Revisit the gravitational lensing effect using radio wave polarization

Youngsub Yoon

Chungnam National University

Workshop on Physics of Dark Cosmos Busan, South Korea Oct 22, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Table of contents

Gravitational lensing

Bullet Cluster, a direct empirical proof?

Gravitational lensing analysis

Convergence and shear Reduced shear Current method to estimate reduced shear

Image rotation from lensing

Not the shear, but the reduced shear

Discussions and Conclusions

Gravitational lensing

A Horseshoe Einstein Ring from Hubble Space Telescope. https://commons.wikimedia.org/wiki/File: A_Horseshoe_Einstein_Ring_from_Hubble.JPG

Bullet Cluster, a direct empirical proof?

・ロト・日本・日本・日本・日本・日本

Convergence and shear

 θ_1 , θ_2 : the observed positions in terms of the two orthogonal coordinates on the sky. β_1 , β_2 : the actual positions

$${\cal A}_{ij}\equiv {\partialeta_i\over\partial heta_j}$$

$$A = \left(\begin{array}{cc} 1 - \kappa + \gamma_1 & \gamma_2 \\ \gamma_2 & 1 - \kappa - \gamma_1 \end{array}\right)$$

κ:convergence (size change) γ: shear (shape change) Eigenvalues ($γ = \sqrt{γ_1^2 + γ_2^2}$)

$$a_+ = 1 - \kappa + \gamma, \quad a_- = 1 - \kappa - \gamma$$

size change: not directly observable shape change: directly observable

Reduced shear

Reduced shear

$$g_lpha \equiv rac{\gamma_lpha}{1-\kappa}$$

$$A = \begin{pmatrix} 1 - \kappa + \gamma_1 & \gamma_2 \\ \gamma_2 & 1 - \kappa - \gamma_1 \end{pmatrix} = (1 - \kappa) \begin{pmatrix} 1 + g_1 & g_2 \\ g_2 & 1 - g_1 \end{pmatrix}$$
$$\nabla \ln(1 - \kappa) = \frac{1}{1 - g_1^2 - g_2^2} \begin{pmatrix} 1 + g_1 & g_2 \\ g_2 & 1 - g_1 \end{pmatrix} \begin{pmatrix} g_{1,1} + g_{2,2} \\ g_{2,1} - g_{1,2} \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Current method to estimate reduced shear

 $I(\theta)$: the brightness distribution. $\bar{\theta}_i$: is the center of light of the galaxy image

$$\int d^2\theta I(\theta)(\theta_i - \bar{\theta}_i) = 0$$

The quadrupole moment:

$$egin{aligned} \mathcal{Q}_{ij} = rac{\int d^2 heta I(heta)(heta_i - ar{ heta}_i)(heta_j - ar{ heta}_j)}{\int d^2 heta I(heta)} \end{aligned}$$

The ellipticity:

$$e_lpha \equiv {\it Q}_lpha/{\it T}$$

where

$$Q_1 \equiv Q_{11} - Q_{22}, \quad Q_2 \equiv 2Q_{12}, \quad T = Q_{11} + Q_{22}$$

This ellipticity has two components, which can be positive or negative.

Current method to estimate reduced shear

 $\phi:$ the angle between the axis 1 and the major axis of the observed elliptical image of galaxy

Current method to estimate reduced shear

Gravitational lensing changes e_{α}

$$\delta \boldsymbol{e}_{\alpha} = \boldsymbol{P}_{\alpha\beta}^{\gamma} \boldsymbol{g}_{\beta}$$

 $P_{\alpha\beta}^{\gamma}$: the shear susceptibility tensor g_{β} (g_1 and g_2): the reduced shear.

$$g_eta = extsf{P}_{lphaeta}^{\gamma-1}(extsf{e}_lpha - extsf{e}_lpha^{(s)})$$

(s) denotes the "source." If the orientation of galaxies are random

$$\langle e_{\alpha}^{(s)} \rangle = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Average of $P_{\alpha\beta}^{\gamma-1}e_{\alpha}$ is g_{β} .

Image rotation from lensing [arXiv:2106.08631] (Francfort et al., *Class.Quant.Grav*, 38 (2021) 24, 245008)

 ε : the usual ellipticity

$$\varepsilon = \sqrt{1 - \frac{b^2}{a^2}}$$

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ ・ の へ や・

Not the shear, but the reduced shear

Francfort et al. deliberately ignored the size change (shear).

$$D = D_s \begin{pmatrix} \cos\psi & -\sin\psi \\ \sin\psi & \cos\psi \end{pmatrix} \exp \begin{pmatrix} \gamma_1 & \gamma_2 \\ \gamma_2 & -\gamma_1 \end{pmatrix}$$
(1)

The exponential is given by

$$\exp \begin{pmatrix} \gamma_1 & \gamma_2 \\ \gamma_2 & -\gamma_1 \end{pmatrix} = \begin{pmatrix} 1+\gamma_1 & \gamma_2 \\ \gamma_2 & 1-\gamma_1 \end{pmatrix}$$
(2)

$$A = \begin{pmatrix} 1 - \kappa + \gamma_1 & \gamma_2 \\ \gamma_2 & 1 - \kappa - \gamma_1 \end{pmatrix} = (1 - \kappa) \begin{pmatrix} 1 + g_1 & g_2 \\ g_2 & 1 - g_1 \end{pmatrix}$$

 $\log(a_+/a_-)/2 = \log((1+\gamma)/(1-\gamma))/2 = \gamma + \mathcal{O}(\gamma^3)$

$$\frac{1}{2}\log\left(\frac{1-\kappa+\gamma}{1-\kappa-\gamma}\right) = \frac{1}{2}\log\left(\frac{1+g}{1-g}\right) = g + \mathcal{O}(g^3)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Not the shear, but the reduced shear

If they considered the size change, the shear in their formula must be replaced by the reduced shear.

$$g_2 \cos 2\phi^{(s)} - g_1 \sin 2\phi^{(s)} = \frac{\varepsilon^2}{2 - \varepsilon^2} \delta\phi$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

"Linear regression"

In the previous method, (theoretically) infinite data points are needed for the assumption that the average ellipticity is zero.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Discussions and Conclusions

In the previous method, (theoretically) infinite data points are needed for the assumption that the average ellipticity is zero.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In the new method, only two data points are needed (theoretically) to determine g₁ and g₂ by linear regression.

Discussions and Conclusions

- In the previous method, (theoretically) infinite data points are needed for the assumption that the average ellipticity is zero.
- In the new method, only two data points are needed (theoretically) to determine g₁ and g₂ by linear regression.
- If the gravitational lensing effect at the Bullet Cluster is reanalyzed, using the polarization data of radio wave, we will be more sure whether dark matter exists or not.