

Carsten Rott rott@physics.utah.edu University of Utah hysics with high energy neutrinos

Yonsei University Lecture Series July 5, 2022

Physics 1

Carsten Rott Rott *IceCube Dark Matter and BSM*

- Motivation
	- New Opportunities with High-energy Neutrinos
	- Why search for BSM physics with Neutrinos
	- **Introduction Neutrino Telescopes**
- State of the Field
	- Selected Searches & Results
- Future Prospects
	- Experimental landscape
	- How to improve searches
	- Priorities for the next decade
- Outlook & Conclusions

Motivation

Carsten Rott *IceCube Dark Matter and BSM Physics*

Indirect Searches with Neutrinos

- Why neutrinos:
	- Explore energy scales beyond the reach of colliders and those accessible by other indirect search channels
	- Large variety of dark matter model hypotheses can be probed
	- Searches are largely model independent

Role of Neutrinos in Dark Matter Searches

Role of Neutrinos in Dark Matter Searches

Direct

Scattering

tering

Neutrinos from

The case for Neutrinos

- Search for signals from the Galaxy, etc.
	- Probe DM self-annihilation cross section or lifetime (for decaying DM)
- Search for signals of dark matter captured in the Sun (and Earth)
	- Probe DM-Nucleon scattering
- Neutrino detectors naturally observe the entire sky (all-sky coverage)
- Neutrino detection efficiency rises with energy, and angular resolution improves

Signatures of Dark Matter (**χ**) in Neutrino Detectors

Carsten Rott *IceCube Dark Matter and BSM Physics*

(h

 $(a$

8

Detection/Backgrounds

 $p =$ proton μ = muon π = pion $V = \text{neutrino}$ e^+ = electron e^* = positron γ = photon

ANTARES

Atmospheric Neutrinos / Muons

Cosmic rays interact in the upper atmosphere:

 $p + A \rightarrow \pi^{\pm}$ (K^{\pm}) + other hadrons ... ^π⁺[→]**μ**⁺**νμ**[→]e⁺**νeνμνμ**

Physics

Bedrock

 \bf{Dec}

Principle of an optical Neutrino Telescope

Large Water Cherenkov Neutrino **Detectors**

Super-K KNO Hyper-K

Lake Baikal GVD

KM3NeT **ORCA** ANTARES

Active Planned **Construction**

Physics

 IceCube IceCube-Gen2 Upgrade

Principle of an optical Neutrino Telescope

Neutrino Telescopes / Detectors Searching for Dark Matter …

- **IceCube** at the Geographic South Pole
- 5160 10"PMTs in Digital optical modules distributed over 86 strings instrumenting ν I km³
- Physics data taking since 2007; Completed in December 2010, including **DeepCore** low-energy extension

- **ANTARES** is located at a depth of 2475 m in the Mediterranean Sea, 40 km offshore from Toulon
- Consists 885 10"PMTs on 12 lines with 25 storeys each.
- Detector was competed in May 2008 ; Phyiscs data taking since 2007

- **Super-Kamiokande** at Kamioka uses 11K 20" **PMT_s**
- 50kt pure water (22.5kt fiducial) water-cherenkov detector
- Operating since 1996

Detect Cherenkov light from neutrino interaction products Main backgrounds: Atmospheric neutrino, atmospheric muons (down-going)

The IceCube Neutrino Telescope

CARSTER SKKU Reputation BKKU News

Academics

The IceCube Neutrino Telescope

- **Gigaton Neutrino Detector at the** Geographic South Pole
- 5160 Digital optical modules distributed over 86 strings
- Completed in December 2010
- Extremely stable: >99% uptime and 98% of sensor modules in perfect condition !
- Neutrinos are identified through Cherenkov light emission from secondary particles produced in the neutrino interaction with the ice

Neutrino Telescope Science

- ASTROPHYSICS & NEUTRINO SOURCES
	- Point sources of v's (SNR, AGN ...), extended sources
	- Transients (GRBs, AGN flares …)
	- Solar Atmospheric Neutrinos
	- Diffuse fluxes of v's (all sky, cosmogenic, galactic plane …)
- BSM PHYSICS & DARK MATTER
	- Indirect DM searches (Earth, Sun, Galactic center/ halo)
	- Magnetic monopoles
	- Violation of Lorentz invariance
- PARTICLE PHYSICS
	- ^ν oscillations, sterile ν's
	- Charm in CR interactions
	- Neutrino Cross Sections
- COSMIC RAY PHYSICS
	- Energy spectrum around "knee", composition, anisotropy
- SUPERNOVAE (galactic/LMC)
- GLACIOLOGY & EARTH SCIENCE

Scientific Scope Very diverse science program, with neutrinos from 10GeV to EeV, and MeV burst neutrinos

DM Annihilation searches

V from SM particle decay, direct neutrinos helicity suppressed

• Galactic Center

 \bullet

 \bullet

 \dddotsc

- Galactic Halo
- Dwarf Spheroidals \bullet Galaxy clusters
-

Self-annihilation cross section $\langle \sigma v \rangle$

DM Mass m_χ (Branching fractions)

Dark Matter Self-annihilations <σAV>

Dark Matter Signals

- Identify dense regions of dark matter \Rightarrow self-annihilation can occur at significant rates
- Pick prominent Dark Matter target
- Understand / predict backgrounds
- Exploit features in the signal to better distinguish against backgrounds

Galactic Center / Galactic Halo - IceCube/ ANTARES/Super-K

IceCube+ANTARES - Phys.Rev.D 102 (2020) 8, 082002

- Combined analysis enhances sensitivity in overlap region and helps to make analyses more comparable
- Very competitive result from Super-K for dark matter masses below a 100GeV

Neutrino searches have been important test to probe models motivated by observations with other messengers (example the cosmic-ray positron excess (PAMELA, AMS-02, ...))

Search Dark Matter Annihilation

• Current status

SM

 x

?

χ

SM

- Most competitive with other messengers for heavy dark matter and channels with high neutrino yields
- Neutrino searches have been important test to probe models motivated by observations with other messengers (example the cosmic-ray positron excess (PAMELA, AMS-02, …))

• Future prospects

- Reaching the thermal relic cross section remains challenging even with next generation detectors
- Searches are very generic, do not rely on WIMP hypothesis.
	- Go beyond WIMP scenarios (high-mass, enhanced annihilation cross section, evade unitarity bound)

Dark Matter Decay

Heavy Dark Matter Decay

Decay process might produce mono-

Two flux contributions: Galactic and Extra galactic

$$
\frac{d\Phi_{\text{DM},\nu_{\alpha}}}{dE_{\nu}} = \frac{d\Phi_{\text{G},\nu_{\alpha}}}{dE_{\nu}} + \frac{d\Phi_{\text{EG},\nu_{\alpha}}}{dE_{\nu}}
$$

- Characteristics of the signal components:
	- (1) Dark Matter decay in the Galactic Halo (Anisotropic flux + decay spectrum)

$$
\frac{\mathrm{d}\Phi^{\rm G}}{\mathrm{d}E_{\nu}} = \frac{1}{4\pi\,m_{\rm DM}\,\tau_{\rm DM}}\frac{\mathrm{d}N_{\nu}}{\mathrm{d}E_{\nu}}\int_0^\infty \rho(r(s,l,b))\,\mathrm{d}s
$$

• Dark Matter decay at cosmological distances (Isotropic flux + red-shifted spectrum)

$$
\frac{\mathrm{d}\Phi^{\rm EG}}{\mathrm{d}E} = \frac{\Omega_{\rm DM} \,\rho_{\rm c}}{4\pi \, m_{\rm DM} \,\tau_{\rm DM}} \int_0^\infty \frac{1}{H(z)} \frac{\mathrm{d}N_\nu}{\mathrm{d}E_\nu} \left[(1+z) E_\nu \right] \mathrm{d}z
$$

Heavy Dark Matter Decay

• Current status:

SM

SM

 x – $\sqrt{?}$

- IceCube provides leading bounds $(\sim 10^{28} s)$ on heavy decaying dark matter / Neutrinos extremely competitive above ~10TeV
- Dark matter alone cannot explain the observed astrophysical neutrino flux

• Future prospects and priorities

- Opportunities for combined searches in TeV range (broader coverage of models), extremely competitive at high energies
- Highest priority understand astrophysical neutrino spectrum
	- Is IceCube's data already showing any hints of dark matter (TeV excess ?)

Evidence for dark matter in in the diffuse high-energy astrophysical neutrino flux ?

- B. Feldstein, A. Kusenko, S. Matsumoto, and T. T. Yanagida, PRD 88 no. 1, (2013) 015004, arXiv:1303.7320
- A. Esmaili and P. D. Serpico, JCAP11(2013) 054, arXiv:1308.1105
- Y. Ema, R. Jinno, and T. Moroi, PLB 733 (2014) 120–125, arXiv:1312.3501
- A. Bhattacharya, M. H. Reno, and I. Sarcevic, JHEP06 (2014) 110, arXiv:1403.1862
- C. Rott, K. Kohri, and S. C. Park, PRD 92 no. 2, (2015) 023529, arXiv:1408.4575 • K. Murase, R. Laha, S. Ando, and M. Ahlers, PRL 115 no. 7, (2015) 071301, arXiv:1503.04663
- L. A. Anchordoqui, V. Barger, H. Goldberg, X. Huang, D. Marfatia, L. H. M. da Silva, and T. J.Weiler, PRD 92 no. 6, (2015) 061301, arXiv:1506.08788. [Erratum: PRD 94, 069901 (2016)].
- M. Chianese, G. Miele, and S. Morisi, PLB 773 (2017) 591-595, arXiv:1707.05241
- M. Ahlers, Y. Bai, V. Barger, and R. Lu, PRD 93no. 1, (2016) 013009, arXiv:1505.03156 • ….

Multi-messenger Neutrino Astronomy and IceCube-170922A

IceCube-170922A

Carsten Rott *IceCube Dark Matter and BSM Physics*

Astropart. Phys. 92 (2017) 30 A&A 607 (2017) A115

IceCube-170922A

IceCuBeAR - https://icecube.wisc.edu/news/view/776

Carsten Rott *IceCube Dark Matter and BSM Physics*

(Science 361, eaat1378 (2018)

IceCube-170922A

Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A

The IceCube Collaboration, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift/NuSTAR, VERITAS, and VLA/17B-403 teams*+

- Chance probability of a Fermi-IceCube coincident observation: ~**3σ** (determined based on the historical IceCube sample and known Fermi-LAT blazars)
- Time-integrated neutrino spectrum is approximately E-2.1
- **TXS 0506+056 redshift determined to be z=0.3365** (S. Paiano et al. ApJL 854.L32(2018))
- Time-average luminosity about an order of magnitude higher than Mkn 421, Mkn 501, or 1ES 1959+605

Science 361 (6398), 147-151.

IceCube-170922

- 9.5 years of archival data was evaluated in direction of TXS 0506+056
- An excess of 13±5 events above background was observed during Sep 2014 - March 2016
- Inconsistent with background only hy p o the sis at 3.50 level (independently of the **3σ** associated with IceCube-170922A alert)

Time-independent weight of individual events during the IC86b period.

However: Maximum contribution of the 2LAC: blazars to the observed astrophysical neutrino flux: to be 27% or less between around 10 TeV and 2: PeV [IceCube Astrophys.J. 835 (2017) no.1, 45]

Distance scales...

Other candidate sources

• NGC 1068 (AGN) M77

- 2.9 sigma excess in 10 years IceCube point source search
- distance ~14Mpc

• Tidal Disruption Event (AT2019dsg)

- Radio-emitting tidal disruption event, AT2019dsg, with a high energy neutrino
- Identified as part of ZTF (Zwicky Transient Facility) follow up of IceCube-191001A (19/10/01)
- The probability of finding any coincident radioemitting tidal disruption event by chance is 0.5% (Stein, R. et al. **Nat Astron (2021)**.)
- see also W.Winter https://arxiv.org/pdf/ 2005.06097.pdf
	- AT2019dsg (z=0.05 / 230Mpc) / E=200TeV

Artist illustration of the TDE example for image of the galaxy Arp299B …. Credit: NRAO/AUI/NSF/NASA/STScI

Observable Universe

Neutrino-Dark Matter Scattering

Neutrino Dark Matter Interactions - Rare Interactions

- Scattering of high energy astrophysical neutrinos on DM
	- "Isotropic" astrophysical neutrino flux on Galactic dark matter halo
	- Opportunities to probe very rare processes by observing neutrinos from distant sources
		- Example IceCube-170922A : Scattering of high energy astrophysical neutrinos from Blazar TXS0506+056 (z=0.33 / 5.7 billion light-years)

- **• Current status**
	- First experimental searches have started competitive with cosmological bounds
- **• Future prospects and priorities**
	- Identification of new astrophysical neutrino sources in the future could increase sensitivities (Multi-messenger observations for timing delays \sim ex. secret interactions)
	- High statistics sample of astrophysical neutrinos essential

see also DM-neutrino coupling by looking for neutrino survival from a point source (https://arxiv.org/abs/1808.02889), deviations on the shape of the spectrum (https:// arxiv.org/abs/1401.7019, but at higher energies, like https://arxiv.org/abs/2001.04994), or delays in arrival times (https://arxiv.org/abs/1903.08607).

- A new approach to study the propagation of the high-energy astrophysical neutrino through the cosmological DM as well as the DM in the Milky Way from the observation of IC170922A and the identification of its origin with a known path and distance.
- Assuming light scalar DM; $m_{DM} < GeV$ even down to sub- eV (ultra-light DMs)

Neutrino energy	$\sigma/M_{\rm dm}[\rm cm^2/GeV]$	Exp. [Ref.]
\sim 100 eV	6×10^{-31}	CMB [13-15]
\sim 100 eV	10^{-33}	Lyman- α [11]
10 MeV	10^{-22}	SN1987A [9]
290 TeV	5.1×10^{-23}	IceCube-170922A [1]

K.-Y Choi, J. Kim and C. Rott, Phys. Rev. D 99 (2019) 083018

Energetic Neutrinos from the Sun

See also Silk, Olive and Sredricki 85, Gaisser, Seigman, Tilav 86 Freese 86, Krauss, Sredricki, Wilczek 86

 χ

Solar Dark Matter

 \sim velocity distribution

Dark Matter Capture Uncertainty & Halo Model Dependence

- Choi, Rott, Itow (2014)
- Danninger & Rott (2014)

42

Solar Dark Matter

Dark Matter Mass (log(m_{DM}/GeV)) **• Current status**

- Very strong bounds on spin-dependent DM nucleon scattering. Leading bounds from IceCube and Super-K
- Velocity independent framework in combination with direct detection

• Future prospects

 $x \sim x$

?

- Extremely competitive to explore DM model space from GeV TeV range
- Complementarity to direct detection & minimal halo model dependence
- Marching towards the solar atmospheric neutrino floor $(\neg x10$ below current bounds) ... new physics !

Solar Dark Matter

- New IceCube search using 10 years of IceCube data
- Uses PYTHIA8 with updated calculation of EW correction (using Bauer, Rodd, Weber (2020))
- Up to factor 40 increase in sensitivity
- Significant improve limits, publication in preparation

Solar Atmospheric Neutrinos

Gamma-ray emissions from the Sun

• Cosmic ray interactions in the Solar atmosphere produce gamma-rays and neutrinos

- **First detection** of gamma-rays up to 10GeV reported by Fermi-LAT Collaboration (2011) later shown spectrum extends beyond 100GeV in public Fermi-LAT data (K.C.Y. Ng, J. F. Beacom, A.H.G. Peter, C. Rott (2016))
- Surprisingly **little known about solar gamma-ray and neutrino production**
- Evidence that the gamma-ray flux shows a **strong dependence on the solar cycle** significantly enhanced highenergy flux during solar minimum

Solar Atmospheric Neutrino Analysis

Seongjin In (SKKU)

- Conducted first search for solar atmospheric neutrinos
- The analysis utilizes data collected over a 7 year period (May 31, 2010 - May 18, 2017)
	- Up-going muon neutrino candidate events are selected using the well established IceCube point source analysis selection procedure
	- We only consider events from the winter season when the Sun is below the horizon $(\delta = [-5^\circ, 23^\circ])$. This results in a total analysis livetime of 1420.73 days.

- **Experimental result:**
	- Flux consistent with background only
	- Details see IceCube Coll. JCAP02(2021)025

Solar Atmospheric Neutrino Prospects

Event selection improvements (this program)

• Neutrino flavors

up-going muon neutrinos \Rightarrow all flavors Livetime:

- 3.5 years (winter $7yrs \rightarrow 15years$
- Neutrino energies:
	- $100GeV 100TeV \Rightarrow 10GeV 100TeV$
- Latest event reconstruction algorithms

Analysis improvements / techniques

- Differential flux limit (universal useful)
- Time dependent (+ time integrated) analysis

Importance of result

- **Neutrino Source Discovery** first *steady* high-energy neutrino "point source"
- Cosmic ray transport in the inner solar system
- Understanding solar magnetic fields
- Solar atmosphere and cosmic ray interaction models

Solar Minimum (2019-2020)

- Enhanced neutrino flux expected
- Strong time dependence expected and evidence from gamma-ray observations
- First observable minimum previous minimum (2009) during IceCube construction

Solar minimum is now ! Starting improved analysis

Neutrino Floor / Boosted / Secluded Dark Matter

- Current status:
	- Growing interest in scenarios that go beyond the WIMP hypothesis
- Future Prospects:
	- Excellent prospects to explore scenarios with energetic neutrinos from the Sun
	- As a side product of solar dark matter neutrino search can lead to a guaranteed signal of solar atmospheric neutrinos

What's next?

IceCube Upgrade

D-Egg

0.60

0.65

0.70

Ice Camera System

- Limited understanding of Antarctic ice properties dominant source of sys. uncertainties for most analyses
	- \Rightarrow better characterize detector medium
- Solution: Camera-based calibration system
	- Monitor freeze in
	- Hole ice studies
	- Local ice environment
	- Position of the sensor in the hole
	- Geometry calibration
	- Survey capability

Customized **camera module**

consisting of 2 PCBs: One with the Image sensor (Sony IMX225) , M12 lens mount and lens, and second with CPLD and connectors.

Camera sensitivity and Field Test

Work at local high school swimming pool on IceCube camera system testing

Swimming pool at Gyeonggi Physical Education High school

Demonstrated camera abilities in dedicated simulations and lab tests (incl. swimming pool measurements)

• Verified successful operations under polar conditions and demonstrated ability to measure ice properties with cameras

• Camera system successfully passed IceCube Internal Final Design Review (FDR) in September 2019

Camera sensitivity and Field Test

Successful South Pole Deployment of Test System

- After the main deployment of the Luminescence logger a ICU camera and an LED used for the ICU camera system were installed in the logger
- The camera was installed on a special holding structure \bullet where the mirror of the logger would otherwise be
- The LED is installed below the RED pitaya pointing in the same direction as the camera
- The distance between LED and camera is 38.5cm
- The camera measures the backscattered light from the **LED**
- From the distribution and amount of light, we expect to \bullet estimate the scattering length in ice

reamera
2019) — Roman photography
2019) — Roman photography Group photo after successful passing of the camera preliminary design review (Madison May 2019)

Novel calibration system production lead by SKKU

Graduate student Jiwoong Lee (left) assembling mDOM cameras with trainee undergraduate assistants Youbin Oh (right, front) and Minji Shin (right, back). Inset shows a box being packed with camera-LED systems protected in ESD bags.

group

Current status of camera production

- IceCube Upgrade deployment has been moved to 2024/2025 due to COVID-19 accessibility to pole
- Camera production well within the schedule to meet all the production and testing targets
	- D-EGG cameras integrated ~900 cameras
	- mDOM cameras tested and or shipped to production centers \sim 650 cameras
	- mDOM cameras remain to be tested at SKKU ~ 500 cameras

Camera status July 2022

Cameras that are at SKKU and are undergoing testing and calibration measurements

Cameras completed testing and shipped to integration centers or awaiting shipping

' optical modules Cameras integrated in IceCube Upgrade

Camera system impact

IceCube-Gen2 **The IceCube-Gen2 Neutrino Observatory**

10

10

10

 $10⁻$

—

Complementarity & Outlook

- Neutrino Telescopes are discovery experiments, exploring the unknown, with a tremendous potential for BSM physics searches
	- Guaranteed science for dark matter searches & discovery potential
	- Observed astrophysical neutrino spectrum remains to be understood
		- Guaranteed discoveries, including potential to observe dark matter
	- BSM physics searches at neutrino telescopes come at essentially no additional costs (highly leveraged)
	- Independent from direct detection or other indirect searches
	- Rapidly evolving field that can provides unexpected new opportunities (example observation of new astrophysical sources or transient events)

High-energy astrophysical neutrino flux can only be understood with significantly higher event statistics (x10)

Conclusions

- Striking signatures provide high discovery potential for indirect searches for dark matter with neutrinos
- Stringent limits on dark matter self-annihilation cross section set using neutrino telescopes
- Lifetimes of heavy decaying dark matter has be constrained to 1028s using neutrino signals
- Neutrino Telescopes/Detectors provide world best limits on the Spin-Dependent Dark Matter-Proton scattering cross section
- A new neutrino floor for solar dark matter searches has been calculated and might be observable in the near future
- Efforts underway to expand searches beyond WIMP hypothesis

