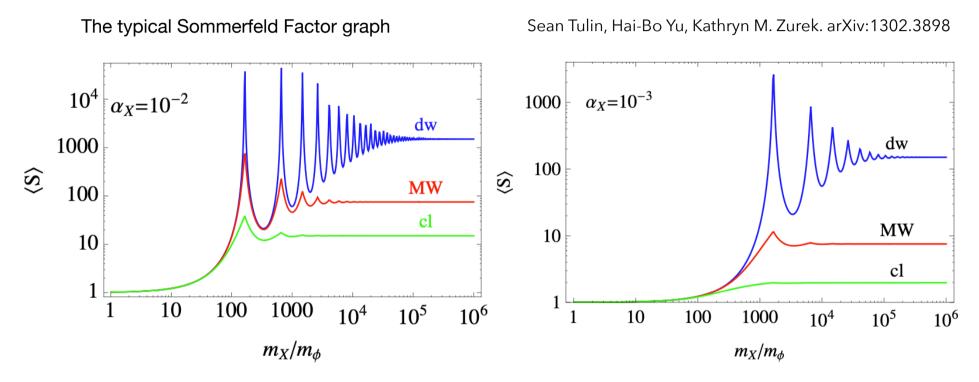

Models for self-resonant dark matter

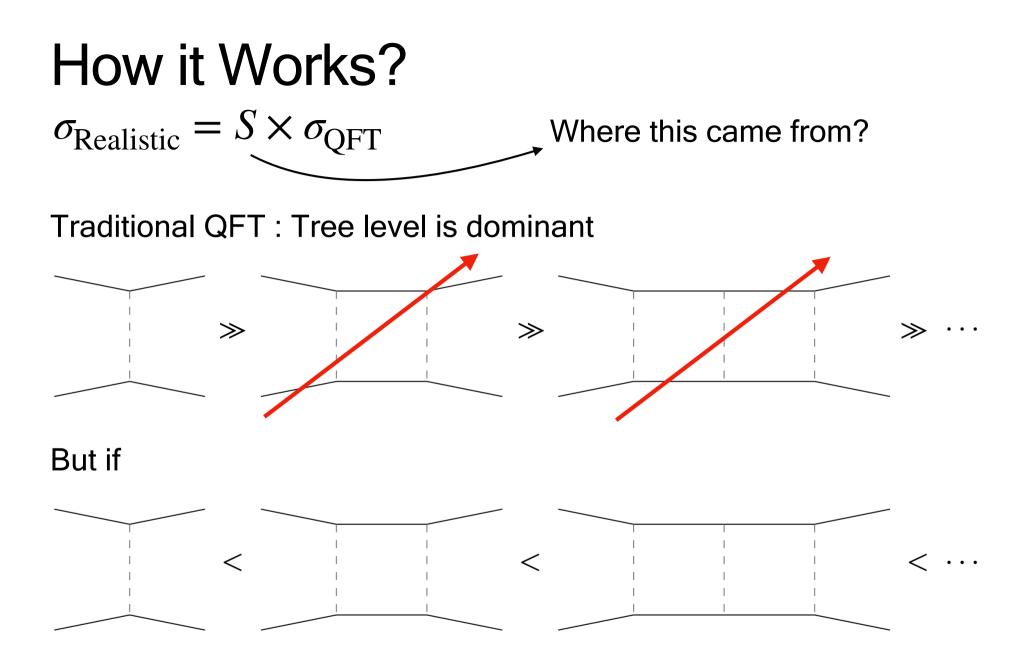
21, Oct, 2022 Workshop on Physics of Dark Cosmos (Chung-Ang University) SeongSik Kim, Hyun Min Lee (Yantai University) Bin Zhu arXiv:2202.13717 & arXiv:2108.06278

Dark Matter (DM) and Cross-Section


Self-Interacting DM Model for Core-cusp Problem and others...

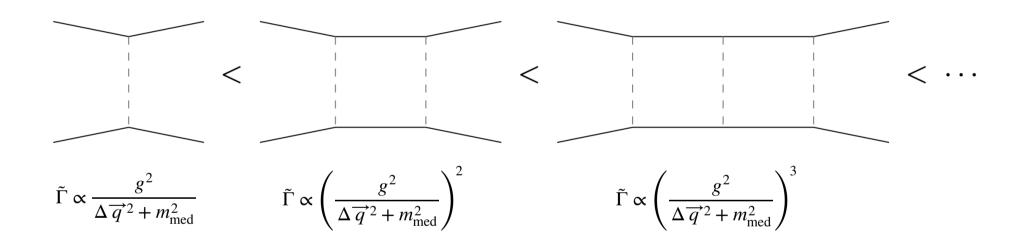
To solve the problem, $\sigma_{self}/m \sim \mathcal{O}(0.1 \sim 10) \mathrm{cm^2/g}$ required

Sommerfeld Enhancement


Charm way to enhance cross-section

dw : $v_0 = 10$ km/s, MW : v = 200 km/s, cl : v = 1000 km/s, $\langle S \rangle$: Sommerfeld Factor, For $XX \rightarrow \phi \phi$ process

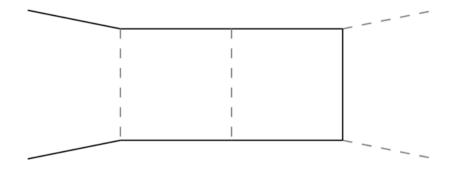
$$\sigma_{\text{Realistic}} = S \times \sigma_{\text{QFT}}$$

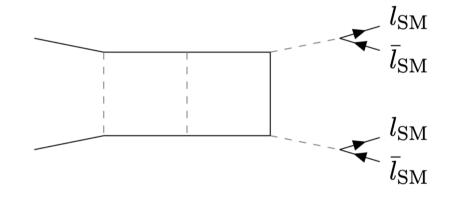

S depends on relative velocity, coupling, particle mass and etc.

The factor *S* as correction from higher order diagram

How can it achieved?

Traditional Mechanism




Non-relativistic collision and light mediator $(m_{med} \rightarrow 0)$ for $\left| \frac{g^2}{\Delta \vec{q}^2 + m_{med}^2} \right| > 1$

Problem?

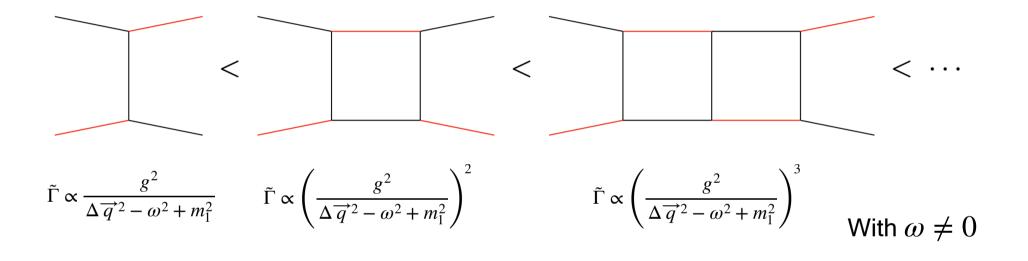
Non-relativistic collision and light mediator ($m_{med} \rightarrow 0$) for

$$\frac{g^2}{\Delta \vec{q}^2 + m_{\rm med}^2} > 1$$

Relativistic mediator survives only.

This is not a Λ [Cold] DM

If mediator couples SM, Sommerfeld Enhancement highly distort astrophysical observation: CMB, AMS-02, FermiLAT...


even if their coupling is very weak!

Object

Achieve Large Sommerfeld Enhancement Without Light Mediator

New Mechanism

New Mechanism : without Light mediator

Non-relativistic interaction
$$(\Delta \vec{q} \rightarrow 0)$$

& Mass relation $2m_1 \simeq m_2$ $M_2 \sim 0$ $\Delta \vec{q}^2 - \omega^2 + m_1^2$ > 1

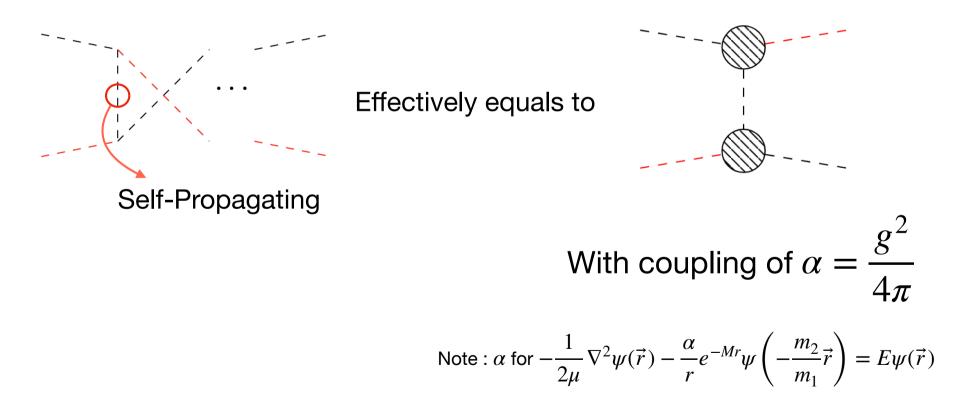
Also achieved Long-range, non-instantaneous interaction

Evaluation of Sommerfeld Factor $\sigma_{\text{Realistic}} = S \times \sigma_{\text{QFT}}$

- 1. Write Down Bethe-Salpeter Equation
- 2. Change BS equation to Schrödinger (like) Equation

Here we get
$$-\frac{1}{2\mu}\nabla^2\psi(\vec{r}) - \frac{\alpha}{r}e^{-Mr}\psi\left(-\frac{m_2}{m_1}\vec{r}\right) = E\psi(\vec{r})$$

3. Solve Schrödinger Equation and Evaluate $S = \frac{|\psi(0)|^2}{|\psi(r \to \infty)|^2}$

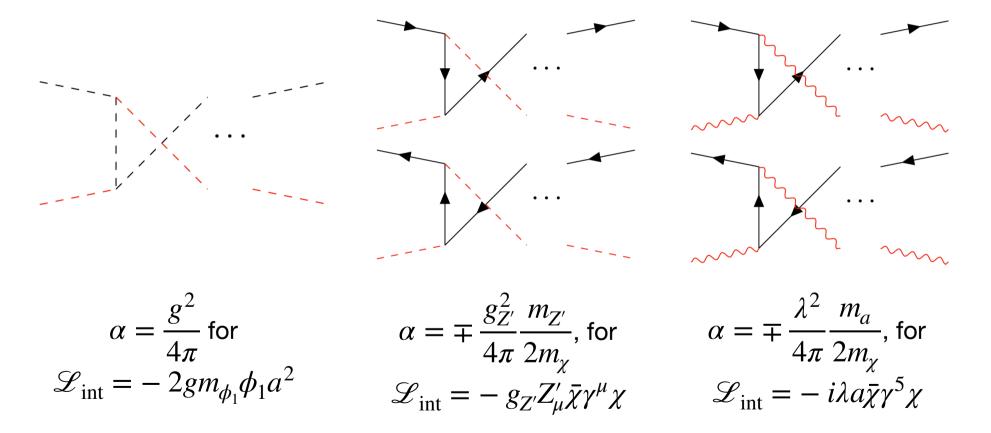

$$E = p_0 - \frac{m_1 + m_2}{2}, M = m_2 \sqrt{2 - \frac{m_2}{m_1}}$$

Simple Model Analysis

One Real Scalar & One Complex Scalar

$$\mathscr{L} = |\partial_{\mu}\phi_{1}|^{2} - m_{1}^{2}\phi_{1}^{2} + \frac{1}{2}(\partial_{\mu}\phi_{2})^{2} - \frac{1}{2}m_{2}^{2}\phi_{2}^{2} - 2gm_{1}\phi_{2}|\phi_{1}|^{2}$$

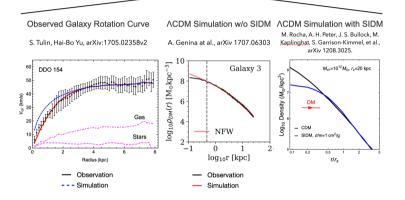
 m_1 in coupling term makes g dimensionless.


Higher α leads stronger enhancement

More Realistic Model Analysis

Effective Couplings for Noteworthy Models

Scalar-PseudoScalar Fermion-PseudoScalar Fer


Fermion-Vector

Dark Matter Physics

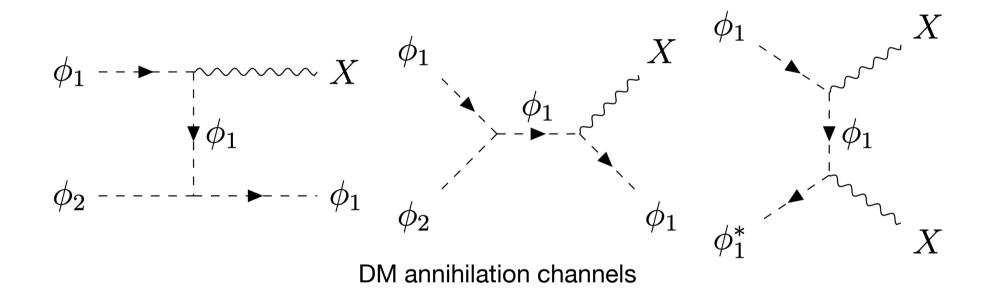
Dark Matter (DM) and Cross-Section

Self-Interacting DM Model for Core-cusp Problem and others...

To solve the problem, $\sigma_{self}/m \sim \mathcal{O}(0.1 \sim 10) \mathrm{cm^2/g}$ required

But, In fact,

Sommerfeld Enhancement affects not only DM Cross-section But also <u>DM annihilation rate!</u>


Scalar DM Model

(To consider other model, We only need to change effective coupling)

WIMP Scenario

Dark Matter Model

Introduce Dark photon portal : Dark matter annihilation channel

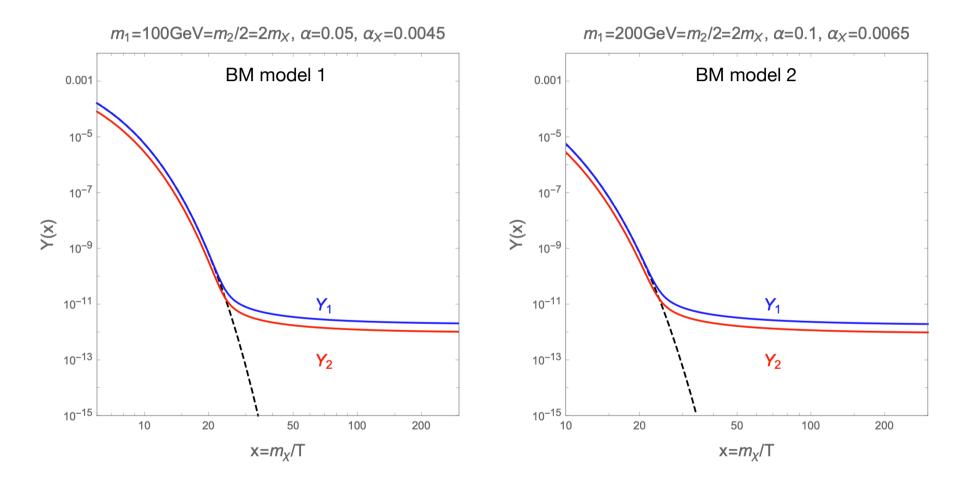
Scalar DM, $\mathscr{L}_{int} \supset -ig_X X_\mu (\phi_1 \partial^\mu \phi_1^* - \phi_1^* \partial^\mu \phi_1)$ X^μ : Dark Photon, Something coupled to Standard Model.

Benchmark Points

Our Interest :

How DM mass & Coupling changes Maximal Sommerfeld Factor

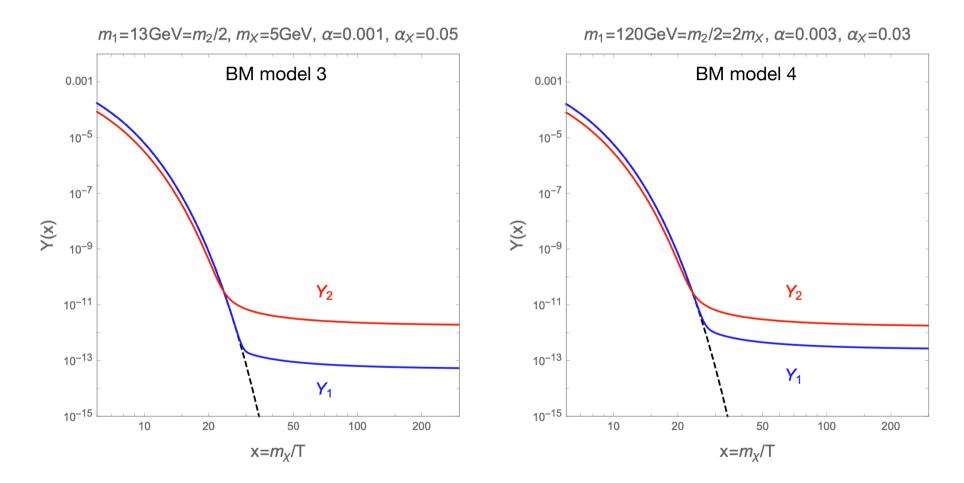
	$m_2 \simeq 2m_1$ [GeV]	m_X [GeV]	$\begin{array}{c} \alpha \\ = \frac{g^2}{4\pi} \end{array}$	$\begin{array}{c} \alpha_X \\ = \frac{g_X^2}{4\pi} \end{array}$	
B1	200	50	0.05	0.0045	
B2	400	100	0.1	0.0065	
B3	26	5	0.001	0.05	
B4	240	60	0.003	0.03	


 α : DM-DM coupling strength α_X : DM-Portal coupling strength

- $\alpha \ll \alpha_X$ & Medium DM pair
- $\alpha \gg \alpha_X$ & Heavy DM pair
- $\alpha \ll \alpha_X$ & Light DM pair
- $\alpha \ll \alpha_X$ & Medium DM pair

We compute Relic density, Maximal Sommerfeld Factor, and corresponding self-scattering cross-section for each Benchmark

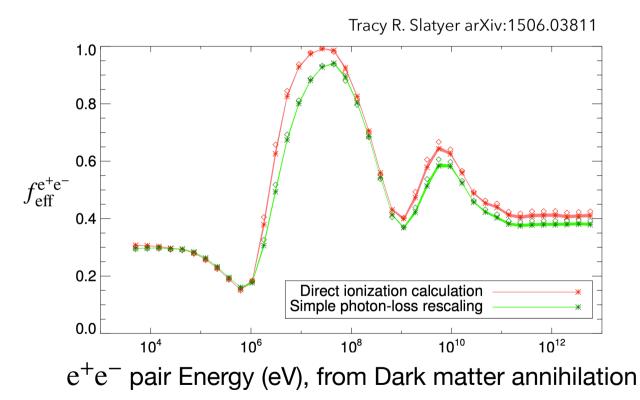
Relic Densities


Case 1 : DM-DM coupling >> DM-Dark photon coupling

DM Relic Yield shows $Y_1 \simeq 2Y_2$, with relic abundance of $\Omega_1 \simeq \Omega_2$.

Relic Densities

Case 2 : DM-DM coupling << DM-Dark photon coupling



Lighter DM quickly Annihilates. DM Relic Yield shows $Y_1 \ll Y_2$.

CMB Constraints

WIMP Scenario : Assuming DM annihilates to the lepton sector, This affects CMB observation.

Efficiency Factor $f_{eff}^{e^+e^-}$ introduced : How much e^+e^- influences observing CMB, by its energy.

Maximal Sommerfeld Factor constrained by CMB Constraints

CMB Constraint

Effective efficiency (Averaged Efficiency) defined

$$f_{\rm eff}(m_2) = \frac{1}{m_2} \int_0^{m_2/2} dE_e \ 2f_{\rm eff}^{\rm e^+e^-} E_e \frac{dN_e}{dE_e}$$

This relevant for fast electrons produced before CMB recombination

PLANCK observation (CMB) suggest

$$f_{\rm eff} \langle \sigma v \rangle_{\phi_1 \phi_2 \to \phi_1 X} < \frac{\Omega_{\rm DM}^2}{\Omega_1 \Omega_2} \left(\frac{m_2}{100 {\rm GeV}} \right) \times (4 \times 10^{-25} {\rm cm}^3 {\rm /s})$$

Result for 4 Benchmark Points

			Maximal Sommerteid Factor							
	$m_2 \simeq 2m_1$ [GeV]	m_X [GeV]	$lpha = rac{g^2}{4\pi}$	$\begin{array}{c} \alpha_X \\ = \frac{g_X^2}{4\pi} \end{array}$	$\langle \sigma v angle^{0}_{\phi_{1}\phi_{2} ightarrow \phi_{1}X} \ [\mathrm{cm}^{3}/\mathrm{s}]$	$r_1 = rac{\Omega_1}{\Omega_{ m DM}}$	S_0	$\Delta = 1 - \frac{m_2}{2m_1}$	$\sigma_{ m self}/m_{ m eff} \ [{ m cm}^2/g]$	
B1	200	50	0.05	0.0045	$9.9 imes 10^{-27}$	0.5	444.7	$7.7 imes 10^{-4}$	0.014	
B2	400	100	0.1	0.0065	$7.1 imes 10^{-27}$	0.5	1231	9.9×10^{-5}	0.002	
B3	26	5	0.001	0.05	$7.8 imes 10^{-26}$	0.14	1349	10^{-9}	0.063	
B4	240	60	0.003	0.03	2.7×10^{-27}	0.07	7379	10 ⁻⁸	0.086	

Corresponding self-scattering Cross-section

Maximal Commarfold Easter

Simple Scalar model shows plausible result.

Conclusion

- We presented new resonance mechanisms for cross-section enhancement.
- We found multi-component Dark Matter models, Fermion-Pseudoscalar and etc, can be working well with our mechanism.
- We consider benchmark points in simple models with Dark photon portals.
- With simple model, we consider Relic density, Maximal Sommerfeld Factor, and corresponding self-scattering cross-section.
- We will extend our work for the origin of resonances and phenomenology study in multi-component Dark Matter Model.