

Composite dark matter

Simplified and non-minimal models and overlooked channels

Benjamin Fuks

Based on works with:

- C. Arina and L. Mantani (EPJC 2020)
- A.S. Cornell, A. Deandrea, T. Flacke and L. Mason (JHEP 2021; 2209.13093)
- C. Arina, L. Mantani, H. Mies, L. Panizzi and J. Salko (PLB 2021)

Composite dark matter: simplified and non-minimal models and overlooked channels

• S. Colucci, F. Giacchino, L. Lopez Honorez, M.H.G. Tytgat and J.Vandecasteele (PRD 2018)

• C. Arina, J. Heisig, M. Kramer, L. Mantani, L. Panizzi and J. Salko (230M.NNNNN, 230M.NNNNN)

Workshop on Higgs and Cosmology Connection (Yonsei University) 12-16 December 2022

Composite dark matter and how to search for it

DM natural in models featuring a strong dynamics

- Composite constructions ★ Large spectrum of new states → stable neutral scalars ubiquitous ★ Remaining parity
- Dark matter = pNGBs [Cacciapaglia, Cai, Deandrea & Kushwaha (JHEP'19)] * Derivative couplings to other fields
- Dark matter = composite resonance → our assumption * Non-derivative couplings to other fields
- Partial compositeness: special role of the top quark

Composite dark matter and how to search for it

DM natural in models featuring a strong dynamics

- Composite constructions ★ Large spectrum of new states → stable neutral scalars ubiquitous ★ Remaining parity
- Dark matter = pNGBs [Cacciapaglia, Cai, Deandrea & Kushwaha (JHEP'19)] **★** Derivative couplings to other fields
- Dark matter = composite resonance → our assumption * Non-derivative couplings to other fields
- Partial compositeness: special role of the top quark

DM searched for directly, indirectly and at colliders

• Huge experimental effort \rightarrow strategy to constrain models

Complementary between colliders and cosmology

- Dark matter direct/indirect detection constraints
- Direct production at (hadron) colliders

Non-minimality and its phenomenological consequences

First generation couplings, LHC searches and overlooked channels

Composite dark matter: simplified and non-minimal models and overlooked channels

Outline

A simplified model for composite dark matter

- Scalar DM (S) interacting with the SM (top quark)
 - \star Need for a vector-like fermionic mediator (T)
 - * Lack of non-minimal features (multiple mediators, multi-component DM, etc.)
 - \rightarrow Potential impact of non-minimality (see later)

A simplified model for composite dark matter

- Scalar DM (S) interacting with the SM (top quark)
 - \star Need for a vector-like fermionic mediator (T)
 - * Lack of non-minimal features (multiple mediators, multi-component DM, etc.)
 - \rightarrow Potential impact of non-minimality (see later)

Model properties

- S stable
 - **\star** Odd under some \mathbb{Z}_2 discrete symmetry
 - \star SM states even
- T interactions with DM and quarks/gluons (top mass motivation) $\star \mathbb{Z}_2$ -odd: *t*-channel models

 - \rightarrow colour triplet and electrically charged

A simplified model for composite dark matter

- Scalar DM (S) interacting with the SM (top quark)
 - \star Need for a vector-like fermionic mediator (T)
 - * Lack of non-minimal features (multiple mediators, multi-component DM, etc.)
- \rightarrow Potential impact of non-minimality (see later)

Model properties

- S stable
 - **\star** Odd under some \mathbb{Z}_2 discrete symmetry
 - \star SM states even
- T interactions with DM and quarks/gluons (top mass motivation) $\star \mathbb{Z}_2$ -odd: *t*-channel models

 \rightarrow colour triplet and electrically charged

• Lagrangian

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm kin} + \left[\tilde{y}_t S \ \bar{T} P_R t + \text{h.c.} \right]$$

 Simplest simplified model for DM * 2 masses: m_s , m_T/m_s -1; I Yukawa coupling \tilde{y}_t

 \star SU(2) singlet vector-like mediator T \star EW singlet scalar dark matter S

A simplified model for composite dark matter

- Scalar DM (S) interacting with the SM (top quark)
 - \star Need for a vector-like fermionic mediator (T)
 - * Lack of non-minimal features (multiple mediators, multi-component DM, etc.)
- \rightarrow Potential impact of non-minimality (see later)

Model properties

- S stable
 - **\star** Odd under some \mathbb{Z}_2 discrete symmetry
 - \star SM states even
- T interactions with DM and quarks/gluons (top mass motivation) $\star \mathbb{Z}_2$ -odd: *t*-channel models

 \rightarrow colour triplet and electrically charged

• Lagrangian

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm kin} + \left[\tilde{y}_t S \ \bar{T} P_R t + \text{h.c.} \right]$$

 Simplest simplified model for DM * 2 masses: m_s , m_T/m_s -1; I Yukawa coupling \tilde{y}_t

 \star SU(2) singlet vector-like mediator T \star EW singlet scalar dark matter S

> Is this viable? \rightarrow DM relic abundance

Relic abundance: generalities

DM annihilation to SM (and vice versa)

- Several competing DM annihilation channels * In (possibly virtual) tops * Into gluons (loop-induced)
- Co-annihilations possibly important \star ST \rightarrow t
 - * Resonant for light new physics

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)]

Relic abundance: generalities

DM annihilation to SM (and vice versa)

- Several competing DM annihilation channels ★ In (possibly virtual) tops * Into gluons (loop-induced)
- Co-annihilations possibly important \star ST \rightarrow t

* Resonant for light new physics

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)

Scan of the 3D parameter space (2 masses + I Yukawa)

- NLO QCD corrections included in the predictions
- Coloured point = viable scenario
 - $\rightarrow \tilde{y}_t$ value such that:

$$\Omega_{
m DM} h^2 = 0.12$$
 [Planck Collaboration (AA`20)] $ilde{y}_t \in [10^{-3}, 6]$

- \rightarrow correct co-annihilation treatment (min value)
- \rightarrow perturbativity ensured (max value)

Relic abundance: generalities

DM annihilation to SM (and vice versa)

- Several competing DM annihilation channels ★ In (possibly virtual) tops ***** Into gluons (loop-induced)
- Co-annihilations possibly important \star ST \rightarrow t

***** Resonant for light new physics

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)

Scan of the 3D parameter space (2 masses + I Yukawa)

- NLO QCD corrections included in the predictions
- Coloured point = viable scenario
 - $\rightarrow \tilde{y}_t$ value such that:

$$\Omega_{
m DM} h^2 = 0.12$$
 [Planck Collaboration (AA`20)] $ilde{y}_t \in [10^{-3}, 6]$

- \rightarrow correct co-annihilation treatment (min value)
- \rightarrow perturbativity ensured (max value)

Large viable parameter space region from the relic standpoint

Relic abundance – Multi-TeV DM

Very heavy DM regime ($m_{s} > 5 \text{ TeV}$)

• Dominating annihilations into tops

$$(\sigma v)_{\rm NLO} \approx (\sigma v)_{\rm LO} \left[1 + \frac{\alpha_s C_F}{\pi} \left(\frac{9}{4} - \frac{3}{2} \log \frac{M_S^2}{m_t^2} \right) \right]$$

Top-mass effects negligible (cf. black curve)
Velocity-independent (v ~ I)

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)]

Relic abundance – Multi-TeV DM

Very heavy DM regime ($m_s > 5 \text{ TeV}$)

• Dominating annihilations into tops

$$(\sigma v)_{\rm NLO} \approx (\sigma v)_{\rm LO} \left[1 + \frac{\alpha_s C_F}{\pi} \left(\frac{9}{4} - \frac{3}{2} \log \frac{M_S^2}{m_t^2} \right) \right]$$

Top-mass effects negligible (cf. black curve)
Velocity-independent (v ~ I)

Composite dark matter: simplified and non-minimal models and overlooked channels

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)

NLO QCD impact (for $m_s > 5 \text{ TeV}$)

- Huge QCD K-factors!
- Virtual internal bremsstrahlung (VIB) [$\propto (m_T/m_S)^{-4}$]

Relic abundance – Other scenarios (ms < 5 TeV)

DM regime in which $m_t < m_s < 5 \text{ TeV}$

• Dominating annihilations into tops

$$(\sigma v)_{\rm NLO} \approx (\sigma v)_{\rm LO} \left[1 + \frac{\alpha_s C_F}{\pi} \left(\frac{\pi^2}{2\beta_0} - 1 \right) \right]$$

★ Explicit velocity dependence \rightarrow Not viable close to threshold

- Top mass effects important ★ Opens up a new region (\neq light quarks) → annihilations into quarks negligible
- NLO effects mild $(K \sim 1)$

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)

Relic abundance – Other scenarios ($m_s < 5$ TeV)

DM regime in which $m_t < m_s < 5 \text{ TeV}$

• Dominating annihilations into tops

$$(\sigma v)_{\rm NLO} \approx (\sigma v)_{\rm LO} \left[1 + \frac{\alpha_s C_F}{\pi} \left(\frac{\pi^2}{2\beta_0} - 1 \right) \right]$$

- **★** Explicit velocity dependence \rightarrow Not viable close to threshold
- Top mass effects important \star Opens up a new region (\neq light quarks) \rightarrow annihilations into quarks negligible
- NLO effects mild $(K \sim I)$

DM regime in which $m_s < m_t$

- Annihilations in tops closed
 - \rightarrow 3-body annihilations (into tWb) if $m_s > (m_t + m_W)/2$
 - → Loop-induced SS→gg annihilations for $m_S < (m_t + m_W)/2$
- Co-annihilations crucial near $m_T + m_S \sim m_t$ \rightarrow resonant enhancement ($m_{\rm S} \sim 75 \, {\rm GeV}$)

Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)

Composite dark matter: simplified and non-minimal models and overlooked channels

Large variety of acceptable scenarios

- Not all mass combinations allowed (because of bounds on the Yukawa coupling) → Dark matter masses from 50 to 40000 GeV

Two free parameters left (the masses)

• What can we learn from DM direct/indirect detection?

Direct detection in a nutshell

• Effective field theory approach $\star T$ is integrated out **\star**Full calculation if T is light

- StT couplings \rightarrow g-DM coupling \rightarrow nucleon-DM couplings **★Including form factors**
- Direct detection constraints on the simplified model

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)

Benjamin Fuks - 14.12.2022 - 9

Direct detection in a nutshell

• Effective field theory approach $\star T$ is integrated out **\star**Full calculation if T is light

- StT couplings \rightarrow g-DM coupling \rightarrow nucleon-DM couplings **★Including form factors**
- Direct detection constraints on the simplified model

Mild constraints expected from DM direct detection

- Loop-suppressed process (DM-gluon scattering)
- Small scattering cross section

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)

Benjamin Fuks - 14.12.2022 - 9

Direct detection in a nutshell

• Effective field theory approach $\star T$ is integrated out **\star**Full calculation if T is light

- StT couplings \rightarrow g-DM coupling \rightarrow nucleon-DM couplings **★Including form factors**
- Direct detection constraints on the simplified model

Mild constraints expected from DM direct detection

- Loop-suppressed process (DM-gluon scattering)
- Small scattering cross section

Some constraints on light DM

- SS \rightarrow gg relevant for the relic density \rightarrow especially for $m_{\rm S} < (m_t + m_W)/2$
- Yellow band at ~ 75 GeV
 - \rightarrow ST \rightarrow t resonant co-annihilation regime

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)

Direct detection in a nutshell

• Effective field theory approach $\star T$ is integrated out **\star**Full calculation if T is light

- StT couplings \rightarrow g-DM coupling \rightarrow nucleon-DM couplings **★Including form factors**
- Direct detection constraints on the simplified model

Mild constraints expected from DM direct detection

- Loop-suppressed process (DM-gluon scattering)
- Small scattering cross section

Some constraints on light DM

- SS \rightarrow gg relevant for the relic density \rightarrow especially for $m_{\rm S} < (m_t + m_W)/2$
- Yellow band at ~ 75 GeV
 - \rightarrow ST \rightarrow t resonant co-annihilation regime

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)

No constraints on heavy DM

- SS \rightarrow gg negligible
- Large suppression (masses, Yukawa) \rightarrow Most parameter space below the ν floor

Secondary photon flux from DM annihilations

• Derivation of associated gamma ray continuum from bb

$$\sigma v_{gg,t\bar{t}} = \sigma v_{b\bar{b}} \frac{N_{\gamma}^{b\bar{b}}}{N_{\gamma}^{gg,t\bar{t}}} \qquad \text{with } N_{\gamma}^{X} = \text{nr of } \gamma \text{ from an}$$

$$[Bringmann, Huang, Ibarra, Vogl & Weniged Bringmann, Huang, Hua$$

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)]

Benjamin Fuks - 14.12.2022 - 10

Secondary photon flux from DM annihilations

• Derivation of associated gamma ray continuum from bb

$$\sigma v_{gg,t\bar{t}} = \sigma v_{b\bar{b}} \frac{N_{\gamma}^{b\bar{b}}}{N_{\gamma}^{gg,t\bar{t}}} \qquad \text{with } N_{\gamma}^{X} = \text{nr of } \gamma \text{ from an } N_{\gamma}^{gg,t\bar{t}} \qquad \text{[Bringmann, Huang, Ibarra, Vogl & Weniged}$$

Constraints

- Mild constraints from Fermi projections (dwarfs)
- Mild constraints from AMS antiprotons

F Colucci. BF. Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)

Secondary photon flux from DM annihilations

• Derivation of associated gamma ray continuum from bb

$$\sigma v_{gg,t\bar{t}} = \sigma v_{b\bar{b}} \frac{N_{\gamma}^{b\bar{b}}}{N_{\gamma}^{gg,t\bar{t}}} \qquad \text{with } N_{\gamma}^{X} = \text{nr of } \gamma \text{ from an}$$
 [Bringmann, Huang, Ibarra, Vogl & Wenige

Constraints

- Mild constraints from Fermi projections (dwarfs)
- Mild constraints from AMS antiprotons

Composite dark matter: simplified and non-minimal models and overlooked channels

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)

Direct annihilations into photons

• Where the gg channel dominates:

$$= \frac{4Q^4 \alpha^2 N_c^2}{\alpha_S^2 \left(N_c^2 - 1\right)} \approx 4.3 \cdot 10^{-3}$$

$$\frac{\sigma v_{t\bar{t}\gamma}}{\sigma v_{t\bar{t}g}} = \frac{2N_c Q^2 \alpha}{(N_c^2 - 1)\alpha_s} \approx 2.3 \cdot 10^{-1}$$

Secondary photon flux from DM annihilations

• Derivation of associated gamma ray continuum from bb

$$\sigma v_{gg,t\bar{t}} = \sigma v_{b\bar{b}} \frac{N_{\gamma}^{b\bar{b}}}{N_{\gamma}^{gg,t\bar{t}}} \qquad \text{with } N_{\gamma}^{X} = \text{nr of } \gamma \text{ from an}$$
 [Bringmann, Huang, Ibarra, Vogl & Wenige

Constraints

- Mild constraints from Fermi projections (dwarfs)
- Mild constraints from AMS antiprotons

Composite dark matter: simplified and non-minimal models and overlooked channels

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)

Direct annihilations into photons

• Where the gg channel dominates:

$$= \frac{4Q^4 \alpha^2 N_c^2}{\alpha_S^2 \left(N_c^2 - 1\right)} \approx 4.3 \cdot 10^{-3}$$

$$\frac{\sigma v_{t\bar{t}\gamma}}{\sigma v_{t\bar{t}g}} = \frac{2N_c Q^2 \alpha}{(N_c^2 - 1)\alpha_s} \approx 2.3 \cdot 10^{-1}$$

Mild constraints Indirect detection not so relevant

Benjamin Fuks - 14.12.2022 - 10

Dark matter searches at colliders

Two classes of new physics processes at colliders

- Loop-induced DM pair production
- Mediator pair production (with mediator decays into DM + top) [at NLO]

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)]

Benjamin Fuks - 14.12.2022 - 11

Dark matter searches at colliders

Two classes of new physics processes at colliders

- Loop-induced DM pair production
- Mediator pair production (with mediator decays into DM + top) [at NLO]

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)

DM pair production

• Negligible (SS \rightarrow gg small for heavy DM)

Dark matter searches at colliders

Two classes of new physics processes at colliders

- Loop-induced DM pair production
- Mediator pair production (with mediator decays into DM + top) [at NLO]

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)

DM pair production

• Negligible (SS \rightarrow gg small for heavy DM)

Bounds from multi-jet+MET and tt+MET

- Loop-induced DM pair production
- Multi-jet constraints: generic, while specific to $t\bar{t}SS$ \rightarrow mild bounds (mono-et like topology)
- $t\bar{t}$ +MET constraints: well adapted to the $t\bar{t}SS$ final state → best constraints (and chance of discovery)

Composite dark matter: simplified and non-minimal models and overlooked channels

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)]

Lagrangian

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm kin} + \left[\tilde{y}_t S \ \bar{T} P_R t + \text{h.c.} \right]$

- \star Vector-like mediator T
- \star Scalar dark matter S

Composite dark matter: simplified and non-minimal models and overlooked channels

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)

Lagrangian

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm kin} + \left[\tilde{y}_t S \ \bar{T} P_R t + \text{h.c.} \right]$$

- \star Vector-like mediator T
- ★ Scalar dark matter S

Correct relic density achievable

- Fixes the Yukawa \tilde{y}_t
- Dark grey: no thermal relic
- Light grey: loss of perturbativity
- Annihilation into gg below the m_t threshold

Composite dark matter: simplified and non-minimal models and overlooked channels

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)

Lagrangian

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm kin} + \left| \tilde{y}_t S \ \bar{T} P_R t + \text{h.c.} \right|$$

- \star Vector-like mediator T
- ★ Scalar dark matter S

Correct relic density achievable

- Fixes the Yukawa \tilde{y}_t
- Dark grey: no thermal relic
- Light grey: loss of perturbativity
- Annihilation into gg below the mt threshold

Poor sensitivity to DM direct detection

- DM direct detection constraints
 - **★** Loop-induced process
 - \star Most parameter space below the ν floor
 - **★** Exception: below the top threshold
 - **★** Low expectation for the future

DM indirect detection: limited sensitivity

• Limited light DM regions

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)

Lagrangian

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm kin} + \left| \tilde{y}_t S \ \bar{T} P_R t + \text{h.c.} \right|$$

- \star Vector-like mediator T
- ★ Scalar dark matter S

Correct relic density achievable

- Fixes the Yukawa \tilde{y}_t
- Dark grey: no thermal relic
- Light grey: loss of perturbativity
- Annihilation into gg below the mt threshold

Poor sensitivity to DM direct detection

- DM direct detection constraints
 - **★** Loop-induced process
 - \star Most parameter space below the ν floor
 - **★** Exception: below the top threshold
 - **★** Low expectation for the future

DM indirect detection: limited sensitivity

• Limited light DM regions

Present and future colliders

- Still limited
- Sole probes to tackle the unconstrained regions

Composite dark matter: simplified and non-minimal models and overlooked channels

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD'18)

Lagrangian

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm kin} + \left[\tilde{y}_t S \ \bar{T} P_R t + \text{h.c.} \right]$$

- \star Vector-like mediator T
- \star Scalar dark matter S

Correct relic density achievable

- Fixes the Yukawa \tilde{y}_t
- Dark grey: no thermal relic
- Light grey: loss of perturbativity
- Annihilation into gg below the mt threshold

Poor sensitivity to DM direct detection

- DM direct detection constraints
 - **★** Loop-induced process
 - \star Most parameter space below the ν floor
 - **★** Exception: below the top threshold
 - \star Low expectation for the future

Simplified composite DM model

Lagrangian

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm kin} + \left[\tilde{y}_t S \ \bar{T} P_R t + \text{h.c.} \right]$$

 Strong dynamics →other lower-energy consequences ***** Additional non-decoupling dimension-five interactions

→ SStt contact term

$$\mathcal{L}' = \mathcal{L} + \frac{C}{\Lambda} SSt\bar{t}$$

Next-to-simplified models - Contact terms

[Cornell, Deandrea, Flacke, BF & Mason (JHEP'21)]

SM

[Bellazzini, Csaki, Hubisz, Serra & Terning (JHEP'12)]

Simplified composite DM model

Lagrangian

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm kin} + \left[\tilde{y}_t S \ \bar{T} P_R t + \text{h.c.} \right]$$

 Strong dynamics →other lower-energy consequences * Additional non-decoupling dimension-five interactions

→ SStt contact term

$$\mathcal{L}' = \mathcal{L} + \frac{C}{\Lambda} SSt\bar{t}$$

Simplified and minimal models important...

• Lack of potentially important non-minimal features...

Impact of the new contact terms

- Correct relic density with smaller Yukawa couplings → Potentiel impact on DM indirect detection
- Possibly larger DM-nucleon scattering cross section → Larger impact of the DM direct detection experiments
- Collider bounds \rightarrow no impact of $C \neq 0$ [competition with resonant channels]

Composite dark matter: simplified and non-minimal models and overlooked channels

Next-to-simplified models - Contact terms

[Cornell, Deandrea, Flacke, BF & Mason (JHEP'21)]

[Bellazzini, Csaki, Hubisz, Serra & Terning (JHEP'I 2)]

Benjamin Fuks - 14.12.2022 - 13

2 setups: max(C) and min(C)

Composite dark matter: simplified and non-minimal models and overlooked channels

[Cornell, Deandrea, Flacke, BF & Mason (JHEP'21)]

2 setups: max(C) and min(C)

- DM-ID: modification of the γ spectrum
 - → Negative C: very strong bounds (interferences)
 - \rightarrow Large and positive C: bounds similar to C=0

[Cornell, Deandrea, Flacke, BF & Mason (JHEP'21)]

Benjamin Fuks - 14.12.2022 - 14

2 setups: max(C) and min(C)

- DM-ID: modification of the γ spectrum
 - → Negative C: very strong bounds (interferences)
 - \rightarrow Large and positive C: bounds similar to C=0

[Cornell, Deandrea, Flacke, BF & Mason (JHEP'21)]

- DM-DD: much larger annihilation cross section
 - \rightarrow Can access scenarios with $m_{\rm S} > m_t$
 - → Negative C: milder bounds
 - \rightarrow Large and positive C: stronger bounds

2 setups: max(C) and min(C)

- DM-ID: modification of the γ spectrum
 - → Negative C: very strong bounds (interferences)
 - \rightarrow Large and positive C: bounds similar to C=0

Complementarity of the two classes of probes

[Cornell, Deandrea, Flacke, BF & Mason (JHEP'21)]

- DM-DD: much larger annihilation cross section
 - \rightarrow Can access scenarios with $m_{\rm S} > m_t$
 - \rightarrow Negative C: milder bounds
 - \rightarrow Large and positive C: stronger bounds

A generic *t*-channel DM model = perfect playground for DM at colliders

- 2 spins: J_X, J_Y
- 13 masses:
 - \star I DM mass: m_X
 - \star 12 mediator masses (SM = u_L, d_L, u_R, d_R)
- 9 couplings (with $SU(2)_L \times U(1)_Y$ invariance)
 - \star 3 vectors in flavour space
 - \star SM = Q_L, u_R, d_R

X (DM)	Spin	Self-conj.	Y (med.)	Spin
$ ilde{S}$	0	yes		1/9
S	0	no	arphi Q, arphi u, arphi d	1/2
$ ilde{\chi}$	1/2	yes		0
χ	1/2	no	arphi Q, arphi u, arphi d	0
$ ilde{V}_{\mu}$	1	yes	1/2 n/2 n/2 n/2 n/2 n/2 n/2 n/2 n/2 n/2 n	1/2
V_{μ}	1	no	arphi Q, arphi u, arphi d	1/2

Representative of many DM model with parity-odd mediators

A generic *t*-channel DM model = perfect playground for DM at colliders

- 2 spins: J_X, J_Y
- 13 masses:
 - \star I DM mass: m_X
 - \star 12 mediator masses (SM = u_L, d_L, u_R, d_R)
- 9 couplings (with $SU(2)_L \times U(1)_Y$ invariance)
 - **★** 3 vectors in flavour space
 - \star SM = Q_L, u_R, d_R

Toy model: DM coupling to right-handed up quarks only

- Simple scenarios investigated by ATLAS and CMS
- Benchmarks for numerous searches
- Collider-cosmology complementarity
 — unexpected LHC phenomenology
 Collider-cosmology complementarity
 — unexpected LHC phenomenology

X (DM)	Spin	Self-conj.	Y	Spin
$ ilde{S}$	0	yes		1/9
$_$	0	no	$\psi Q, \psi u, \psi d$	1/2
$ ilde{\chi}$	1/2	yes		0
χ	1/2	no	arphi Q, arphi u, arphi d	0
$ ilde{V}_{\mu}$	1	yes	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	1/2
V_{μ}	1	no	arphi Q, arphi u, arphi d	1/4

Representative of many DM model with parity-odd mediators

$$\mathcal{L}_{\mathbf{X}_{-\mathbf{u}\mathbf{R}}}(X) = \left[\lambda_{\varphi}\bar{X}u_{1}\varphi_{u_{1}}^{\dagger} + \mathrm{h.c.}\right]$$

Strongly coupled t-channel DM

Colliders and cosmology complementary

- A narrow mediator
 -> strongly-coupled DM from cosmology

[Arina, BF, Mantani, Mies, Panizzi & Salko (PLB'21)]

• Lighter options further restricted by multi-jet+MET collider constraints (ATLAS-CONF-2019-040)

Strongly coupled t-channel DM

Colliders and cosmology complementary

- A narrow mediator
 -> strongly-coupled DM from cosmology

Estimation of the collider bounds from multi-jet + MET production? [Arina, BF, Mantani, Mies, Panizzi & Salko (PLB'21)]

• Lighter options further restricted by multi-jet+MET collider constraints (ATLAS-CONF-2019-040)

DM @ colliders: the signal...

3 classes of processes \rightarrow jets from radiation or Y-decays

[Arina, BF & Mantani (EPJC'20)]

DM @ colliders: the signal...

3 classes of processes \rightarrow jets from radiation or Y-decays

- Typical signal included in LHC simulations \star DM pair production (+ 1 jet)
 - * Mediator QCD pair-production (with mediator decays into DM+jet)
- Some contributions ignored
 - **★** DM/mediator associated production (with mediator decays into DM+jet)
 - \star *t*-channel mediator pair production and interference

Benjamin Fuks - 14.12.2022 - 17

DM @ colliders: the signal...

3 classes of processes \rightarrow jets from radiation or Y-decays

- Typical signal included in LHC simulations \star DM pair production (+ 1 jet)
 - * Mediator QCD pair-production (with mediator decays into DM+jet)
- Some contributions ignored
 - **★** DM/mediator associated production (with mediator decays into DM+jet)
 - \star *t*-channel mediator pair production and interference

Not justified

DM @ colliders: the full signal for a SUSY-like scenario

Dissecting the collider signal (Majorana DM and scalar mediator)

• All channels contribute (larger rates) $\star XX \sim \lambda^4$ \star XY ~ λ^2 \star YY ~ $\lambda^4 + \lambda^2 + \lambda^0$

Composite dark matter: simplified and non-minimal models and overlooked channels

[Arina, BF, Mantani, Mies, Panizzi & Salko (PLB'21)]

- ATLAS-CONF-2019-040 targets different topologies
 - ***** XX: small number of softer jets
 - ***** XY: medium number of mostly softer jets
 - \star YY: larger number of hard jets

Composite dark matter: simplified and non-minimal models and overlooked channels

A more inclusive search: CMS-SUS-19-006

- Better constraints on XY
- Slightly better constraints on XX

A more inclusive search: CMS-SUS-19-006

- Better constraints on XY
- Slightly better constraints on XX

Mediator pair production very different • *t*-channel DM exchanges dominate • $p p \rightarrow YY$ very large (more than $p p \rightarrow YY^*$) \rightarrow new channel included (enhanced by valence quarks) \rightarrow significant improvements of the bounds

- Better constraints on XY
- Slightly better constraints on XX

• *t*-channel DM exchanges dominate • $p p \rightarrow YY$ very large (more than $p p \rightarrow YY^*$) \rightarrow new channel included (enhanced by valence quarks) \rightarrow significant improvements of the bounds

Collider simulations to be rethought!

Benjamin Fuks - 14.12.2022 - 19

Dark matter very appealing to explain cosmological data

- Can be probed complementarily ★ Direct/indirect detection
 - ★ Collider searches
- We explored a simplified setup inspired by strong dynamics
- Non-minimality may change the picture
- We generalise it to generic *t*-channel DM models

Summary

Summary

Dark matter very appealing to explain cosmological data

- Can be probed complementarily ★ Direct/indirect detection
 - \star Collider searches
- We explored a simplified setup inspired by strong dynamics
- Non-minimality may change the picture
- We generalise it to generic *t*-channel DM models

Composite dark matter: simplified and non-minimal models and overlooked channels

DM

D

- NLO corrections
- Signal modelling, in particular at colliders
- A last plot...
 - Couplings on VLQs coupling to u_R and DM
 - \rightarrow 3 TeV VLQs are excluded!

[regardless of the DM mass]

→ Naive VLQ signal: bounds smaller than 1.5 TeV

Results to be presented to ATLAS and CMS on Jan 12th SM

SM

