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Introduction and motivation
Exploring negative curvature compact geometries as a tool 
for model building at intermediate scale (relevant for 
unification and EW scales)

Important differences wrt flat compact extra dimensions
Spectrum of the modes
Symmetry breaking
Scalar fields and potential, Yukawa terms generated by 
gauge interactions

Example: Gauge-Higgs unification models 
Standard approach uses tori as compact space (here 
negative curvature) 
Masses for the scalars are generated at loop level for the 
torus (here at tree level)
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Nilmanifolds: general definition
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The subalgebra g1 = [g0,g0] of g0 consists of all linear combinations of Lie 
brackets of pairs of elements of g0.

A Lie group G is solvable if its Lie algebra g terminates in the null algebra 
i.e. the sequence of its sub-algebras g0 = g, gn+1 = [gn,gn] for n ≥ 0 reduces to 
the null algebra after a finite number of steps.
 
A Lie group G is nilpotent if the sequence gn+1 = [g, gn] reduces to the null 
algebra after a finite number of steps. 

Therefore nilpotent groups are a special subclass of solvable groups. We 
refer to their corresponding compact manifolds as nilmanifolds. 



Heisenberg Nilmanifold
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nilpotent Lie algebra ex. Heisenberg algebra: 

with f structure constant and coordinate system (Maurer-Cartan equation) 



Heisenberg Nilmanifold
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The general metric can be obtained from the interval:

the Ricci scalar is always negative
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Why Heisenberg nilmanifold?
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Heisenberg manifold ⇔ 2-torus with twisted circle fiber 
Calculable spectrum of the Laplace operator ∆f = λf 
Eigenfunctions form a complete set on the space: 

∆Bm = λBm

Eigenscalars (Ui) and one-forms (Bm) have analytical expressions
To make the manifold compact:
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From 7D Yang-Mills  to 4D
The effective action is computed from the 7D YM action : 

where UI and BI are respectively 3d eigenscalars and 3d eigen-one-forms 
of the Laplacian on the nilmanifold, while AaI and φaI are a 4d one-form 
and a 4d scalar.
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From 7D Yang-Mills  to 4D

The resulting 4D action “generates” a scalar part: 

The sum over I is an infinite multi-index sum over the basis of 3d eigen-
forms, the geometrical limit (“large base, small fiber” limit)

separates the low-lying masses from the rest of the tower 



Lowest modes

Scalars:

one-forms:

other modes:
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Scalar potential

with M = |f| and g = g7/ ; scalars in the adjoint representation. We have to 
minimise the potential (mass + interaction part)

V

computing  and the masses from 
Vacuum condition : φ3 = 0 ; [φ1, φ2] = 0 
⇒ Pick φ1, φ2 ∈ Cartan sub-algebra. 
The mass matrix is block diagonal in root space 

δ𝒱/M2 δ2𝒱/M2



gauge boson masses 

Once the mass matrix is diagonalized, the masses for a given root Eα are :

In this convention the vacuum parameters bi are dimensionless, so that 
bi = Mg , and  has mass dimension one. In the following  b1=b2=bb̃i b̃i

lifted by loop 
corrections



SU(3) -> SU(2)xU(1) 

12

One-loop renormalized masses of the low-mass scalars for the SU(3) 
breaking pattern. H1 and Xμ are in the fundamental representation of  
SU(2) × U(1), while φSU(2) is the adjoint of SU(2) and φU(1) in the adjoint 
of U(1). 
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Dark matter and orbifolding
The scalar spectrum for the KK-type modes has the form:

Using the discrete symmetries T and P: 

we have M3/(Z2xZ2) and localising the SM particles at the origin is consistent 
with the orbifolding.
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Dark matter and orbifolding
The orbifold and DM symmetries are:

the modes can be classified accordingly: 
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Dark matter candidate
The lightest parity odd particle is stable and is the DM candidate. If:

the fiber mode is the lightest, otherwise the torus mode.

in red the fiber modes 
(dashed have no odd part) 
and in blue the torus ones



Fermions
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Similar to the Laplacian it is possible to compute the spectrum of the 
Dirac operator (here simple case a=b=0 shown) :

where ωmbc is the spin connection and for M3  ω123 = f/2. Solutions are:

σ and p+/-(σ) contain the parameters a, b and f 



Reduction to 4 dimensions
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Similar to the pure Yang-Mills case we can obtain the 4D effective theory 
from the 7D one:

with

representation R of the gauge group also in the representation R
4d Weil spinor non-chiral

Ansatz for the 7D spinors:

possible flux term



Reduction to 4 dimensions
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We have:

with

the Yukawa Lagrangian is generated from the gauge interactions!
As usual here the “gauge” scalar is in the adjoint representation



Conclusions

• Twist f ⇔ Mass at tree level M 
• Potential allows for various symmetry breaking 
• Model is rigid (Yang-Mills in 7D + nilmanifold) 
• Analytical results all the way for any gauge group G (but G may 

be constrained by physical motivations) 
• Moduli of the metric on the Heisenberg manifold computed
• Laplacian spectrum for scalars/vectors with arbitrary metric 

solved for the lowest modes
• Dirac operator with arbitrary metric solved, fermions can be 

considered both in 7D (bulk) and 4D (localised) 
• Exiting playground for model building!
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