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Introduction
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?

How can we infer the local galactic dark matter density 
from observed position and velocities of stars
without assuming symmetries and models?

Main Topic:
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Why measuring galactic dark matter 
is important?

Inputs to Direct
Detection experiments

Understanding
the dark matter halo of

the Milky Way

Testing modified gravity
solutions?
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Orbits in Galaxy
One way to measure the galactic dark matter is 
by analyzing the kinematics of stars 
tracing the galactic gravitational field. 

But typical galaxies like the Milky Way 
have more than billions of stars!

Assuming that the interaction between stars are 
less relevant (collisionless),  more practical way of understanding
this gravitation system with a large number of particles is 
using the phase space density.

Each star is then regarded as a sample from this phase-space density. 

Image from Event Horizon Telescope Collaboration/National Science Foundation
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Equation of Motion:
(Collisionless) Boltzmann Equation

Assuming that the galaxy is in dynamic equilibrium (df/dt = 0), 
we could estimate the acceleration field a(x) from 
the Milky Way snapshot at the current time.

The equation of motion for the phase space density is called
the (collisionless) Boltzmann equation. 

But recovering the phase space density from the observed
motion of stars is trivial?

This regression problem is a 6D density modeling problem. 
Constructing a smooth density estimation without any assumption
is not a trivial task... But we have a huge dataset!
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Gaia Dataset
Gaia is a European space mission providing astrometry, photometry, 
and spectroscopy of more than billion stars in the Milky Way.

Image from https://gea.esac.esa.int/archive/visualization/
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Gaia Dataset
Gaia is a European space mission providing astrometry, photometry, 
and spectroscopy of more than billion stars in the Milky Way.
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Gaia Dataset

New dataset will come out soon!
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Accuracy Matters

Figure from P. F. de Salas, and A. Widmark, arXiv:2012.11477 

Precision

Accuracy

When sufficient number of data 
are available, using overconstrained models
may results in inaccurate results.

Thanks to recent progress in observing 
stars in the Milky Way, we can measure 
the dark matter density in 
the Solar neighborhood in very high 
precision using model-based analysis.

Need of analysis without 
assumed symmetries and models?

Precise, but 
inaccurate?
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Machine Learning Approach
Recent progress in machine learning allows us to estimate 
probability density functions in high dimensions with high fidelity. 

As a proof-of-concept, we will test this idea 
on an N-body simulated galaxy.

Related works:
G. M. Green, et. al., arXiv:2011.04673
A. P. Naik, et. al., arXiv:2112.07657
J. An, et. al., arXiv:2106.06981
G. M. Green, et. al., arXiv:2205.02244
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Outline of Strategy
Mock data

Phase space density

Gravitational accel.

Mass density

  Neural Networks for Density Estimation:
  Normalizing Flows

  Solving Boltzmann Equation

  Solving Gauss’s Equation

Grab stars near the Sun in 
an N-body simulated galaxy
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Mock data

Training Dataset
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Introducing h277

https://b2share.eudat.eu/records/c9f232d8ac804785aad35004177a704e
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h277 at present
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Training Dataset
- number of stars  
   153,174  (<< size of Gaia 6D dataset) 
- observer’s location 
    [8.122, 0., 0.0208] kpc
- observing radius = 3.5 kpc
- simulation resolution: 0.173 kpc
- Using only kinematic information:
    position and velocity
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Mock data Phase space density

Phase Space Density Estimation
through Flows
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Machine-learned
phase-space density
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Normalizing Flows:
Neural Network learning a Transformation

Normalizing Flows (NFs) is an artificial neural network that learns a transformation
of random variables.

?

Base distribution (known) Target distribution (data)

Main idea: if we could find out such transformation, we can use the transformation 
formula for the density estimation:  

We will use this model for estimating the phase space density f(x,v) from the data.



20 / 40 

Normalizing Flows:
Neural Network learning a Transformation

Normalizing Flows (NFs) is a chain of simple trainable functions (neural networks) 
learning a transformation of random variables.

* Simple = inverse and Jacobian 
determinant are easily computable.

Image from https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

What can normalizing flows do?

- Density Estimation: - Sample Generation:

We will see that these two features of normalizing flows allows us
to use them for estimating galactic acceleration and mass density.
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Normalizing Flows:
How it works?

Base distribution

Target distribution

* result of a continuous normalizing flow learning infinitesimal transformations
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Autoregressive Models

Autoregressive models are motivated from the chain rule
of probability.

But constructing a simple multivariate bijection is a non-trivial task.
 → one solution: autoregressive models

Instead of building a bijection transforming all the variables at once,
we can simply model the density as a product of conditional probability
of each variable.

Transformation
parametrized by

w1,…,wn-1

Base distribution Target distribution
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Masked Autoregressive Flow

Image from https://blog.evjang.com/2018/01/nf2.html

One of the simplest setup is using a linear transformation conditioned
on previous components. 
This flow is called Masked Autoregressive Flow (MAF).

We use a chain of these flows 
to fit the phase-space density from the training dataset.

Conditioning variables 
makes the transformation 
non-linear.
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MAFs for modeling 
phase space density

MAFs for
full phase space

This decomposition is very useful for calculating derived quantities
using Monte-Carlo integration on velocity integrals.

MAFs for
position space

MAFs for
velocity space

We may directly attempts to construct the full 6D phase-space density, 
but using two separate MAFs for position and velocity is better.

Advantage: we could directly sample velocities at given position.
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Results:
Phase-space density Estimation
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Application: Measuring local departure
from equilibrium
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If galactic acceleration can be measured using other methods, 
such as pulsar and binary timing, we can measure the time derivatives
from the given snapshot of the Milky Way,
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Gravitational Acceleration Estimation:
Solving Boltzmann Equation

Phase space density Gravitational accel.
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Acceleration Estimation

- Underdetermined in a point of view at each star position.
- Overdetermined in a point of view of phase-space density. 

Given the fact that we could resample velocities at given position
multiplie times, we can solve the overdetermined system 
using least square minimization.   

Now we have the estimated phase-space density estimation 
on our hand. Let’s try to solve the Boltzmann equation. 

We draw 10,000 samples per position to reduce 
the MC integration error below the statistical and measurement errors.
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Acceleration along x-axis

Our method can find out the acceleration within 5% accuracy!
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Acceleration along z-axis
Stat is low

1000~1500 / kpc^3

Our method can find out the acceleration within 5% accuracy!
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Acceleration at the Sun
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Mass Density Estimation:
Solving Gauss’s Equation

Gravitational accel. Mass density
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Solving Gauss’s Equation

Estimated accelerations:
finite resolution

finite training samples

Mass density function:
genuine point-wise feature

Gauss’s Law:

Since we have a smooth acceleration estimator, we may directly take 
another derivative to estimate the local mass density. 

Compatible?

Note that differentiation is essentially
an error-amplifying process.

We may end up with losing precision
because of noise or 
inductive bias of interpolation!
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Smoothed Mass Density Estimation

(Smoothed)
estimated accelerations:
at kernel bandwidth scale

(Smoothed)
mass density function:

at kernel bandwidth scale

Instead, we will estimate kernel smoothed mass density:

Compatible!

For kernels, bandwidths larger than 
the simulation resolution (0.173 kpc)
is ideal for our purpose.

But not much stars are available at
high-|z|, so we use the following bandwidths,

(hx, hy, hz) = (1.0, 1.0, 0.2) kpc 
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No need of evaluating 2nd order 
derivative directly

Warning: this step is very time consuming!
  10000 x 3200 
    ~ 30M network evaluations per point!

Another advantage of using kernel smoothed mass density is that
we do not need to evaluate the 2nd order derivative of the network.

To estimate the smoothed mass density at given position, 
we do the following:
1. Draw samples from kernel boundary and kernel itself.
2. Evaluate accelerations at perturbed positions.
3. Solve the above Gauss’s equation



36 / 40 

 Mass Density along x-axis

Our method can find out the mass density within 10~20% accuracy!
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 Mass Density along z-axis

Our method can find out the mass density within 10~20% accuracy!

We can measure 
the mass density 

away from the disk plane!
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 Mass Density at the Sun
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Conclusion

● We introduced flow-based neural network that accurately fits the phase space density without 
assuming symmetries and models. The learned phase space density can be used for the 
mass density estimation by solving the collisionless Boltzmann equation.

● We successfully demonstrated our mass density estimation method
to a fully cosmological simulation of a Milky Way-like galaxy, 
which doesn’t impose equilibrium and axisymmetry explicitly

● We successfully achieved ~20% accuracy in mass density estimation using 
only O[10^5] tracer stars, which is significantly smaller than the Gaia dataset.

● Our method do not need to assume symmetries or models, so that the estimation is truly a 
local density estimation, which can be useful for revealing hidden information in the Milky way.

● By using accurately measured accelerations, our method also provides a way to analyze local 
departure from equilibrium.

● With upcoming new dataset from Gaia, it would be an exciting time to test this kind of ideas in 
a real-world dataset! 
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Backups
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Traditional Approach:
Jeans Equation and Parametric Models
Instead of considering full phase-space velocity, 
do the method of moments on velocity distributions. 
  (6D problem  3D problem)→

Assume symmetries to reduce the dimension further.
Introduce parametric models to covert the problem into
a parametric regression with a few parameters.

Example)
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MADE block
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Normalizing Flows

The probability density function (PDF) of Y is given in terms of 
the PDF of X and the transformation f.

What can normalizing flows do?

- Density Estimation:

- Sample Generation:

Draw samples from the base distribution, and 
transform them into the samples from the learned distribution.

We will see that these two features of normalizing flows allows us
to use them for estimating galactic acceleration and mass density.
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Kernel Smoothing Example:
Data from Gaussian Distribution

sampling

Fourier transform Inverse transform

Damping
high freq. modes

Kernel smoothing

Original space

Fourier space
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Resampling-based 
Uncertainty Estimation

Gravitational accel. Mass density

Mock data Phase space density
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Uncertainty Estimation

Neural networks h
 Error propagation through the formula is complicated→

Sampling based methods:
- Bootstrapping
- Monte Carlo Error Propagation

Nevertheless, our network is dealing with small dimensional dataset
and training time is quite fast (~3 hours / network)
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Bootstrapping

Image from https://online.stat.psu.edu/stat555/node/119/
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Monte Carlo Error Propagation

True distribution

Smeared
distribution

Smeared
dataset

Reperturbed
dataset

Measurement error heats up 
the density function! 
      Estimation can be biased!

Reperturbed
dataset

Reperturbed
dataset

Reperturbed
dataset

Reperturbed
dataset

As long as the relative uncertainty is sufficiently small, 
the leading order measurement uncertainty and bias
can be estimated from smeared dataset and reperturbed dataset.
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