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HW

* Install Qiskit / PennyLane / TensorFlow Quantum in your
laptop or google colab.

* Create your IBM Quantum account (for IBMQ Lab and
IBMQ Composer).

* Try simple Qiskit examples
— Example 1 with single gates on colab
— Example 2 with single qubit circuit on colab
— Example 3 with multiple qubits and measurements

* Check out NVIDIA CUDA Quantum for hybrid quantum-
classical computing platform.

« Choose one QML example and run a sample code.
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Introduction

In 2023 ML4SCl is participating in the program as a GSoC umbrella organization. The ML4SClI
organization has partnered with the Google Summer of Code in 2023 to broaden student participation in
machine learning projects over a wide variety of scientific fields. ML4SCI participants will be mentored by
scientists at top research universities and laboratories on research projects at the cutting edge of science.
Projects span a wide range of scientific domains, including physics, astronomy, planetary science,
guantum information science and others.

For Students X

In 2023 GSoC students work with their mentors for 175 hrs to produce open-source codes that apply
machine learning solutions to solve science problems. Projects span three evaluation periods that allow
for students and mentors to collaborate on their project and evaluate student progress. Detailed rules for
the GSOC program can be found here. Interested students should look at the ideas page and contact the
mentors. Candidates will be asked to complete an evaluation test for each project they apply to
demonstrate the skills needed for the respective projects. In the next step, students will produce a
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Very brief history of quantum computing

* 1924 The term “quantum mechanics” used by M. Born

« 1925 Formulation of matrix mechanics by Heisenberg, Born, Jordan

« 1925-1927: Copenhagen interpretation

« 1930 “The principles of quantum mechanics” by Dirac

« 1935 Einstein, Podolsky and Rosen

« 1935 “Quantum entanglement” and Schrodinger’s cat by Schrodinger and Einstein
« 1947 “Spooky action at a distance” in a letter to M. Born by A. Einstein

« 1976 Attempt to create quantum information theory

* 1980 Quantum mechanical model of Turing machine by Benioff (ANL)

« 1981 “Simulating Physics with Computers" by Feynman

* 1985 Quantum Turing machine by Deutsch

* 1992 Deutsch-Jozsa algorithm

« 1993 First paper on quantum teleportation

« 1994 Shor’s factoring algorithm (cf RSA encryption)

* 1996 Grover search algorithm (Bell)

2004 First five photon entanglement by China

« 2011 First commercially available quantum computer (D-Wave)

« 2017 First quantum teleportation of independent single-photon qubit (14km) by China
« 2018 US National Quantum Initiative Act

« 2019 Google quantum supremacy

« 2022 Nobel prize (Aspect, Clauser , Zeilinger) for violation of Bell’s inequality
« 2022 433 qubits by IBM

« 2023 Breakthrough Prize (Bennet, Brassard, Shor, Deutsch)



Topics to discuss

Introduction to QM and Single qubit
System with two or more qubits
Quantum algorithms

Quantum Machine Learning

https://kckong.ku.edu/Yonsei2023/
https://ihepco.yonsei.ac.kr/event/247/
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Topics to discuss

. Single qubit, Dirac notation, Bloch sphere and measurements

Quantum circuits, singlet qubit gate, two qubit gates, three qubit
gates, no cloning, superdense coding, teleportation

Quantum algorithms, data embedding, Deutsch algorithm, Deutsch-
Jozsa, Bernstein-Vazirani algorithm, Simon’s algorithm

Quantum Fourier Transformation and quantum phase estimation
Shor's algorithm and Grover'’s algorithm
Quantum machine learning, distance-based classifier

Quantum optimization, QUBO, Adiabatic theorem, variational quantum
algorithms

QAOA, FALQON, ADAPT-QAOA
. Single qubit-classifier using data re-uploading

10. Harrow-Hassidim-Lloyd Algorithm (Ax=Db)
11. Quantum error correction, bit flip error correction, stabilizer formalism,

phase flip error correction



Machine Learning?



Universal Approximation Theorem

« A feed-forward network with a single hidden layer containing a finite
number of neurons can approximate continuous functions on compact
subsets of R,"under mild assumptions on the activation function.

Let ¢ : R — R be a nonconstant, bounded, and continuous function (called the activation function). Let
I,, denote the m-dimensional unit hypercube [0, 1]™. The space of real-valued continuous functions on I,,,
is denoted by C(I,,,). Then, given any ¢ > 0 and any function f € C(I,,), there exist an integer N, real

constants v;, b; € R and real vectors w; € R™ for ¢ = 1,..., N, such that we may define:

N
F(x) = Z Vi p (w;rm + bi) as an approximate realization of the function f; that is,
i=1

|F(z) — f(z)| <e for all z € I,,,. In other words, functions of the form F(z) are dense in C(I,,,).

1-
A. N. Kolmogorov, 1957 S(x) 1 e”
€PTr) = pu—
G. Cybenko, 1989 with sigmoid activation l1+e® e*+1 |

K. Hornik, 1991, importance of the multilayer architecture
Z. Lu et al, 2017, with deep neural network and RelLu activation | =




Let p > 0 be a fixed number and f(x) be a periodic function
with period 2p, defined on (—p, p). The Fourier series of f(x) is
a way of expanding the function f(x) into an infinite series
involving sines and cosines:

f(x) = % + Zan Cos(mm) | an Siﬂ(@) (2.1)
n=1 p n=1 p

where ag, a,, and b, are called the Fourier coefficients of f(x),
and are given by the formulas

1 [P 1 [P nwT
apg = ];/_p f(x) dz, ap = —/ f(x)cos(——) dx, (2.2)
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Neural network is a function-approximator.

flx)=x3+x2-x-1

2

Rectified Linear Unit

RelLU

-2 \

Example by Joe Klein

RelLu = max(0, x)




flx)=x3+x2-x-1

ny(x) = Relu(—5x — 7.7)

‘ na(x) = Relu(—1.2x — 1.3)
n3(x) = Relu(1l.2z + 1)
ny(x) = Relu(1.2z — .2)

ns(x) = Relu(2x — 1.1)
ne(x) = Relu(bx — 5)

F(z) = —n1(x) — na(x) — na(x)

+ n4(x) + ns(z) + ne(x)




flx)=x®+x2-x-1

;

F(z) - f(z)| <e
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Why Machine Learning?



CHALLENGE BlG DATA Taken from J. Duarte’s talk
» HL-LHC will reach 1 exabyte of data per year

1 PB=1000 TB
1 EB = 1000 PB

LHC Science Facebook

data uploads SKA Phase 1 -
~200 PB 180 PB 2023

~300 PB/year
Google science data

LHC — 2016
50 PB raw data

searches
98 PB
Google
Internet archive Yearly data volumes
~15 EB

HL-LHC — 2026
~600 PB Raw data

SKA Phase 2 — mid-2020’s HL-LHC — 2026
~1 EB science data ~1 EB Physics data



Dimensional Reduction in Collider
Experiments and Phenomenological Studies

DimenSiona"_ty_E?E event Franceschini, Kim, Kong, Matchev, Park, Shyamsundar, 2206.13431
100 4 Review of Modern Physics
Raw
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The common goal is to find the optimal low-dimensional observables.



Data is obtained via InspireHEP

@ e number of papers (in high energy physics) that has a keyword “Machine Learning”,

“Deep Learning”, “Artificial Intelligence” or “Neural Networks” in their title.

»non

Ae number of papers that has a keyword “Quantum Computer”, "Quantum Computing”,
“Quantum Annealing” or “Quantum Machine Learning” in their title.

700
G. Cybenko, 1989 with sigmoid activation
K. Hornik, 1991, importance of the multilayer architecture
D Simon, 1993, P. Shor 1994, 1995, L. Grover 1996
525
LEP (Large Electron Positron Collider), CERN, 1989-2000
350 \
Top quark discovery at Tevatron,
/ Fermilab, US, 1995 A
|75 . _ /
Higgs discovery at LHC, /
CERN, 2012 \ )
A/‘/
0 —A—A—A—A—A=A=A/A——A/A/A A-X A4 XA A A A A A A A A A A AKX

1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012 2015 2018 2021



Why Quantum Computing?

Quantum simulation
Cryptography

— Mathematics: factoring, hidden subgroup program, discrete
logarithm problem

Optimization

Search algorithm

Quantum Machine Learning

— Quantum Advantages?
* Learns better with small # of data
» Faster convergence X
* Less # of parameters

What are the interesting problems? ) = cos§|o> + ei‘psingll)




QML.: Variational Quantum Algorithms




Single Qubit

* Notation: alternative representation
* Normalization conditions

« Quantum measurements

» Different bases

» Operators on qubits

» Simple quantum circuits



Qubits and Pauli’s matrices

X 0 1
O = 0 = :
: <1 0 * Qubit (Jy). ly) = (wly) = 1):
0
0 —i _ 0 v 0 | 2
— ) — ly) =cos—|0) +e?Psin—|1)=]
2= (i o> 2 2!V [e’¢sin§
oy = 6% = <1 0 > » Conjugate (dual vector or bra-vector):
. (| = cos g(Ol + e % sin g(ll = (cosg e~i¢ sin%)

lo;, 0] = 0,0; — 0,0, = 2ie;;;0, + Asetof all|y) (ket-vector) forms a vector space (Hilbert

Y
{ } )5 space)
O:,0: =0.0:+0. .0 = .. ., _ _ _
L= SR Y« Pauli’s matrices are generators of rotations in two

6;0; = 25i]. + igl.jk o, dimensional complex plane.
_ (1 _ (0 . .
|0) = <O> , 1) = <1> Computational basis ) .z
R(0) = exp <—i > >
| £) = |O>i|1>=L<1> Hadamard basis
V2 V2 \*1



Dirac Bracket Notation

« Consider a quantum system with two orthonormal states, |0) and | 1):

(010) =(1]1)=1 (0]1)=(1]0) =1

(i])) =

* In general, a qubit can be in an arbitrary superposition state v = a,|0) + a;| 1)
with complex coefficients, a, and «,, which are related to the probabilities to

measure the state |0) and | 1), correspondlngly

P0) =
P(1) =

(0
(1

w)|”
W)

2

ef

a1

 The total probability is equal to 1, therefore p0) + P(1) =

2

2 2
|+ a | =1

« The two complex parameters «, and a, can be represented by the two real
parameters (angles) 8 and ¢ (considering the normalization condition,

ignoring the overall phase)

0<0<n,0L5¢p<2x

) . )
=cos—|0) +e?sin—|1) =
% 2| )+ e 2| )




Bloch Sphere

« Each (normalized) state of the qubit can be uniquely associated
with a point on the unit sphere.

(sin 6 cos gb\

ly) «— (0,¢) «— 7 =|sinfsing
. cosO

0 J
|0 : 0 =0,¢ = arbitrary — 7 = (0) |0>+ o \[es

0
|1): 8 =7x,¢ = arbitrary —> 7 = 0 P 6
ly) = cos§|0) + e“psmzll)

0
|+i): 0=n/2, ¢—ﬂ/2—>r—<l)
0

1 0
| =) 9:][/2,¢=][—)}/’\'=(O) |+ —): 9=7z/2,q§=3ﬂ/2—>f”=<—1)
0 0

|
|+ ) : 6=ﬂ/2,¢=0—>f=<()
0



Bloch Sphere

o {10Y, D)}, {]+),]=)) {|+i),]—1i)} are antipodal points on the
Bloch sphere.

* Antipodal points are orthonormal, i.e., they represent two
orthonormal qubit states (in Hilbert space)

* The antipodal point is obtained by 0 > 7—0 ¢ — m+¢

T—0

. 107 | @) = cos > |0) + @™ sin "

2

“ 1)

=sin—|0) — e cos —| 1)
0) + i|1) 2 2
Vz

0 . 0
7| = sin —(0| — e cos —(1
(| 2( | 2( |

0)+ 1) & >
V2

0 . 0
(1) = (sin >(0] = e cos (11 )
2 2
0 . 0
(cos—|0) + e sin — | 1))
2 2

6 .
_ — (P cin — 0 6
ly) = cos > 0) +e ‘Psmz 1) = sin — COS E<O|O> — cosasin 5(1 11) =0



Standard Model
(Periodic Table for Elementary Particles)

. H Fermions are described by
Higgs Grassmann numbers!

Fermions are spinors and not
invariant under 360 degree rotation.

electron

z/r—>z/f’=exp[i é]l/f

N | Qb

<2.2eVic? <0.17 MeV/c?
- De  Dn
2 e 1/,

ectron muon
\ neutrino

- SM is based on Lie Algebra.

(cf) Graded Lie Algebra or supersymmetry



Standard Model
(Periodic Table for Elementary Particles)
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Dirac and Vector Notation

dy

ket: |a) = <a1>, 2-dimensional complex vector
P (b
bra: (v = (b)) = <b1> = (b b¥)

Inner product: (v|a) = (b§ bf) <Z(1)> = b¥ay + b*a,

If a £ b, (b|a) is in general a complex number.

Outer product: |a)(p| = <Z(1)> (b bF) = <aob5“ aobi >

*k *k
a,bg a,bj

Standard basis: |0) = <(1)> and |1) = <(1)>

O10Yy=(1|1)=1 (O]1)=(1]|0)=1 (i]]) = 6;



Quantum Measurements

* When we perform a measurement onto an orthogonal basis, the
qubit collapses to one of the basis states with probability given by
the corresponding amplitude. For example, if we perform a
projection onto z-axis (the states |0) and |1)), we get

PO) = [(0]y) > = coszg and P(1) = |(1]y) | = sinzg.

« Born rule: the probability that a state |y) collapses during a
projective measurement onto a basis {|x), |x1)} IS given by
P() = |{x|y)|* and P&xb) = | (x"w) 7.

0

o, | 0 COS =
|1//)=cos—|0)+el¢sin—|l)= | 2

2 2 e“bsing



Qubits and Pauli’s matrices

X 0 1
O — 0 = :
: <1 0 * Qubit (Jy). ly) = (wly) = 1):
. COSE
0~ = 0 = 0 —i |W>=COS€|O>+€i¢Sin€|1>= | :
2 1 0 2 2 ' sin £
0<0<7,0<¢p<2m °
oy = 07 = <1 0 > » Conjugate (dual vector or bra-vector):
0 -1 (w| = cos g(OI + e ?sin g(ll = (COSg e sing)

lo;, 0] = 0,0; — 0,0, = 2ie;;;0, + Asetof all|y) (ket-vector) forms a vector space (Hilbert

Y
{ } )5 space)
O:,0: =0.0:+0. .0 = .. ., _ _ _
L= SR Y« Pauli’s matrices are generators of rotations in two

6;0; = 25i]. + igl.jk o, dimensional complex plane.
_ (1 _ (0 . .
|0) = <O> , 1) = <1> Computational basis ) 5.2
R(0) = exp <—i > >
| £) = =11 =L< ! ) Hadamard basis
V2 V2 \*1



Bloch Sphere

« Each (normalized) state of the qubit can be uniquely associated
with a point on the unit sphere.

(sin 6 cos gb\

ly) «— (0,¢) «— 7 =|sinfsing
. cosO

0 J
|0 : 0 =0,¢ = arbitrary — 7 = (0) |0>+ o \[es

0
|1): 8 =7x,¢ = arbitrary —> 7 = 0 P 6
ly) = cos§|0) + e“psmzll)

0
|+i): 0=n/2, ¢—ﬂ/2—>r—<l)
0

1 0
| =) 9:][/2,¢=][—)}/’\'=(O) |+ —): 9=7z/2,q§=3ﬂ/2—>f”=<—1)
0 0

|
|+ ) : 6=ﬂ/2,¢=0—>f=<()
0



Quantum Measurements

When we perform a measurement onto an orthogonal basis, the
qubit collapses to one of the basis states with probability given by
the corresponding amplitude. For example, if we perform a
projection onto z-axis (the states |0) and |1)), we get

PO) = [(0]y) > = coszg and P(1) = |(1]y) | = sinzg.

Points in the “Northern hemisphere” of the Bloch sphere are more
ikely to collapse to the North pole (the state |0)).

Points in the “Southern hemisphere” of the Bloch sphere are more
Ikely to collapse to the South pole (the state |1)).

Points on the “equator” of the Bloch sphere 6 = g are equally likely

to go on the North Pole or South pole.



Measurement in a different basis

. What if we want to measure our state |, =cos§|0>+ei¢sin§|1) in a
different basis? For example,

T 0 .0 1
9=5,¢:O — |+>=COSZ|O>+SIHZ|O>—$<|O>+|1>>
ng,gb:ﬂ — |—):cosglO)+e_i”sin§|O)=L(|O)—|1)>

V2

* Born rule: the probability that a state |y) collapses during a
projective measurement onto a basis {|x), |x1)} IS given by

P(x) = [{x|y) |’ Pty = | (xty) |7



Measurement in a different basis

2 ] 0 1 0 |

= |—cos — + —¢'?sin —

V22

P(+)= ‘%((Ol +(1|)(cos§|0)+ei¢sin§|1)>

:%<1+Sinecosgb>
| <|+>>:L<1 1><I0>>
P(—)=5(1—sin6’cosgb> =)/ 2 \1 -1\

Rewrite the state |y) in the new basis |+ ) and | —)

1 1
|0>=$(|+>+|—>) |1>=$(|+>—|—>)
ly) =cos§|0)+sin§ei¢|l) =%cos§<| + )+ | —)) +%sin§e’¢<|+)— | —))
=%(cos§+singei¢> | +)+%(cos§—3in§e’¢>|—)

2 2

0 0

1 , . 0 0
P(+) = —(cos— + sin —e“b)
2 2 2

1 , .
P(—)= ‘—(Cos— — sin —e“ﬁ)
2 2 2




Quantum Measurements

« Sequential selective measurement:

| a) | b) | c)
| ) AEH]l]|BH]|CH

* what is the probability of obtaining |c)?
— Probabilities are multiplicative, we get |{(c|b)|*|{b|a)|*

* Now let us sum over b to consider the total probability for going
through all possible b routes.

| a) §>ll Z));; |c)  sum of probabilities = Z;:’ [{c|bY?|(b|a)|?
15" = D (clb)bla)alb)(b]c)
i b



Quantum Measurements

* Now let us sum over b to consider the total probability for going
through all possible b routes.

| a) Sf: Zi;' [€) sum of probabilities = Zb: [(c|bY1*|(b]a)|?
1b") = ) (clb)pla)(alb)(b]c)
: b
 |f B-filter ié absent, probability is |{(c|a)|*
|a) | c)
) A CH
different

[(ela)|? = 1) (clb)(bla)|* =) (c|b)bla)a|b)(b'|c)
b b,b’



Quantum Circuits

* Quantum gates are repressed by unitary transformations
(matrices), U'U=UU" =T or U ' =U".

Input Output
Algorithm

| W) Uly)
U

. Asingle qubit has 2 basis states, |+ ) = <(1)> and |-)= (?)
- _ UOO UOI
U= Up 1001 + Uy [0XL T+ Uy DOT+ Uy [ (= { ™
10 11
« Single qubit gates: X, Y, Z, Hadamard, phase shift etc

« Two qubit gates: Controlled , SWAP gate, Controlled Phase shift, etc
« Three quiet gates: Toffoli gates etc



Single Qubit Gates

» X gate = Not operator = ¢y, = bit flip = NOT gate
1 ——

o (0 1\ _ N i
ox=X=(, ) =10)11+]1)0 o, |J) |JT9>

addition modulo 2

6,10y =11)  al1)=10)

* |Interpretation on the Bloch sphere
* rotation around x-axis by =
e maps [0) — |1)and [1) — |0)
e maps |+i) — |-idand |-i) — |+1i)

|ii):%<|0)ii|1)>



Single Qubit Gates: Z-gate

» /Z gate = o, = phase flip 1
7 or=2=(y °)) =1001- 11301

Z

6,10y =+10) o,]1)=—]|1) osj) = (=1Y1))

=y 8) () 25(2) -
=y 8) () 250) -

* Phase flip = rotation around z-axis by =

o, +i)=|—1)

o, —1) =|+1i)



Single Qubit Gates: Y and phase shift

» Y gate = ¢, = bit and phase flip = rotation around y-axis by =

—1 i
Oy — — . = 1OyO
Y <l O> XYZ

oyl +i) =4 |+1i) oyl +)=—1i|l—) oy|0) = +i|1)
oy| —i) =—|—1) oy| —)=+1i|+) oy|1) =—1i]0)
. Phase shift operator: R,= (. °)=p
ase snift operator. b= 0 it )
FOI’¢=7[, Rﬂ_:Z: (é _01> F0r¢=7l'/4,

1 0

FOF¢=JZ'/2, Rﬂ/2=S= <(1) O> =\/z Rﬂ: I'= <O eiil'/4> :ﬁ



Single Qubit Gates

« X gate = Not operator = oy, = bit flip = NOT gate

" _@7 ox|0) = |1)

ox|1) =10)
0X=X=<(1) (1)>=|0><1|+|1><0| oxlj)=1/® 1)
« Z gate = ¢, = phase flip o, =7 = <(1) _()1> _ 10)O] = 1)1
/
o710) =+ 10) ozl 1) =—11) oz 17) = (=1) 1))

« Y gate = o, = bit and phase flip

oy =¥ = (? Bl) — oyljy=i(=1Y]j@1)



Single Qubit Gates

« Hadamard operator: to switch between Z and X basis.

— H H=%<} _11)=%(|0><0|+|0><1|+|1><0|—|1><1|)
L (1 1)/(1 1 (1
w05l Q0 e
vzl o v\l Hlx) = —=(10) +-1y11)
I (1 1)\/(0 1 (1 V2
in=—(; 1) () =55 ()= mo=m

* The operator SH changes between the Z and Y basis.

* Most general 2 by 2 unitary matrix:

cos 2 e~sin 2 \
U'U=1 — 4 conditions 2 2

U =

— ip gin 0 Lild+2) 4
2 X 4 = 8 parameters \e Sin— e COS )




System with two or more qubits

- H, : Hilbert space spanned by {|0),]1)}

« H=H,® H, is called the Hilbert space of the combined system (tensor

product space of H, and H,.
H, H, H, ® H,

dim (H,) = 2 = dim (H,) 10) 10) |0) =10) ® |0) =|00)
dim (H, @ H,) = 4 1 1) =10)®][1)=10I)
2) =11)®10) =]10)

D=1 |1)=]|11)

« A system of two spin-1/2 particles (qubits):
computational basis
* n-qubit system: or standard basis

ly) = a|0--00) + @; | 0-++01) + @y | 0-+-10) + -+ + @t | 1-+-11)

21
2

2 Nl =1

=0



Separable vs Entangled states

Separable states: if a quantum state |y) is given by tensor product of two
states, i.e., If |[y) =|a) ® |f), |w) is separable.

[00) =10)®10), [01) =10)® [1)

Entangled states: if a quantum state is not separable, |y) is an entangled
state.

v) =%(|OO>+|11>)

19) =%(|00>+ o)) =%(|0>® 0 +10) @) =%|O>® (10)+11)

— if Bob measures |0), Alice still has 50% probability for |0) and |1).

Entangled states are crucial resources for QC, as there is no classical analog.
« Top quark pair production leads to a system of two qubits.
Density matrix: more later



Tensor Products of Operators

Linearity: (a,A, + a,4,) ® = a,A; ® B+ a,A, ® B

Each term in a tensor product acts on its own component:

(A®B)|mn)=(A®B)(Im)Q® |n)) =A|m) @ B|n)

T Reducibl
Multiplication: (A®B)(C®D) = (AC® BD) repris:ﬁ'taﬁon
Matrix representation: l

a ( \ ( \
la) = ay|0) +a;|1) = (a()) a, % %o

| weln=(“)e () =| ||
b ’ S\ bi) <b0> a1 b
_ (%o a

w»—%u»+mu>—<h) o)) s,
Cartesian product: A=A XAy X XA, ={(a,ay,"+,a,)| g, € A}}

a=(a;,a,--,a,) €A 2a=a2a,,--,2a,)

dim(A, X A,) = dim(A4,) + dim(A,) R*=R xR

Tensor product: A=A1®A),|a) €Ay, |ay €A
2<|a1> ® |a2)) = (2|a1>) ® |ay) =a)® (2|a2))



Tensor Products of Operators

« Tensor product: A=A Q@A |a)) €Ay, |ay €A
2(|“1> X |a2>) = (2|a1)) ® |ay) =a)® (2|a2))

For A with {a, ay, ---,a,} basis and B with {f, p,, -+, f,,} basis, dim(A) = n and dim(B) = m
A ® B with basis {al-,Bj} , dImM(AQ® B)=n-m
* Direct product:

For A with operation ¢ and B with operation o, one can consider A X B with operation x .

a€A (a,b) e AXB (a,b) x (a',b’)=(aea ,beb’)E AXB
beEeB \
element-wise operation
4 = (oo Cor B— boo Do
* For operators “\aw an ) "7 \p, by,

(aoo <boo bm) a) (boo b01>\ (aooboo aoobor  Ao1Poo 61011901\
A®B = (aoo ‘101>®<b00 b01> _ by b bio b1/ | _ [aoobro @oobir @oibio Goibry
%10 91 by by g (boo [901> g (boo b01> ajoboo  10bo1  Ar1boo  @11by

\10 by by U \by by ) \aloblo ayobyy an by anbn)




Tensor Products of Operators

Commuting operators: I=0y,X=0,,Y=0,,Z =04
3 3
i=0 i=0
act on 1st state act on 2nd state
Example:
Z10) =+110)
lyw) = | b1byb3) b,e {0,1} Z|1)y=—=1]1)

(Z)) = WlZ ly) = (D1 byb3| Z, @ I, ® I3 by by b3) = (b | Zy | 1)(by | 1| by){b3| I3]| b3)

= (=1)” Z1j) = (=1)1))



Tensor Products of Operators

Bell basis for a two-qubit system | DT = \/_ ( |00) + | 11))
|®7) =—(100) = |11)
(1w~}
L]
|‘P>—$(|01>+|10>)
_ 1
|T>—$(|01>—|10>)

Overall phase is not important.

V) ® (e?1w)) = (e?1v)) ® Iw) =e?(]v) ® |w))

%(me +e| 11)) = %ei‘ﬁ( |00) + | 11>> ~ %( |00) + | 11>>

Relative phase is important and observable. The interference term is crucial in QM.

L(ei(/;loo) + 11>> #L<|OO> + €' 11)) #%(M()) + | 11>>

V2 V2
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Direct Sum of Vector Space

« If Vwith bases {|a,), -, |a,)} and Wwith {|4,),---,|p,)} are vector

spaces, V@ Wis also a vector space with bases
(lay), - la), [B)s = | B,)} and dim(V & W) = dim(V) + dim(W)

(%,
v = (1) w)=(3) e lw) =}
om=0(y)  om=o})
xp)
0+ 0)(In) @ 1W)) = <31002> .




