Higgsstrahlung, Invisible particles at Belle & Belle II

IIIII IIIIII

Youngjoon Kwon (Yonsei U.) Dec. 16, 2022 @ Higgs and Cosmology Connection, YAFK SCP

Overview — a la my original plan

• Intro.

- Belle & Belle II
- Dark photon via Higgsstrahlung
- Leptophilic Z' to invisible
- Invisibles in B decays
- Invisibles in τ decays

ALMOST AS WHIP SMART AS THE GREAT DETECTIVE."

> On Greg Freeman's co-adaptation of Sherlock Holmes: A Study in Scarlet

> > TIME OUT

A NEW PLAY-BY GREG FREEMAN **SHERROCK HOLDES** AND THE INVISIBLE THING

But, on Tuesday, we have heard

New approaches to semi-invisible τ and *B* decays

Chan Beom Park

We devise a novel search strategy that we apply to pair productions of τ and B mesons,

> $\tau \rightarrow \ell \phi$ (ϕ : light invisible particle, m_{ϕ} in MeV–GeV) $B \rightarrow K \tau \mu$ (rare *B* decay)

at Belle II.

Our strategy has a vast domain of applicability: $B \rightarrow K\nu\nu$, $B \rightarrow \tau\mu$, etc. at Belle II and LHCb.

Overview — revised

- Intro.
 - Belle & Belle II
- A' via Higgsstrahlung & Z' \rightarrow invisible
- Invisibles in *B* decays along w/ $B \to K\tau\ell, B \to K\nu\bar{\nu}$
- Semi-invisible τ decay $\tau \to \ell \alpha$
- one more thing!

mesons,

at Belle II.

and LHCb.

New approaches to semi-invisible τ and *B* decays

Chan Beom Park

We devise a novel search strategy that we apply to pair productions of τ and B

 $\tau \to \ell \phi$ (ϕ : light invisible particle, m_{ϕ} in MeV–GeV) $B \rightarrow K \tau \mu$ (rare *B* decay)

• Our strategy has a vast domain of applicability: $B \rightarrow K\nu\nu$, $B \rightarrow \tau\mu$, etc. at Belle II

Belle & Belle II

Fig. 1. Side view of the Belle detector.

$> 1 \text{ ab}^{-1}$ **On resonance:** $Y(5S): 121 \text{ fb}^{-1}$ $Y(4S): 711 \text{ fb}^{-1}$ $Y(3S): 3 \text{ fb}^{-1}$ $Y(2S): 25 \text{ fb}^{-1}$ $Y(1S): 6 \text{ fb}^{-1}$ **Off reson./scan:**

 $\sim 100 \text{ fb}^{-1}$

~ 550 fb⁻¹ **On resonance:** $Y(4S): 433 \text{ fb}^{-1}$ $Y(3S): 30 \text{ fb}^{-1}$ $Y(2S): 14 \text{ fb}^{-1}$ **Off resonance:** $\sim 54 \text{ fb}^{-1}$

Belle (and BaBar, too) achievements include:

- too)
- e.g. $D_{s0}^{*}(2317)^{+}$
- Quarkonium spectroscopy and discovery of (many) exotic states, e.g. $X(3872), Z_c(4430)^+$
- Studies of τ and 2γ

CPV, CKM, and rare decays of B mesons (and B_s ,

Mixing, CP, and spectroscopy of charmed hadrons,

SuperKEKB $e^{-} \xrightarrow{7 \text{ GeV}} (\star) \xleftarrow{4 \text{ GeV}} e^{+}$ **Bele**

Belle I Collected luminosity before LS1 (2019-2022)

Belle II has been in operation through the Pandemic era, with modified working mode in accordance with the anti-pandemic policy. (*See back-up slide!*)

peak luminosity world record $4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Updated on 2022/06/22 18:13 JST

Belle II Physics Mind-m

: B-->K pi, pi pi Direct CPV, isospin sum rules

B-->K* gamma and radiative penguins, B-->K(*) nu nubar

roweak Penguins: b-->s I+I-, lepton universality, NP

gamma determinations

Image courtesy of Tom Browder

Dark photon via Higgsstrahlung

Belle II arXiv:2207.00509 (*accepted* to PRL)

Dark Higgsstrahlung

arXiv:2207.00509 accepted to PRL

Belle II

MARK Mrec.

1

25

Look for 2D peak!

 $M_{A'}$

Dark Higgsstrahlung: $e^+e^- \rightarrow A'h'$

arXiv:2207.00509 accepted to PRL

Dark Higgsstrahlung: $e^+e^- \rightarrow A'h'$

Dark Higgsstrahlung: $e^+e^- \rightarrow A'h'$

arXiv:2207.00509 accepted to PRL

Youngjoon Kwon (Yonsei U.)

Dec. 16, 2022

arXiv:2207.00509 accepted to PRL

Dark Higgsstrahlung (prospects)

Search for a dark photon and an invisible dark Higgs boson in $\mu^+\mu^-$ and missing energy final states with the Belle II experiment

F. Abudinén , I. Adachi, L. Aggarwal, H. Aihara, N. Akopov, A. Aloisio, N. Anh Ky, D. M. Asner, H. Atmacan, T. Aushev, V. Aushev, V. Babu, S. Bahinipati, P. Bambade, Sw. Banerjee, S. Bansal⁽⁰⁾, J. Baudot⁽⁰⁾, A. Baur⁽⁰⁾, A. Beaubien⁽⁰⁾, J. Becker⁽⁰⁾, P. K. Behera⁽⁰⁾, J. V. Bennett⁽⁰⁾, E. Bernieri, F. U. Bernlochner, M. Bertemes, E. Bertholet, M. Bessner, B. Bhuyan, F. Bianchi, T. Bilka , D. Biswas , A. Bobrov , D. Bodrov , A. Bolz , A. Bozek , M. Bračko , P. Branchini , T. E. Browder, A. Budano, S. Bussino, M. Campajola, G. Casarosa, V. Chekelian, C. Chen, Y. Q. Chen, B. G. Cheon, K. Chilikin, K. Chirapatpimol, H.-E. Cho, K. Cho, S.-J. Cho, S.-K. Choi, S. Choudhury, D. Cinabro, L. Corona, S. Cunliffe, F. Dattola, G. de Marino, G. De Nardo, M. De Nuccio, G. De Pietro, R. de Sangro, M. Destefanis, S. Dey, A. De Yta-Hernandez, R. Dhamija, A. Di Canto, F. Di Capua, J. Dingfelder, Z. Doležal, I. Domínguez Jiménez, T. V. Dong, M. Dorigo, K. Dort , D. Dossett , S. Dreyer , S. Dubey , G. Dujany , M. Eliachevitch , D. Epifanov , P. Feichtinger , T. Ferber, D. Ferlewicz, T. Fillinger, C. Finck, G. Finocchiaro, K. Flood, A. Fodor, F. Forti, A. Frey , B. G. Fulsom, E. Ganiev, M. Garcia-Hernandez, V. Gaur, A. Gaz, A. Gellrich, R. Giordano, A. Giri, B. Gobbo, R. Godang, P. Goldenzweig, W. Gradl, S. Granderath, E. Graziani, D. Greenwald, T. Gu, K. Gudkova, J. Guilliams, C. Hadjivasiliou, K. Hara, T. Hara, K. Hayasaka, H. Hayashii, S. Hazra, C. Hearty, M. T. Hedges, I. Heredia de la Cruz, M. Hernández Villanueva, A. Hershenhorn, T. Higuchi, E. C. Hill, M. Hoek, M. Hohmann, C.-L. Hsu, T. Iijima, K. Inami, G. Inguglia, N. Ipsita, A. Ishikawa, S. Ito, R. Itoh, M. Iwasaki, P. Jackson, W. W. Jacobs, D. E. Jaffe, E.-J. Jang, Q. P. Ji, S. Jia, Y. Jin, H. Junkerkalefeld, H. Kakuno, A. B. Kaliyar, J. Kandra[®], K. H. Kang[®], R. Karl[®], G. Karyan[®], T. Kawasaki[®], C. Ketter[®], H. Kichimi[®], C. Kiesling[®], C.-H. Kim[®], D. Y. Kim[®], K.-H. Kim[®], Y.-K. Kim[®], K. Kinoshita[®], P. Kodyš[®], T. Koga[®], S. Kohani[®], K. Kojima, T. Konno, A. Korobov, S. Korpar, E. Kovalenko, R. Kowalewski, T. M. G. Kraetzschmar, P. Križan[®], P. Krokovny[®], T. Kuhr[®], R. Kumar[®], K. Kumara[®], T. Kunigo[®], Y.-J. Kwon[®], S. Lacaprara[®], Y.-T. Lai D. T. Lam D. J. S. Lange M. Laurenza R. Leboucher S. C. Lee L. K. Li V. B. Li J. J. Libby D.

Leptophilic Z'

Belle II PRL 124, 141801 (2020) PRD 106, 012003 (2022) Belle **Belle II** arXiv:2212.03066 (to PRL)

Leptophilic $Z' \rightarrow invis$.

μ

- $L_{\mu} L_{\tau}$ model, initiall
- could also be a channe matter candidate, as v
- Search for $Z' \rightarrow \mu^+ \mu^-$
- Search for $Z' \rightarrow$ "invision of $Z' \rightarrow$ $Z' \rightarrow \tau^+ \tau^-$ (Belle II)

 γ

 μ^+ s a dark

 $\cdot R_{K^{(*)}}$

ВВ

Leptophilic $Z' \rightarrow \text{invis}$. (Belle II) look for signal in θ_{rec} vs. M_{rec}^2

Youngjoon Kwon (Yonsei U.)

Dec. 16, 2022

Higgs and Cosmology Connection YAFK SCP

arXiv:2212.03066 submitted to PRL

• $\tau^+\tau^-(\gamma)$ almost 100% suppressed • $\mu^+\mu^-(\gamma)$ dominates up to ~7 GeV/c² • $e^+e^-\mu^+\mu^-$ dominant in high $M_{\rm rec}^2$

Leptophilic $Z' \rightarrow invis$. (Belle II)

arXiv:2212.03066 submitted to PRL

Leptophilic $Z' \rightarrow invis$. (Belle II)

Youngjoon Kwon (Yonsei U.)

Dec. 16, 2022

arXiv:2212.03066 submitted to PRL

• no excess \rightarrow set 90% CL limits on σ and g' \checkmark "vanilla" scenario: Z' to SM only ✓ "fully invisible" scenario

Leptophilic Z' search (Belle II)

arXiv:2212.03066 submitted to PRL

fully invisible Z' as origin of $(g - 2)_{\mu}$ is excluded for $0.8 < M_{Z'} < 5.0 \text{ GeV/c}^2$

Leptophilic Z' search (Belle II)

arXiv:2212.03066 submitted to PRL

Leptophilic Z' search (Belle II prospects)

arXiv:2207.06307 (Belle II, Snowmass)

Invisible particle search in B decays

Belle II PRL 127, 181802 (2021) **Belle** PRD 105, L051101 (2022)

Search for $B^+ \to K^+ \nu \overline{\nu}$ at Belle II

- In the SM, \bigcirc
 - $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = (4.6 \pm 0.5) \times 10^{-6} \, [4]$

|4| Nucl. Phys. 92, 50 (2017).

- sensitive to new physics BSM, e.g. \bigcirc
 - leptoquarks,
 - axions,
 - DM particles, etc.

(a) Penguin diagram

T. Blake, G. Lanfranchi, and D. M. Straub, Prog. Part.

(b) Box diagram

$B^+ \rightarrow K^+ \nu \overline{\nu}$ at Belle II

- 1. loose tagging \rightarrow find signal K^+ track of highest p_T w/ at least 1 PXD hit ($\varepsilon \sim 80\%$)
- 2. all other tracks & clusters \Rightarrow "ROE" (rest of the function of the functio 3. BDT for signal discrimination fraction of events use event-shape, ROE dynamics, B_{sig} kinematics, ve
- 4. BDT₁ & BDT₂ (consecutive applications)
 - : to suppress two different bkgds : BB and contin
- 5. signal region in 2D (BDT₂ vs. $p_T(K^+)$)
- 6. check BDT output with $B^+ \rightarrow J/\psi K^+$ sample
- for both signal and bkgd (see back-up slide for detail
- 7. check Data/MC agreement using Off-resonance data

DESY.

 $\times 10^{-2}$

1

8

6

4

2

PRL 127, 181802 (2021)

C

$^+ \rightarrow K^+ \nu \overline{\nu}$ at Belle II

- 1. signal K^+ track of highest p_T w/ at least 1 PXD hit ($\varepsilon \sim$
- 2. all other tracks & clusters \Rightarrow "ROE" (rest of the event)
- 3. BDT for signal discrimination use event-shape, ROE dynamics, B_{sig} kinematics, vertexing info.

30

S/<

$B^+ \rightarrow K^+ \nu \overline{\nu}$ at Belle II

- 1. signal K^+ track of highest p_T w/ at least 1 PXD hit (ϵ
- 2. all other tracks & clusters \Rightarrow "ROE" (rest of the event)
- 3. BDT for signal discrimination use event-shape, ROE dynamics, B_{sig} kinematics, vertexing i
- 4. BDT₁ & BDT₂ (consecutive applications)
 - : to suppress two different bkgds : BB and continuum
- 5. signal region in 2D (BDT₂ vs. $p_T(K^+)$)
- 6. check BDT output with $B^+ \rightarrow J/\psi K^+$ samples for both signal and bkgd
- 7. check Data/MC agreement using Off-resonance data
- 8. simultaneous ML fit to ON- & OFF-resonance data

$B^+ \rightarrow K^+ \nu \overline{\nu}$ at Belle II

Dec. 16, 2022

PRL 127, 181802 (2021)

$\times Br(B^+ \rightarrow K^+ \nu \bar{\nu})$			
4	6	8	10
	Babar (429 $_{0.8\pm0.7}$ PRD87, 112	fb^{-1} , Had-	⊦SL)
	Belle (711 fl 3.0±1.6 PRD87, 111	p_{103}^{-1} , Had)	
	Belle (711 fl $_{1.0\pm0.6}$ PRD96, 091	p_{101}^{-1} , SL)	
· · · · ·	Belle II (63 $1.9^{+1.6}_{-1.5}$ This work, pr	fb ⁻¹ , Inclu	sive)

Junewoo Park Yonsei HEP

Search for $B \rightarrow X_{s} \nu \bar{\nu}$ (inclusive)

Motivation

- $B \rightarrow X_s \nu \bar{\nu}$ decay is theoretically clean
- Its branching ratio depends on right-handed currents
- Therefore, Measuring its branching ratio is important for new physics which has non-zero right-handed current ($C_R^{\nu} \neq 0$)

Event Generation

• For Monte-Carlo study, signal samples are produced according to SM *^{†‡} $\mathcal{M}(B \to K \nu \bar{\nu}) \propto f_{+}(q^{2}) \left\{ (p_{B} + p)_{\mu} - \frac{m_{B}^{2} - m_{K}^{2}}{s} q_{\mu} \right\} (\bar{\nu} \gamma^{\mu} (1 - \gamma_{5}) \nu), \text{ where } q^{2} = (p_{\nu} + p_{\overline{\nu}})^{2}$ $\mathcal{M}(B \to K^* \nu \bar{\nu}) \propto T_{\mu}(\bar{\nu} \gamma^{\mu} (1 - \gamma_5) \nu), \text{ where } T_{\mu} = (m_B + m_{K^*}) A_1(q^2) \epsilon_{\mu}^* - A_2(q^2) \frac{\epsilon^* \cdot q}{m_B + m_{K^*}} (p + p_{K^*})_{\mu} + i \frac{2V(q^2)}{m_B + m_{K^*}} \epsilon_{\mu\nu\rho\sigma} \epsilon^{*\nu} p^{\rho} p_{K^*}^{\sigma}$ $\frac{\mathrm{d}\Gamma(\mathrm{B}\to\mathrm{X}_{\mathrm{s}}\nu\bar{\nu})}{\mathrm{d}a^{2}} \propto \sqrt{\lambda(1,\widehat{m}_{s},s_{b})} \left[3s_{b}\left(1+\widehat{m}_{s}^{2}-s_{b}-4\widehat{m}_{s}+\lambda(1,\widehat{m}_{s},s_{b})\right)\right], \text{ where } \widehat{m}_{s}=m_{s}/m_{b} \text{ and } s_{b}=q^{2}/m_{b}^{2}$ ₹ 2500 arbitrary unit urbitrary u 2.5 2000 0.8 1500 1.5 0.6 1000 0.4 MC MC 0.5 0.2 500 $B^+ \to K^+ \nu \bar{\nu}$ arXiv:1409.4557] [arXiv:1409.4557] 20 10 12 14 q² [GeV²] a² [GeV²]

* Altmannshofer, Wolfgang, et al. "New strategies for new physics search in B→ K* v v⁻, B→ K v v⁻ and B→ Xs v v⁻ decays." Journal of High Energy Physics 2009.04 (2009): 022. † Buras, Andrzej J., et al. " $B \rightarrow K^{(*)} \nu \bar{\nu}$ decays in the Standard Model and beyond." Journal of High Energy Physics 2015.2 (2015): 1-39. \ddagger Bharucha, Aoife, David M. Straub, and Roman Zwicky. " $B \rightarrow V \ell^+ \ell^-$ in the Standard Model from light-cone sum rules." Journal of High Energy Physics 2016.8 (2016): 1-64.

Dec. 16, 2022

Reconstruction and Event Selection

• In $B \to X_s \nu \bar{\nu}$ decay, there are two neutrinos, which leads to large amount of background

- One side of B meson (B_{tag}) is reconstructed by hadronic decay modes
- Information of B_{tag} can be used to remove background

• X_s is reconstructed by 24	4 decay modes ((sum of exclusive	method)
--------------------------------	-----------------	-------------------	---------

	B ⁰ , I	\overline{B}^0	B^{\pm}	-
K		K_s^0	K^{\pm}	
Κπ	$K^{\pm} \ \pi^{\mp}$	$K_s^0 \pi^0$	$K^{\pm} \pi^0$	$K^0_s \pi^{\pm}$
$K2\pi$	$K^{\pm} \pi^{\mp} \pi^{0}$	$K_s^0 \pi^{\pm} \pi^{\mp}$	$K^{\pm} \pi^{\mp} \pi^{\pm}$	$K^0_s \pi^{\pm}\pi^0$
$K3\pi$	$K^{\pm} \pi^{\mp} \pi^{\pm} \pi^{\mp}$	$K_s^0 \pi^{\pm} \pi^{\mp} \pi^0$	$K^{\pm} \pi^{\mp} \pi^{\pm} \pi^{0}$	$K^0_s \pi^{\pm}\pi^{\mp}\pi^{\pm}$
$K4\pi$	$K^{\pm} \pi^{\mp} \pi^{\pm} \pi^{\mp} \pi^{0}$	$K_s^0 \pi^{\pm} \pi^{\mp} \pi^{\pm} \pi^{\mp}$	$K^{\pm} \pi^{\mp} \pi^{\pm} \pi^{\mp} \pi^{\pm}$	$K_s^0 \pi^{\pm} \pi^{\mp} \pi^{\pm} \pi^0$
3 <i>K</i>	$K^{\pm}K^{\mp}K^0_s$		$K^{\pm}K^{\pm}$	$^{\mp}K^{\pm}$
3 <i>Κ</i> π	$K^{\pm}K^{\mp}K^{\pm}\pi^{\mp}$	$K^{\pm}K^{\mp}K^0_s\pi^0$	$K^{\pm}K^{\mp}K^{\pm}\pi^{0}$	$K_s^0 K^{\pm} K^{\mp} \pi^{\pm}$

 e^{-}

Fitting and Limit Setting

- Multivariate analysis (MVA) technique is used to suppress background
- About 30 variables are used for MVA
 - $-\cos\theta$ of momentum of B meson
 - missing energy/momentum
 - the number of muon candidates in event
- MVA output value is used for a fitting and limit setting to extract signal yields

Search for $B^+ \to K^+ \tau^{\pm} \ell^{\mp}$ (LFV)

Belle Preprint 2022-30 KEK Preprint 2022-41

Search for the lepton flavour violating decays $B^+ \to K^+ \tau^{\pm} \ell^{\mp}$ ($\ell = e, \mu$) at Belle

S. Watanuki, G. de Marino, K. Trabelsi, I. Adachi, H. Aihara, D. M. Asner, H. Atmacan, 2 V. Aulchenko[®], T. Aushev[®], R. Ayad[®], V. Babu[®], Sw. Banerjee[®], M. Bauer[®], P. Behera[®], K. Belous[®], 3 M. Bessner, V. Bhardwaj, B. Bhuyan, D. Biswas, D. Bodrov, G. Bonvicini, J. Borah, A. Bozek, 4 M. Bračko , P. Branchini , T. E. Browder , A. Budano , M. Campajola , L. Cao , D. Červenkov 5 M.-C. Chang, B. G. Cheon, K. Chilikin, K. Cho, S.-J. Cho, S.-K. Choi, Y. Choi, S. Choudhury, D. Cinabro, S. Das, G. De Nardo, G. De Pietro, R. Dhamija, F. Di Capua, T. V. Dong, D. Epifanov, T. Ferber, D. Ferlewicz, B. G. Fulson, R. Garg, V. Gaur, A. Garmash, A. Giri[®], P. Goldenzweig[®], E. Graziani[®], T. Gu[®], Y. Guan[®], K. Gudkova[®], C. Hadjivasiliou[®], 9 S. Halder, X. Han, T. Hara, K. Hayasaka, H. Hayashii, D. Herrmann, W.-S. Hou, C.-L. Hsu, 10 K. Inami[®], G. Inguglia[®], N. Ipsita[®], A. Ishikawa[®], R. Itoh[®], M. Iwasaki[®], W. W. Jacobs[®], Q. P. Ji[®], 11 S. Jia^(b), Y. Jin^(b), K. K. Joo^(b), A. B. Kaliyar^(b), H. Kichimi^(b), C. H. Kim^(b), D. Y. Kim^(b), K.-H. Kim^(b), 12 Y.-K. Kim[®], K. Kinoshita[®], P. Kodyš[®], A. Korobov[®], S. Korpar[®], E. Kovalenko[®], P. Križan[®], P. Krokovny[®], 13 T. Kuhr^o, M. Kumar^o, K. Kumara^o, A. Kuzmin^o, Y.-J. Kwon^o, J. S. Lange^o, M. Laurenza^o, S. C. Lee^o, 14 P. Lewis, L. K. Li, Y. Li, L. Li Gioi, J. Libby, Y.-R. Lin, D. Liventsev, T. Matsuda, 15 S K Maurya 🗅 F Meier 🗅 M Merola 🗇 F Metzner 🗅 K Miyabayashi 🗅 R Mizuk 🗅 G R Mohanty 🗅

1

arXiv:2212.04128 submitted to PRL

Shun Watanuki (Yonsei HEP)

Karim Trabelsi

Search for $B^+ \to K^+ \tau^{\pm} \ell^{\mp}$ (LFV)

 $\mathscr{B}(B \to K \tau \mu) \sim \mathscr{O}(10^{-6})$ is preferred in a certain VLQ model, for instance.

> Calibbi, Crivellin, Li PHYS. REV. D 98, 115002 (2018)

R(D^(*)) 2σ **R**(D^(*)) 1 σ **C**₉^{$\mu\mu$} = -C₁₀^{$\mu\mu$} 2 σ **C** $_{9}^{\mu\mu} = -C_{10}^{\mu\mu} \mathbf{1}\sigma$

 $\begin{pmatrix} q_{iL} \\ Q_{iL} \end{pmatrix} \rightarrow \begin{pmatrix} c_{iQ} & -s_{iQ} \\ s_{iO} & c_{iO} \end{pmatrix} \begin{pmatrix} q_{iL} \\ Q_{iL} \end{pmatrix}$ $\begin{pmatrix} \ell_{iL} \\ L_{iI} \end{pmatrix} \rightarrow \begin{pmatrix} c_{iL} & -s_{iL} \\ s_{iI} & c_{iI} \end{pmatrix} \begin{pmatrix} \ell_{iL} \\ L_{iI} \end{pmatrix}.$

Dec. 16, 2022

arXiv:2212.04128 submitted to PRL

Youngjoon Kwon (Yonsei U.)

arXiv:2212.04128 submitted to PRL

 $PID_{\pi} > 0.6$ for p⁺, $PID_{K} > 0.6$ for K⁺ mID > 0.9 for μ eID > 0.9 for e<u>Primary tracks (K, μ/e)</u> $|d_0| < 0.5 cm$

 $|z_0| < 5.0$ cm

$B^+ \to K^+ \tau^+ \ell^-$ (os) vs. $B^+ \to K^+ \tau^- \ell^+$ (ss)

- We must do both (if only for model independent search)
- same reconstruction, but very different bkgd.
- Background for SS is much harder to handle

arXiv:2212.04128 submitted to PRL

Higgs and Cosmology Connection YAFK SCP

arXiv:2212.04128 submitted to PRL

 $M_{ au}$ after FBDT

 M_{τ} before FBDT

Dec. 16, 2022

arXiv:2212.04128 submitted to PRL

$B^+ \to K^+ \tau^{\pm} \ell^{\mp} - \text{linearity check}$

arXiv:2212.04128 submitted to PRL

 $B^+ \to K^+ \tau^{\pm} \ell^{\mp} - \text{Results!}$

S. Watanuki @KPS (Busan)

arXiv:2212.04128 submitted to PRL

No signal excess in any mode!

$R^+ \rightarrow K^+ \tau^{\pm} \ell^{\mp} - \text{Results!}$

BR U.L. (90% CL)	$OS_{\mu} \times 10^5$	$SS_{\mu} \times 10^5$	OS _e x10 ⁵
Babar	<2.8	<4.5	<1.5
LHCb	<3.9	_	-
Belle (Preliminary)	<0.65	<2.97	<1.71

- The most stringent limit on $\mathscr{B}(B^+ \to K^+ \tau \ell)$ except for OS_e
- a PRL paper submission is nearly ready ($\mathcal{O}(\text{week})$ or so)

FYI

Recently LHCb set U.L. on $B^0 \rightarrow K^{*0}\tau\mu$ modes: $BR(B^0 \to K^{*0}\tau^+\mu^-) < 1.0 \times 10^{-5} (90\% \text{ CL})$ $BR(B^0 \to K^{*0}\tau^-\mu^+) < 0.8 \times 10^{-5} (90\% \text{ CL})$ 2022/10/20 S. Watanuki @KPS (Busan)

arXiv:2212.04128 submitted to PRL

Our OS_{μ} is more stringent!

Search for $B^0 \to \Lambda \psi_{DS}$

- B-mesogenesis explains Baryogenesis and DM with B decays
 - Elor, Escudero, Nelson [PRD 99, 035031 (2019)] \checkmark
 - ✓ predicts $\mathscr{B}(B^0 \to \Lambda \psi_{\text{DS}} + \text{meson}) > 10^{-4}$
- Existing limits
 - $\checkmark \mathscr{B}(B^0 \to \Lambda \psi_{\text{DS}}) \lesssim 2 \times 10^{-4}$ by ALEPH (EPJC 2001)

PRD 105, L051101 (202

Search for $B^0 \to \Lambda \psi_{DS}$

- B-mesogenesis explains Baryogenesis and DM with B de
 - ✓ Elor, Escudero, Nelson [PRD 99, 035031 (2019)]
 - ✓ predicts $\mathscr{B}(B^0 \to \Lambda \psi_{\text{DS}} + \text{meson}) > 10^{-4}$
- Belle strategy
 - \checkmark Hadronic B-tagging, and look for Λ + *nothing* in the signal-B
 - ✓ use $E_{\rm ECL}$ for background suppression $E_{\rm ECL} < 0.57 \sim 0.74$ depending on $m_{\psi_{\rm DS}}$

 B^0

16

14

12

0.5

0.0

Search for $B^0 \to \Lambda \psi_{DS}$

- No signal; $\mathscr{B}(B^0 \to \Lambda \psi_{\text{DS}}) < (2.1 \sim 3.8) \times 10^{-5}$
- Excludes $m_{\psi_{DS}} \gtrsim 3.0$ GeV for "type-2" and "type-3" hypotheses[†]

Alonso-Alvarez, Elor, Escudero, PRD 104, 035028 (2021)

Youngjoon Kwon (Yonsei U.)

Dec. 16, 2022

PRD 105, L051101 (2022)

Invisible particle from t

Belle II arXiv:2212.03634 (*to* PRL)

Search for $\tau \to \ell^+ \alpha^{\bar{\nu}_{\tau} e^-}$

- for α being an *invisible* particle
- previous searches by Mark III (1985) and $\widetilde{AR}^{3\pi} = \sum_{i=1}^{singlation:} \widetilde{p}_{i=1}^{i=62.8 \text{ fb}^{-1}}$
- event topology
 - \checkmark I-vs-3 (3-prong for tag side)
- τ pseudo-rest-frame by approx. $E_{\tau}^{\text{CM}} \simeq \sqrt{s/2}$

$$\hat{p}_{\tau} \approx -\frac{\overrightarrow{p}_{tag}}{|\overrightarrow{p}_{tag}|}, \quad E_{\tau} \approx \sqrt{s/2}$$

 ν_{τ}

 $E_{ au} pprox E_{CM}$ /3211e 11

/ents / (0.02[GeV/c]) 90 80 01

0.2

0.00

0.25

0.50

arXiv:2212.03634 submitted to PRL

Search for $\tau \to \ell^+ \alpha^{\bar{\nu}_{\tau} e^-}$

- for α being an *invisible* particle
- previous searches by Mark III (198
- event topology
 - \checkmark I-vs-3 (3-prong for tag side)
- τ pseudo-rest-frame by approx. E_{τ}^{0}

$$\hat{p}_{\tau} \approx -\frac{\overrightarrow{p}_{tag}}{|\overrightarrow{p}_{tag}|}, \quad E_{\tau} \approx \sqrt{s/2}$$

 $\nu_{ au}$

	$\times 10^4$		
$E_{\tau} \approx E$	CMS /Belle II	τ→eα(0.0 GeV/c²) , τ→πππν	
\rightarrow \rightarrow	Simplation: $\int L = 62.8 \text{ fb}^{-1}$	$\tau \rightarrow e\alpha(1.4 \text{ GeV/c}^2)$, τ $\rightarrow n\pi n\nu$	
$P(z) = \frac{n}{2} \frac{n}{2} \frac{n}{2} \frac{n}{2} \frac{n}{2}$	$\pi = \sum_{i=1}^{n} p_i$	<i>□□□□□□□□□□□□□</i>	
ob) and AN		Other backgrounds	
	1.0 0.02[GeV/c])		
$CM \sim \sqrt{c/2}$	utile and a second		
$z - \sqrt{3/2}$			
	0.4		
Table I: Requ	irements on even	t thrust, missing momentu	ım
polar angle, ar	nd tag hemisphere	particles" total center-of-ma	ass
energy and m	ass. 0.00 0.25 0.50 0.	.75 1.00 1.25 1.50 1.75 2.00	
		P _{ps} [GeV/C]	
	$\tau^- \to e^- \alpha$	$\tau^- ightarrow \mu^- \alpha$	
Thrust	[0.90, 0.99]	[0.90, 1.00]	
$ heta_{ m miss}$	$[20^{\circ}, 160^{\circ}]$	$[20^\circ, 160^\circ]$	
$E_{3h}^{ m CM}$	[1.2, 5.3] GeV	$[1.1, 5.3] { m GeV}$	
M_{3h}	[0.5, 1.7] GeV/c	² $[0.4, 1.7]$ GeV/ c^2	

Π

arXiv:2212.03634 submitted to PRL

Results for $\tau \rightarrow \ell^+ \alpha$

- We find no signal excess and set 9 $\mathscr{B}(\tau \to \ell \alpha)/\mathscr{B}(\tau \to \ell \nu \bar{\nu})$
- Most stringent limits in these chai

Results for $\tau \rightarrow \ell^+ \alpha$

- We find no signal excess and set 95% CL upper limits on $\mathscr{B}(\tau \to \ell \alpha)/\mathscr{B}(\tau \to \ell \nu \bar{\nu})$
- Most stringent limits in these channels to date

M_{lpha}	${\cal B}_{\mulpha}/{\cal B}_{\muar u u}$
$[\operatorname{GeV}/c^2]$	$(\times 10^{-3})$
0.0	-9.4 ± 3.7
0.5	-3.2 ± 3.9
0.7	2.7 ± 3.4
1.0	1.7 ± 5.4
1.2	-0.2 ± 2.4
1.4	0.9 ± 0.9
1.6	-0.3 ± 0.5

Observed UL at 95% CL

∫Ldt = 62.8 fb⁻¹

 $= \alpha)/B$

arXiv:2212.03634 submitted to PRL

Youngjoon Kwon (Yonsei U.)

Dec. 16, 2022

Search for a heavy neutrino in τ decays at Belle

 $\pi\pi e$ (a) and $\pi\pi\mu$ (b) in data. The signal region is shown as a red ellipse.

FIG. 4. Final distributions of $M(\nu_h)$ for $\pi\pi e$ and $\pi\pi\mu$ reconstruction modes in data. The filled bistograms are for candidates with

FIG. 5. Upper limits at 90% CL on $|U_{\tau}||U_e|$ and $|U_{\tau}||U_{\mu}|$.

Creativity is essential to particle physics, cosmology, and to mathematics, and to other fields of science, just as it is to its more widely acknowledged beneficiaries - the arts and humanities.

Lisa Randall

