^2} \,. \end{split}$$

If we collect all the ingredients, the one-loop rank-3 current reduces to

$$\begin{split} \Phi_{ijk}^{(1)} &= \frac{\lambda^2}{2} \frac{1}{k_{ijk}^2 + m^2} \left(\frac{1}{k_{ijk}^2 + m^2} \int_p \frac{1}{p^2 + m^2} \right. \\ &+ \int_p \frac{1}{(p^2 + m^2) \left((p - k_{ij})^2 + m^2 \right)} + \left(ij \to jk \to ik \right) \right). \end{split}$$

• The amputated off-shell current at one loop order is

$$\hat{\Phi}_{ijk}^{(1)} = \frac{i}{\hbar} \Big(\tilde{\mathbf{K}}^{(1)}(k_{ijk}) \Phi_{ijk}^{(0)} + \tilde{\mathbf{K}}^{(0)}(k_{ijk}) \Phi_{ijk}^{(1)} \Big).$$

where

$$\tilde{\mathbf{K}}^{(1)}(k_{ijk}) = -\Pi^{(1)} = -\frac{\hbar}{i} \frac{\lambda}{2} \int_{p} \frac{1}{p^2 + m^2} , \qquad \tilde{\mathbf{K}}^{(0)}(k_{ijk}) = k_{ijk}^2 + m^2$$

• The corresponding amputated off-shell current $\hat{\Phi}^{(1)}_{ijk}$ is given by

$$\hat{\Phi}_{ijk}^{(1)} = \frac{\lambda^2}{2} \int_p \frac{1}{\left(p^2 + m^2\right) \left((p - k_{ij})^2 + m^2\right)} + \left(ij \to jk \to ik\right).$$

The diagrammatical representation of the rank-3 amputated current

Rank four

• From the recursion relation, $\Phi_{ijkl}^{(1)}$ is given by

$$\begin{split} \Phi_{ijkl}^{(1)} &= -\frac{\lambda}{2} \frac{1}{k_{ijkl}^2 + m^2} \sum_{\mathsf{Perm}[ijkl]} \left[\frac{1}{2} \Phi_i^{(0)} \Phi_j^{(0)} \Phi_{kl}^{(1)} + \Phi_{ij}^{(0)} \Phi_k^{(0)} \Phi_l^{(1)} \right. \\ &+ \int_p \left(\frac{1}{4!} \Phi_{ijkl}^{(0)} \Psi_{p|\emptyset}^{(0)} + \frac{1}{3!} \Phi_{ijk}^{(0)} \Psi_{p|l}^{(0)} + \frac{2}{(2!)^2} \Phi_{ij}^{(0)} \Psi_{p|kl}^{(0)} + \frac{1}{3!} \Phi_i^{(0)} \Psi_{p|jkl}^{(0)} \right] \end{split}$$

• Using the previous results, $\Phi_{ij}^{(0)} = \Phi_{ijkl}^{(0)} = \Phi_{ij}^{(1)} = \Psi_{p|i}^{(0)} = 0$, and the remaining unknown current is $\Psi_{p|ijk}^{(0)}$. From the recursion relation, it is given by

$$\Psi^{(0)}_{p|ijk} = \frac{\lambda}{2} \frac{1}{(p - k_{ijk})^2 + m^2} \sum_{\mathsf{perm}[ijk]} \Phi^{(0)}_i \Phi^{(0)}_j \Psi^{(0)}_{p|k} = 0 \,.$$

• Since $\Psi_{p|i}^{(0)} = 0$, $\Psi_{p|ijk}^{(0)}$ also vanishes. Thus, this shows that the one-loop rank-4 current $\Phi_{ijkl}^{(1)}$ and the one-loop 5-point amplitude vanish,

$$\Phi_{ijkl}^{(1)} = 0$$

Rank five

• The one-loop rank-5 current $\Phi^{(1)}_{i_1i_2\cdots i_5}$ satisfies the recursion relation

$$\begin{split} \Phi^{(1)}_{i_1\cdots i_5} &= -\frac{\lambda}{2} \frac{1}{k_{i_1\cdots i_5}^2 + m^2} \sum_{\mathsf{Perm}[i_1,\cdots,i_5]} \left[\frac{1}{3!} \Phi^{(0)}_{i_1} \Phi^{(0)}_{i_2} \Phi^{(1)}_{i_3 i_4 i_5} \right. \\ & \left. + \int_p \left(\frac{1}{5!} \Phi^{(0)}_{i_1\cdots i_5} \Psi^{(0)}_{p|\emptyset} + \frac{1}{2!} \frac{1}{3!} \Phi^{(0)}_{i_1 i_2 i_3} \Psi^{(0)}_{p|i_4 i_5} + \frac{1}{4!} \Phi^{(0)}_{i_1} \Psi^{(0)}_{p|i_2 i_3 i_4 i_5} \right) \right] \end{split}$$

- We have otained $\Phi_{ijk}^{(1)}$, $\Phi_{i_1\cdots i_5}^{(0)}$, $\Psi_{p|\emptyset}^{(0)}$ and $\Psi_{p|ij}^{(0)}$. The only unknown current is $\Psi_{p|ijkl}^{(0)}$.
- The rank-4 descendant current $\Psi^{(0)}_{p|ijkl}$ can be obtained from the recursion relation

$$\begin{split} \Psi_{p|ijkl}^{(0)} &= \frac{\lambda}{2} \frac{1}{(p - k_{ijkl})^2 + m^2} \sum_{\mathsf{Perm}[ijkl]} \left(\frac{1}{2!} \Phi_i^{(0)} \Phi_j^{(0)} \Psi_{p|kl}^{(0)} + \frac{1}{3!} \Phi_i^{(0)} \Phi_{jkl}^{(0)} \Psi_{p|\emptyset}^{(0)} \right) \\ &= -\frac{\lambda^2}{4} \frac{1}{(p - k_{ijkl})^2 + m^2} \sum_{\mathsf{Perm}[ijkl]} \frac{1}{p^2 + m^2} \left[\frac{1}{(p - k_{kl})^2 + m^2} + \frac{1}{3} \frac{1}{k_{jkl}^2 + m^2} \right] \end{split}$$

• The amputated off-shell current at this order $\hat{\Phi}^{(1)}_{i_1\cdots i_5}$ is given by

$$\hat{\Phi}_{i_{1}\cdots i_{5}}^{(1)} = -\frac{\lambda}{2} \sum_{\mathsf{Perm}[i_{1},\cdots,i_{5}]} \left[\left. \frac{1}{3!} \Phi_{i_{3}i_{4}i_{5}}^{(1)} + \int_{p} \left(\frac{1}{2\cdot 3!} \Phi_{i_{1}i_{2}i_{3}}^{(0)} \Psi_{p|i_{4}i_{5}}^{(0)} + \frac{1}{4!} \Psi_{p|i_{2}i_{3}i_{4}i_{5}}^{(0)} \right) \right]$$

We can represent the rank-5 current diagrammatically

It precisely reproduces the one-loop 6-point scattering amplitude.

Recursion relations for correlation functions

Choice of the external source

- Recall that we have chosen the external source to reproduce the LSZ reduction formula out of the expansion of W[j]
- However, the choice of the external source is not unique we may replace it depending on our purpose.
- The off-shell current describes different quantities as we modify the external source.
- We replace the external source j(x) with a new current $\check{j}(x)$,

$$\check{j}(x) = \frac{\hbar}{i} \sum_{i=1}^{N} \int_{y_i} \delta^4(x - y_i) e^{-ik_i \cdot y_i} = \frac{\hbar}{i} \sum_{i=1}^{N} e^{-ik_i \cdot x} \,,$$

where k_i are the external momenta without an on-shell condition.

- We have dropped the inverse propagator K_{xy} in the external source because we do not have to amputate the external legs when computing correlation functions
- Most of the results up to now still hold!

Perturbiner expansion for correlators

• The classical field $\check{\varphi}_x$ with respect to the new external source is given by

$$\check{\varphi}_x = rac{\delta W[\check{j}]}{\delta \check{j}(x)} \,,$$

the classical field is expanded as

$$\begin{split} \check{\varphi}_x &= \sum_{i=1} \check{\Phi}_i e^{-ik_i \cdot x} + \sum_{i < j} \check{\Phi}_{ij} e^{-ik_{ij} \cdot x} + \dots + \sum_{i_1 < i_2 < \dots < i_N} \check{\Phi}_{i_1 \cdots i_N} e^{-ik_{i_1} \cdots i_N \cdot x} \\ &= \sum_{\mathcal{P}} \check{\Phi}_{\mathcal{P}} e^{-ik_{\mathcal{P}} \cdot x} \,. \end{split}$$

• Then the rank-*n* off-shell currents in the perturbiner expansion of φ_x provide the momentum space (n + 1)-point correlation functions

$$\check{\Phi}_{i_1i_2\cdots i_n} = \tilde{G}_c(-k_{i_1i_2\cdots i_n}, k_{i_1}, k_{i_2}, \cdots, k_{i_n}).$$

• The off-shell currents are identified with correlation functions directly.

- Since the form of the perturbiner expansion and the DS equation are invariant with respect to the choice of external source, the off-shell recursion relations are the same as the previous results
- The only difference is the initial condition because it directly depends on the choice of external source explicitly.
- · We can determine the initial condition similar way
- Solving the recursions is straightforward

Quantum Perturbiner Method for Yang–Mills theory

- Most of the structure is almost parallel with the previous case.
- However, there is a crucial difference: the gauge symmetry.
- We investigate how to treat the gauge symmetry in the framework of the quantum perturbiner method. We follow the conventional Faddeev–Popov (FP) ghost method in QFT.
- We impose a gauge choice and introduce ghosts to remove the unphysical gauge redundancies. We also present the perturbiner expansion for the entire ghost sector including descendants of the ghosts.

Quantum perturbiner expansion for YM theory

• We introduce classical fields $\mathcal{A}_{j}^{a\mu}(x)$, $\mathcal{C}_{j}^{a}(x)$ and $\bar{\mathcal{C}}_{j}^{a}(x)$ which are the VEVs of A_{μ}^{a} , c^{a} and \bar{c}^{a} in the presence of their external sources $j_{x}^{a\mu}$, η_{x}^{a} and $\bar{\eta}_{x}^{a}$

$$\mathcal{A}^{a\mu}_x = \frac{\delta W[j,\eta,\bar{\eta}]}{\delta j^{a\mu}_x}\,,\qquad \mathcal{C}^a_x = \frac{\delta_L W[j,\eta,\bar{\eta}]}{\delta \bar{\eta}^a_x}\,,\qquad \bar{\mathcal{C}}^a_x = \frac{\delta_R W[j,\eta,\bar{\eta}]}{\delta \eta^a_x}\,,$$

Descendant fields

$$\begin{split} \psi_{x,y}^{a\mu,b\nu} &= \frac{\delta A_x^{a\mu}}{\delta j_y^{b\nu}} , \qquad \psi'_{x,y,z}^{a\mu,b\nu,c\rho} &= \frac{\delta^2 A_x^{a\mu}}{\delta j_y^{b\nu} \delta j_z^{c\rho}} , \\ \gamma_{x,y}^{a,b} &= \frac{\delta_L c_x^a}{\delta \eta_x^b} &= \frac{\delta_R c_x^a}{\delta \bar{\eta}_x^b} , \quad \theta_{x,y}^{a,b\mu} &= \frac{\delta c_x^a}{\delta j_y^{b\mu}} , \quad \bar{\theta}_{x,y}^{a,b\mu} &= \frac{\delta \bar{c}_x^a}{\delta j_y^{b\mu}} \end{split}$$

We now assign external sources for gluons, j^{aµ}_x := j^{aµ}(x), and ghost fields, η^a_x = η^a(x) and η
^a_x := η
^a(x), as follows:

$$\begin{split} j_x^{a\mu} &= \sum_{i=1}^N \int_{y_i} \, \mathbf{K}^{a,b_i}_{\mu,\nu_i}(x,y_i) \epsilon_i^{\nu_i} e^{-ik_i \cdot y_i} = \sum_{i=1}^N \, \check{\mathbf{K}}^{a,b_i}_{\mu,\nu_i}(-k_i) \epsilon_i^{\nu_i} e^{-ik_i \cdot x} \,, \\ \eta_x^a &= 0 \,, \qquad \bar{\eta}_x^a = 0 \,, \end{split}$$

• Quantum perturbiner expansion

$$\mathcal{A}^a_{\mu} = \sum_{\mathcal{P}} J^{a\mu}_{\mathcal{P}} e^{-ik_{\mathcal{P}} \cdot x} , \qquad \mathcal{C}^a_x = \bar{\mathcal{C}}^a_x = 0$$

• We also introduce the quantum perturbiner expansion for the descendant fields,

$$\begin{split} \psi^{a\mu,b\nu}_{x,y} &= \Psi^{a\mu,b\nu}_{p|\emptyset} e^{ip\cdot(x-y)} + \sum_{\mathcal{P}} \int_{p} \Psi^{a\mu,b\nu}_{p|\mathcal{P}} e^{ip\cdot(x-y)} e^{-ik_{\mathcal{P}}\cdot x} \,, \\ \psi^{\prime a\mu,b\nu,c\rho}_{x,y,z} &= \sum_{\mathcal{P}} \int_{p,q} \Psi^{a\mu,b\nu,c\rho}_{p,q|\mathcal{P}} e^{ip\cdot(x-y)+iq\cdot(x-z)} e^{-ik_{\mathcal{P}}\cdot x} \,, \\ \gamma^{a,b}_{x,y} &= \sum_{\mathcal{P}} \int_{p} \Gamma^{a,b}_{p|\mathcal{P}} e^{ip\cdot(x-y)} e^{-ik_{\mathcal{P}}\cdot x} \,, \end{split}$$

Quantum recursion relation

- we can derive the DS equation for pure YM theory from the classical EoM by deforming $\mathcal{A}_x^{a\mu} \to \mathcal{A}_x^{a\mu} + \frac{\hbar}{i} \frac{\delta}{\delta z^{a\mu}}, \mathcal{C}^a \to \mathcal{C}^a + \frac{\hbar}{i} \frac{\delta_L}{\delta \overline{z^a}} \text{ and } \overline{\mathcal{C}}^a \to \overline{\mathcal{C}}^a + \frac{\hbar}{i} \frac{\delta_R}{\delta \overline{z^a}}.$ $\int K_{x,y}\mathcal{A}_y^{a\mu} = j_x^{a\mu} + gf_{abc} \left(\mathcal{A}_x^{b\nu} \left(2\partial_\nu \mathcal{A}_x^{c\mu} - \partial_\mu \mathcal{A}_x^{c\nu} \right) - \mathcal{A}_x^{b\mu} \partial_\nu \mathcal{A}_x^{c\nu} \right) - g^2 f_{ab,cd}^2 \mathcal{A}_x^{b\nu} \mathcal{A}_x^{c\mu} \mathcal{A}_x^{d\nu}$ $+\frac{i\hbar}{2}gf^{abc}\lim\left[\left(2\partial_{\nu}^{y}+\partial_{\nu}^{x}\right)\left(\psi_{x,y}^{c\nu,b\mu}+\psi_{y,x}^{b\mu,c\nu}\right)+\partial_{\mu}^{x}\left(\psi_{x,y}^{c\nu,b\nu}+\psi_{y,x}^{b\nu,c\nu}\right)\right]$ $+i\hbar g^2 f^2_{ab,cd} \left(\mathcal{A}^{b\nu}_x \psi^{\{d\nu,c\mu\}}_{x,x} + \mathcal{A}^{c\mu}_x \psi^{\{d\nu,b\nu\}}_{x,x} + \mathcal{A}^{d\nu}_x \psi^{\{b\nu,c\mu\}}_{x,x} \right)$ $+\hbar^2 g^2 f^2_{ab,cd} \psi'^{b\nu,c\mu,d\nu}_{x,x,x} + g f^{abc} \left(\partial_\mu \bar{\mathcal{C}}^b_x c^c_x - i\hbar \lim_{\alpha \to \infty} \partial^y_\mu \gamma^{c,b}_{x,y} \right),$ $\int K^{ab}_{xy} \mathcal{C}^b_y = \eta^a_x + g f^{abc} \left(\partial_\mu \mathcal{A}^{b\mu}_x \mathcal{C}^c_x + \mathcal{A}^{b\mu}_x \partial_\mu \mathcal{C}^c_x - i\hbar \, \partial^x_\mu \theta^{c,b\mu}_{x,x} \right),$ $\int K^{ab}_{xy} \bar{\mathcal{C}}^b_y = \bar{\eta}^a_x + g f^{abc} \left(\mathcal{A}^{b\mu}_x \partial_\mu \bar{\mathcal{C}}^c_x - i\hbar \, \partial^z_\mu \theta^{c,b\mu}_{z,x} \right).$
- It is possible to construct the quantum off-shell recursion relation by substituting the perturbiner expansion into above equations (one-loop level is done)

- We constructed the quantum perturbiner method for computing scattering amplitudes and correlation functions
- Quantum perturbiner expansion from the quantum effective action formalism by choosing the external field
- By substituting the perturbiner expansion into the DS equation, we have derived the quantum off-shell recursion relation for ϕ^4 -theory and pure Yang–Mills theory
- It is a powerful technique that enables efficient computations of scattering amplitudes and correlation functions
- This formalism is applicable to any theory with an action, including gravity
- Interesting to compare with the generalised unitarity method

Thank you