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HW
• Install Qiskit / PennyLane / TensorFlow Quantum in your 

laptop or google colab.    
• Create your IBM Quantum account (for IBMQ Lab and 

IBMQ Composer). 
• Try simple Qiskit examples 

– Example 1 with single gates on colab   
– Example 2 with single qubit circuit on colab   
– Example 3 with multiple qubits and measurements 

• Check out NVIDIA CUDA Quantum for hybrid quantum-
classical computing platform. 

• Choose one QML example and run a sample code.







Very brief history of quantum computing
• 1924 The term “quantum mechanics” used by M. Born 
• 1925 Formulation of matrix mechanics by Heisenberg, Born, Jordan 
• 1925-1927: Copenhagen interpretation  
• 1930 “The principles of quantum mechanics” by Dirac 
• 1935 Einstein, Podolsky and Rosen  
• 1935 “Quantum entanglement” and Schrödinger’s cat by Schrodinger and Einstein 
• 1947 “Spooky action at a distance” in a letter to M. Born by A. Einstein 
• 1976 Attempt to create quantum information theory  
• 1980 Quantum mechanical model of Turing machine by Benioff (ANL) 
• 1981 “Simulating Physics with Computers" by Feynman 
• 1985 Quantum Turing machine by Deutsch 
• 1992 Deutsch-Jozsa algorithm 
• 1993 First paper on quantum teleportation  
• 1994 Shor’s factoring algorithm (cf RSA encryption) 
• 1996 Grover search algorithm (Bell) 
• 2004 First five photon entanglement by China 
• 2011 First commercially available quantum computer (D-Wave) 
• 2017 First quantum teleportation of independent single-photon qubit (14km) by China 
• 2018 US National Quantum Initiative Act 
• 2019 Google quantum supremacy  
• 2022 Nobel prize (Aspect, Clauser , Zeilinger) for violation of Bell’s inequality  
• 2022 433 qubits by IBM  
• 2023 Breakthrough Prize (Bennet, Brassard, Shor, Deutsch)



• Introduction to QM and Single qubit  
• System with two or more qubits 
• Quantum algorithms 
• Quantum Machine Learning 

• https://kckong.ku.edu/Yonsei2023/ 
• https://ihepco.yonsei.ac.kr/event/247/

Topics to discuss

https://kckong.ku.edu/Yonsei2023/
https://ihepco.yonsei.ac.kr/event/247/


1. Single qubit, Dirac notation, Bloch sphere and measurements 
2. Quantum circuits, singlet qubit gate, two qubit gates, three qubit 

gates, no cloning, superdense coding, teleportation 
3. Quantum algorithms, data embedding, Deutsch algorithm, Deutsch-

Jozsa, Bernstein-Vazirani algorithm, Simon’s algorithm 
4. Quantum Fourier Transformation and quantum phase estimation  
5. Shor's algorithm and Grover’s algorithm 
6. Quantum machine learning, distance-based classifier  
7. Quantum optimization, QUBO, Adiabatic theorem, variational quantum 

algorithms 
8. QAOA, FALQON, ADAPT-QAOA 
9. Single qubit-classifier using data re-uploading 
10. Harrow-Hassidim-Lloyd Algorithm (Ax=b) 
11.Quantum error correction, bit flip error correction, stabilizer formalism, 

phase flip error correction  

Topics to discuss



Machine Learning?



Universal Approximation Theorem
•  A feed-forward network with a single hidden layer containing a finite 

number of neurons can approximate continuous functions on compact 
subsets of R, under mild assumptions on the activation function.n

• A. N. Kolmogorov, 1957 
• G. Cybenko, 1989 with sigmoid activation 
• K. Hornik, 1991, importance of the multilayer architecture  
• Z. Lu et al, 2017, with deep neural network and ReLu activation
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Let  be a nonconstant, bounded, and continuous function (called the activation function). Let 
 denote the m-dimensional unit hypercube . The space of real-valued continuous functions on 

is denoted by . Then, given any  and any function , there exist an integer , real
constants  and real vectors  for , such that we may define:

as an approximate realization of the function ; that is,

for all . In other words, functions of the form  are dense in .

This still holds when replacing  with any compact subset of .

The universal approximation theorem for width-bounded networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function  and any , there exists a fully-connected ReLU
network  with width , such that the function  represented by this network satisfies

The theorem of limited expressive power for width-  networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function  satisfying that  is a positive measure set
in Lebesgue measure, and any function  represented by a fully-connected ReLU network  with width 

, the following equation holds:

Representation theorem
No free lunch theorem
Stone–Weierstrass theorem
Fourier series

See also
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The Basics Fourier series Examples

Fourier series

Let p > 0 be a fixed number and f(x) be a periodic function

with period 2p, defined on (�p, p). The Fourier series of f(x) is
a way of expanding the function f(x) into an infinite series

involving sines and cosines:

f(x) =
a0
2

+

1X

n=1

an cos(
n⇡x

p
) +

1X

n=1

bn sin(
n⇡x

p
) (2.1)

where a0, an, and bn are called the Fourier coe�cients of f(x),
and are given by the formulas

a0 =
1

p

Z p

�p
f(x) dx, an =

1

p

Z p

�p
f(x) cos(

n⇡x

p
) dx, (2.2)

bn =
1

p

Z p

�p
f(x) sin(

n⇡x

p
) dx,
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Figure 3.1
The mother function of the Haar basis (a = 1, b = ½); Approximation with the Haar basis (n = 30)

Comment:
If we want an approximation with n + 1 Haar functions, the simplest construction is:
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We excluded a from the parameters, because changing a has no real effect on the
threshold function. Proving the approximation of the feed-forward neural networks by
building the Haar basis (1st order spline basis) is theoretically correct, but that
construction doesn’t give us an effective way of approximating functions. We can
notice that the number of used neurons can be reduced:
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At the left side 2(n+1) neurons required, but with a single trick, we can reduce it to:
n+1. With the reduced number of neurons the weights of the approximation are:
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Figure 3.2
The tent mother function; Approximation with tent functions (n = 10)

Comment:
We can use the trick of reducing the number of neurons again, and the similar
recursive formulas are valid for the weights as in case of the threshold function.

3.4. Case of the Logistic Function:

Theorem 3.4.1 (approximation with the logistic function):
An arbitrary continuous function, defined on [0,1] can be arbitrary well uniformly
approximated by a multilayer feed-forward neural network with one hidden layer
using the logistic function as activation function (ϕ) .

Idea of a proof (3.4.1):
With the notations of theorem 7.2. We can build a bell shaped basis/mother function
again with the trick of arranging the neurons (we can take the difference of two
shifted logistic function):

)()(),,( baxbaxbax −−+= ϕϕ

),,(),( baxxax ii −=
n
ixi =

Without the loss of generality we can fix b to an arbitrary nonzero value. We can
notice that the width of the bells depends only on the parameter a and the height of the
bells depends on the parameter b. For the proof we want the weighted sum of our
basis functions to interpolate at the points xi:
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Figure 3.3
The bell shaped basis function (a = 1, b = 1); Approximation with the bells (n = 8)

Hypothesis:
This kind of approach can be generalised to any monotone-increasing activation
function that has 0)0( ≠ϕ . For example for the threshold function and the piecewise
linear function. (See Appendix1 for an example in MapleV)

We used Gershgorin’s theorem during the idea of proof of theorem 3.4.1:

Gershgorin’s theorem:
Each eigenvalue of n

jiijaA 1,)( == lies in at least one of the Gershgorin disks:

≤− ∑
≠ij

ijii aazz : { }ni ..1∈

Comment:
If each pair of the n Gershgorin disks has an empty intersection, then each disk
contains exactly one eigenvalue of A, which is therefore simple.



ReLu = max(0, x)

Neural network is a function-approximator.
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Example by Joe Klein

Rectified Linear Unit
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Why Machine Learning?



▸ HL-LHC will reach 1 exabyte of data per year

CHALLENGE: BIG DATA
1 PB = 1000 TB
1 EB = 1000 PB

Taken from J. Duarte’s talk



Particle Flow

Object Reconstruction

Kinematic 
Variables
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Simulation

Parton Shower 
Hadronization

Parton level 
Events 

Lagrangian
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100
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Experiments Theory

Phenomenology

Hit Reconstruction

106

Raw

Dimensionality per event

Dimensional Reduction in Collider 
Experiments and Phenomenological Studies

The common goal is to find the optimal low-dimensional observables.

ML techniques applied at each stage

Franceschini, Kim, Kong, Matchev, Park, Shyamsundar,  2206.13431 
Review of Modern Physics
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The number of papers (in high energy physics) that has a keyword “Machine Learning”, 
“Deep Learning”, “Artificial Intelligence” or “Neural Networks” in their title.

Data is obtained via InspireHEP

• G. Cybenko, 1989 with sigmoid activation 
• K. Hornik, 1991, importance of the multilayer architecture  
• D Simon, 1993,  P. Shor 1994, 1995,  L. Grover 1996

LEP (Large Electron Positron Collider), CERN, 1989-2000

Top quark discovery at Tevatron,  
Fermilab, US, 1995

The number of papers that has a keyword “Quantum Computer”, ”Quantum Computing”,
“Quantum Annealing” or “Quantum Machine Learning” in their title.

Higgs discovery at LHC,  
CERN, 2012



Why Quantum Computing?
• Quantum simulation 
• Cryptography  

– Mathematics: factoring, hidden subgroup program, discrete 
logarithm problem  

• Optimization  
• Search algorithm 
• Quantum Machine Learning 

– Quantum Advantages?  
• Learns better with small # of data 
• Faster convergence 
• Less # of parameters 

• What are the interesting problems?



QML: Variational Quantum Algorithms



Single Qubit

• Notation: alternative representation 
• Normalization conditions  
• Quantum measurements 
• Different bases 
• Operators on qubits 
• Simple quantum circuits 



Qubits and Pauli’s matrices
σ1 = σx = (0 1

1 0)

σ3 = σz = (1 0
0 −1)

σ2 = σy = (0 −i
i 0 )

R( ⃗θ) = exp (−i
⃗θ ⋅ ⃗σ
2 )

{σi , σj} ≡ σi σj + σj σi = 2δij

[σi , σj] ≡ σi σj − σj σi = 2iϵijkσk

σi σj = 2δij + i ϵijk σk

• Qubit ):  

 

• Conjugate (dual vector or bra-vector):   

 

• A set of all  (ket-vector) forms a vector space (Hilbert 
space)  

• Pauli’s matrices are generators of rotations in two 
dimensional complex plane.

( |ψ⟩ , |ψ⟩) ≡ ⟨ψ |ψ⟩ = 1

|ψ⟩ = cos
θ
2

|0⟩ + eiϕ sin
θ
2

|1⟩ =
cos θ

2

eiϕ sin θ
2

⟨ψ | = cos
θ
2

⟨0 | + e−iϕ sin
θ
2

⟨1 | = (cos θ
2 e−iϕ sin θ

2 )
|ψ⟩

|0⟩ ≡ (1
0) , |1⟩ ≡ (0

1)
| ± ⟩ ≡

|0⟩ ± |1⟩

2
=

1

2 ( 1
±1)

Computational basis

Hadamard basis



Dirac Bracket Notation

• Consider a quantum system with two orthonormal states,  and : 

• In general, a qubit can be in an arbitrary superposition state  
with complex coefficients,  and , which are related to the probabilities to 
measure the state  and , correspondingly. 

• The total probability is equal to 1, therefore  

• The two complex parameters  and  can be represented by the two real 
parameters (angles)  and  (considering the normalization condition, 
ignoring the overall phase)

|0⟩ |1⟩

ψ = α0 |0⟩ + α1 |1⟩
α0 α1

|0⟩ |1⟩

P(0) + P(1) = |α0 |2 + |α1 |2 = 1

α0 α1

θ ϕ

⟨0 |0⟩ = ⟨1 |1⟩ = 1 ⟨0 |1⟩ = ⟨1 |0⟩ = 1 ⟨i | j⟩ = δij

P(0) = |⟨0 |ψ⟩ |2 = |α0 |2

P(1) = |⟨1 |ψ⟩ |2 = |α1 |2

|ψ⟩ = cos
θ
2

|0⟩ + eiϕ sin
θ
2

|1⟩ =
cos θ

2

eiϕ sin θ
2

0 ≤ θ < π , 0 ≤ ϕ < 2π



• Each (normalized) state of the qubit can be uniquely associated 
with a point on the unit sphere.

Bloch Sphere

|ψ⟩ ⟷ (θ, ϕ) ⟷ ̂r =
sin θ cos ϕ
sin θ sin ϕ

cos θ

|0⟩ : θ = 0 , ϕ = arbitrary ⟶ ̂r = (
0
0
1)

|1⟩ : θ = π , ϕ = arbitrary ⟶ ̂r = (
0
0

−1)
| + ⟩ : θ = π/2 , ϕ = 0 ⟶ ̂r = (

1
0
0)

| − ⟩ : θ = π/2 , ϕ = π ⟶ ̂r = (
−1
0
0 )

| + i⟩ : θ = π/2 , ϕ = π/2 ⟶ ̂r = (
0
1
0)

| + − ⟩ : θ = π/2 , ϕ = 3π/2 ⟶ ̂r = (
0

−1
0 )



•  are antipodal points on the 
Bloch sphere. 

• Antipodal points are orthonormal, i.e., they represent two 
orthonormal qubit states (in Hilbert space) 

• The antipodal point is obtained by  

{ |0⟩ , |1⟩}, { | + ⟩ , | − ⟩}, { | + i⟩ , | − i⟩}

Bloch Sphere

θ → π − θ , ϕ → π + ϕ

= sin
θ
2

|0⟩ − eiϕ cos
θ
2

|1⟩

| ψ̃⟩ = cos
π − θ

2
|0⟩ + ei(ϕ+π) sin

π − θ
2

|1⟩

⟨ψ̃ | = sin
θ
2

⟨0 | − e−iϕ cos
θ
2

⟨1 |

⟨ψ̃ |ψ⟩ = (sin
θ
2

⟨0 | − e−iϕ cos
θ
2

⟨1 |)
(cos

θ
2

|0⟩ + eiϕ sin
θ
2

|1⟩)
= sin

θ
2

cos
θ
2

⟨0 |0⟩ − cos
θ
2

sin
θ
2

⟨1 |1⟩ = 0



Standard Model  
(Periodic Table for Elementary Particles)

d = 3 (1)

µ = 0, 1, · · · , d (2)

x
µ = (ct, ~x) (3)

�i(x) (4)

 a↵f i(x) (5)

 ↵f i(x) (6)

A
a
µ(x) F

a
µ⌫(x) (7)

SO(1, 3) (8)
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x
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A
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 a↵f i(x) (5)

 ↵f i(x) (6)

A
a
µ(x) F

a
µ⌫(x) (7)

SO(1, 3) (8)

Fermions are described by 
Grassmann numbers!

Fermions are spinors and not 
invariant under 360 degree rotation.

T → Tc

∂

∂θ

2
= 0,  ⅆθ =

∂

∂θ

ψ → ψ′ = expi
σ

2
· θ

 ψ

4 π

grassmann.nb     3

(cf) Graded Lie Algebra or supersymmetry
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- SM is based on Lie Algebra.
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Dirac and Vector Notation

• ket:  , 2-dimensional complex vector|a⟩ = (a0
a1)

• bra:  ⟨b | = (|b⟩)† = (b0

b1)
†

= (b*0 b*1 )

• Inner product:  ⟨b |a⟩ = (b*0 b*1 ) (a0
a1) = b*0 a0 + b*1 a1

• If ,  is in general a complex number.a ≠ b ⟨b |a⟩

• Outer product: |a⟩⟨b | = (a0
a1) (b*0 b*1 ) = (a0b*0 a0b*1

a1b*0 a1b*1 )
• Standard basis:  and   |0⟩ = (1

0) |1⟩ = (0
1)

⟨0 |0⟩ = ⟨1 |1⟩ = 1 ⟨0 |1⟩ = ⟨1 |0⟩ = 1 ⟨i | j⟩ = δij



• When we perform a measurement onto an orthogonal basis, the 
qubit collapses to one of the basis states with probability given by 
the corresponding amplitude. For example, if we perform a 
projection onto z-axis (the states  and ), we get 

 and .
|0⟩ |1⟩

P(0) = |⟨0 |ψ⟩ |2 = cos2 θ
2

P(1) = |⟨1 |ψ⟩ |2 = sin2 θ
2

Quantum Measurements

• Born rule: the probability that a state  collapses during a 
projective measurement onto a basis  is given by 

 and .

|ψ⟩
{ |x⟩ , |x⊥⟩}

P(x) = |⟨x |ψ⟩ |2 P(x⊥) = |⟨x⊥ |ψ⟩ |2

|ψ⟩ = cos
θ
2

|0⟩ + eiϕ sin
θ
2

|1⟩ =
cos θ

2

eiϕ sin θ
2



Qubits and Pauli’s matrices
σ1 = σx = (0 1

1 0)

σ3 = σz = (1 0
0 −1)

σ2 = σy = (0 −i
i 0 )

R( ⃗θ) = exp (−i
⃗θ ⋅ ⃗σ
2 )

{σi , σj} ≡ σi σj + σj σi = 2δij

[σi , σj] ≡ σi σj − σj σi = 2iϵijkσk

σi σj = 2δij + i ϵijk σk

• Qubit ):  

 

• Conjugate (dual vector or bra-vector):   

 

• A set of all  (ket-vector) forms a vector space (Hilbert 
space)  

• Pauli’s matrices are generators of rotations in two 
dimensional complex plane.

( |ψ⟩ , |ψ⟩) ≡ ⟨ψ |ψ⟩ = 1

|ψ⟩ = cos
θ
2

|0⟩ + eiϕ sin
θ
2

|1⟩ =
cos θ

2

eiϕ sin θ
2

⟨ψ | = cos
θ
2

⟨0 | + e−iϕ sin
θ
2

⟨1 | = (cos θ
2 e−iϕ sin θ

2 )
|ψ⟩

|0⟩ ≡ (1
0) , |1⟩ ≡ (0

1)
| ± ⟩ ≡

|0⟩ ± |1⟩

2
=

1

2 ( 1
±1)

Computational basis

Hadamard basis

0 ≤ θ < π , 0 ≤ ϕ < 2π



• Each (normalized) state of the qubit can be uniquely associated 
with a point on the unit sphere.

Bloch Sphere

|ψ⟩ ⟷ (θ, ϕ) ⟷ ̂r =
sin θ cos ϕ
sin θ sin ϕ

cos θ

|0⟩ : θ = 0 , ϕ = arbitrary ⟶ ̂r = (
0
0
1)

|1⟩ : θ = π , ϕ = arbitrary ⟶ ̂r = (
0
0

−1)
| + ⟩ : θ = π/2 , ϕ = 0 ⟶ ̂r = (

1
0
0)

| − ⟩ : θ = π/2 , ϕ = π ⟶ ̂r = (
−1
0
0 )

| + i⟩ : θ = π/2 , ϕ = π/2 ⟶ ̂r = (
0
1
0)

| + − ⟩ : θ = π/2 , ϕ = 3π/2 ⟶ ̂r = (
0

−1
0 )



• When we perform a measurement onto an orthogonal basis, the 
qubit collapses to one of the basis states with probability given by 
the corresponding amplitude. For example, if we perform a 
projection onto z-axis (the states  and ), we get 

 and .
|0⟩ |1⟩

P(0) = |⟨0 |ψ⟩ |2 = cos2 θ
2

P(1) = |⟨1 |ψ⟩ |2 = sin2 θ
2

Quantum Measurements

• Points in the “Northern hemisphere” of the Bloch sphere are more 
likely to collapse to the North pole (the state ). 

• Points in the “Southern hemisphere” of the Bloch sphere are more 
likely to collapse to the South pole (the state ). 

• Points on the “equator” of the Bloch sphere  are equally likely 

to go on the North Pole or South pole.

|0⟩

|1⟩

θ =
π
2



Measurement in a different basis

• Born rule: the probability that a state  collapses during a 
projective measurement onto a basis  is given by

|ψ⟩
{ |x⟩ , |x⊥⟩}

• What if we want to measure our state  in a 
different basis? For example, 

|ψ⟩ = cos
θ
2

|0⟩ + eiϕ sin
θ
2

|1⟩

θ =
π
2

, ϕ = 0 ⟶ | + ⟩ = cos
θ
4

|0⟩ + sin
θ
4

|0⟩ =
1

2 ( |0⟩ + |1⟩)
θ =

π
2

, ϕ = π ⟶ | − ⟩ = cos
θ
4

|0⟩ + e−iπ sin
θ
4

|0⟩ =
1

2 ( |0⟩ − |1⟩)

P(x) = |⟨x |ψ⟩ |2 P(x⊥) = |⟨x⊥ |ψ⟩ |2



Measurement in a different basis
P( + ) =

1

2 (⟨0 | + ⟨1 |)(cos
θ
2

|0⟩ + eiϕ sin
θ
2

|1⟩)
2

=
1

2
cos

θ
2

+
1

2
eiϕ sin

θ
2

2

=
1
2 (1 + sin θ cos ϕ)

P( − ) =
1
2 (1 − sin θ cos ϕ)

Rewrite the state  in the new basis  and |ψ⟩ | + ⟩ | − ⟩

|0⟩ =
1

2 ( | + ⟩ + | − ⟩) |1⟩ =
1

2 ( | + ⟩ − | − ⟩)

( | + ⟩
| − ⟩) =

1

2 (1 1
1 −1) ( |0⟩

|1⟩)

|ψ⟩ = cos
θ
2

|0⟩ + sin
θ
2

eiϕ |1⟩ =
1

2
cos

θ
2 ( | + ⟩ + | − ⟩) +

1

2
sin

θ
2

eiϕ( | + ⟩ − | − ⟩)
=

1

2 (cos
θ
2

+ sin
θ
2

eiϕ) | + ⟩ +
1

2 (cos
θ
2

− sin
θ
2

eiϕ) | − ⟩

P( + ) =
1

2 (cos
θ
2

+ sin
θ
2

eiϕ)
2

P( − ) =
1

2 (cos
θ
2

− sin
θ
2

eiϕ)
2



• Sequential selective measurement:  

• what is the probability of obtaining ? 
– Probabilities are multiplicative, we get  

• Now let us sum over  to consider the total probability for going 
through all possible  routes.

|c⟩
|⟨c |b⟩ |2 |⟨b |a⟩ |2

b
b

Quantum Measurements

A B C|α⟩
|a⟩ |b⟩ |c⟩

|a⟩ |b⟩ |c⟩
|b′ ⟩
|b′ ′ ⟩

sum of probabilities = ∑
b

|⟨c |b⟩ |2 |⟨b |a⟩ |2

: 
:

= ∑
b

⟨c |b⟩⟨b |a⟩⟨a |b⟩⟨b |c⟩



• Now let us sum over  to consider the total probability for going 
through all possible  routes.

b
b

Quantum Measurements

A C|α⟩
|a⟩ |c⟩

|a⟩ |b⟩ |c⟩
|b′ ⟩
|b′ ′ ⟩

sum of probabilities = ∑
b

|⟨c |b⟩ |2 |⟨b |a⟩ |2

: 
:

= ∑
b

⟨c |b⟩⟨b |a⟩⟨a |b⟩⟨b |c⟩

• If B-filter is absent, probability is |⟨c |a⟩ |2

|⟨c |a⟩ |2 = |∑
b

⟨c |b⟩⟨b |a⟩ |2 = ∑
b,b′ 

⟨c |b⟩⟨b |a⟩⟨a |b′ ⟩⟨b′ |c⟩

different



• Quantum gates are repressed by unitary transformations 
(matrices),  .U†U = UU† = I or U−1 = U†

Quantum Circuits

Algorithm
Input Output

U
|ψ⟩ U |ψ⟩

• Single qubit gates: X, Y, Z, Hadamard, phase shift etc 
• Two qubit gates: Controlled , SWAP gate, Controlled Phase shift, etc 
• Three quiet gates: Toffoli gates etc

U = U00 |0⟩⟨0 | + U01 |0⟩⟨1 | + U10 |1⟩⟨0 | + U11 |1⟩⟨1 | = (U00 U01
U10 U11)

• A single qubit has 2 basis states,  and  | + ⟩ = (1
0) | − ⟩ = (0

1)



Single Qubit Gates
• X gate = Not operator =  = bit flip = NOT gateσX

σX = X = (0 1
1 0) = |0⟩⟨1 | + |1⟩⟨0 | σx | j⟩ = | j ⊕ 1⟩

X ⊕

σx |0⟩ = |1⟩ σx |1⟩ = |0⟩

• Interpretation on the Bloch sphere 
• rotation around x-axis by  
• maps  and  

• maps  and 

π
|0⟩ ⟶ |1⟩ |1⟩ ⟶ |0⟩

| + i⟩ ⟶ | − i⟩ | − i⟩ ⟶ | + i⟩

addition modulo 2

| ± i⟩ =
1

2 ( |0⟩ ± i |1⟩)



Single Qubit Gates: Z-gate

• Z gate =  = phase flipσZ

Z

σZ = Z = (1 0
0 −1) = |0⟩⟨0 | − |1⟩⟨1 |

σZ | j⟩ = (−1) j | j⟩σZ |0⟩ = + |0⟩ σZ |1⟩ = − |1⟩

σZ | + ⟩ = (1 0
0 01) 1

2 (1
1) =

1

2 ( 1
−1) = | − ⟩

σZ | − ⟩ = (1 0
0 01) 1

2 ( 1
−1) =

1

2 (1
1) = | + ⟩

• Phase flip = rotation around z-axis by π
σZ | + i⟩ = | − i⟩

σZ | − i⟩ = | + i⟩



Single Qubit Gates: Y and phase shift
• Y gate =  = bit and phase flip = rotation around y-axis by σY π

σY = Y = (0 −i
i 0 ) = iσXσZ

σY | + i⟩ = + | + i⟩

σY | − i⟩ = − | − i⟩

σY | + ⟩ = − i | − ⟩

σY | − ⟩ = + i | + ⟩

σY |0⟩ = + i |1⟩

σY |1⟩ = − i |0⟩

• Phase shift operator: Rϕ = (1 0
0 eiϕ) = Pϕ

For , ϕ = π Rπ = Z = (1 0
0 −1)

For , ϕ = π/2 Rπ/2 = S = (1 0
0 i) = Z

For , ϕ = π/4

Rπ = T = (1 0
0 eiπ/4) = 4 Z



Single Qubit Gates
• X gate = Not operator =  = bit flip = NOT gateσX

σX = X = (0 1
1 0) = |0⟩⟨1 | + |1⟩⟨0 |

σX |0⟩ = |1⟩

σX |1⟩ = |0⟩

σX | j⟩ = | j ⊕ 1⟩

• Z gate =  = phase flipσZ

X ⊕

Z

σZ = Z = (1 0
0 −1) = |0⟩⟨0 | − |1⟩⟨1 |

σZ | j⟩ = (−1) j | j⟩σZ |0⟩ = + |0⟩ σZ |1⟩ = − |1⟩

• Y gate =  = bit and phase flipσY

σY = Y = (0 −i
i 0 ) = iσXσZ

σY | j⟩ = i (−1) j | j ⊕ 1⟩



Single Qubit Gates
• Hadamard operator: to switch between Z and X basis.

H H =
1

2 (1 1
1 −1) =

1

2 ( |0⟩⟨0 | + |0⟩⟨1 | + |1⟩⟨0 | − |1⟩⟨1 |)

H |0⟩ =
1

2 (1 1
1 −1) (1

0) =
1

2 (1
1) = | + ⟩

H |1⟩ =
1

2 (1 1
1 −1) (0

1) =
1

2 ( 1
−1) = | − ⟩

H | + ⟩ = |0⟩

H | − ⟩ = |1⟩

• Most general 2 by 2 unitary matrix:

U =
cos θ

2 e−iλ sin θ
2

eiϕ sin θ
2 ei(ϕ+λ) cos θ

2

U†U = 1 ⟶ 4 conditions
2 × 4 = 8 parameters

• The operator SH changes between the Z and Y basis.

H |x⟩ =
1

2 ( |0⟩ + (−1)x |1⟩)



System with two or more qubits
•  : Hilbert space spanned by  

•   is called the Hilbert space of the combined system (tensor 
product space of  and .

Hi { |0⟩, |1⟩}

H ≡ H1 ⊗ H2
H1 H2

dim (H1) = 2 = dim (H2)
dim (H1 ⊗ H2) = 4

H1 H2 H1 ⊗ H2

|0⟩ |0⟩ |0⟩ = |0⟩ ⊗ |0⟩ = |00⟩
|1⟩ |1⟩ |1⟩ = |0⟩ ⊗ |1⟩ = |01⟩

|2⟩ = |1⟩ ⊗ |0⟩ = |10⟩

|3⟩ = |1⟩ ⊗ |1⟩ = |11⟩
• A system of two spin-1/2 particles (qubits): 

2 ⊗ 2 = 3 ⊕ 1
computational basis  

or standard basis• n-qubit system:

|ψ⟩ = α0 |0⋯00⟩ + α1 |0⋯01⟩ + α2 |0⋯10⟩ + ⋯ + α2n−1 |1⋯11⟩
2n−1

∑
i=0

|αi |
2 = 1



Separable vs Entangled states
• Separable states: if a quantum state  is given by tensor product of two 

states, i.e., if ,  is separable. 

• Entangled states: if a quantum state is not separable,  is an entangled 
state.

|ψ⟩
|ψ⟩ = |α⟩ ⊗ |β⟩ |ψ⟩

|ψ⟩

|00⟩ = |0⟩ ⊗ |0⟩ , |01⟩ = |0⟩ ⊗ |1⟩

|ψ⟩ =
1

2 ( |00⟩ + |11⟩)
|ϕ⟩ =

1

2 ( |00⟩ + |01⟩) =
1

2 ( |0⟩ ⊗ |0⟩ + |0⟩ ⊗ |1⟩) =
1

2
|0⟩ ⊗ (|0⟩ + |1⟩)

 if Bob measures , Alice still has 50% probability for  and .⟶ |0⟩ |0⟩ |1⟩

• Entangled states are crucial resources for QC, as there is no classical analog.  
• Top quark pair production leads to a system of two qubits. 

• Density matrix: more later



Tensor Products of Operators
• Linearity:  

• Each term in a tensor product acts on its own component: 

• Multiplication:         

• Matrix representation:

(a1A1 + a2A2) ⊗ = a1A1 ⊗ B + a2A2 ⊗ B

(A ⊗ B)(C ⊗ D) = (AC ⊗ BD)

(A ⊗ B) |m n⟩ = (A ⊗ B)( |m⟩ ⊗ |n⟩) = A |m⟩ ⊗ B |n⟩

|a⟩ = a0 |0⟩ + a1 |1⟩ = (a0
a1)

|b⟩ = b0 |0⟩ + b1 |1⟩ = (b0

b1)
|a⟩ ⊗ |b⟩ = (a0

a1) ⊗ (b0

b1) =
a0 (b0

b1)
a1 (b0

b1)
=

a0 b0

a0 b1

a1 b0

a1 b1

• Cartesian product: 

• Tensor product: 

Reducible  
representation

A = A1 × A2 × ⋯ × An = {(a1, a2, ⋯, an) | ai ∈ Ai}

⃗a = (a1, a2, ⋯, an) ∈ A 2 ⃗a = (2a1,2a2, ⋯,2an)

A = A1 ⊗ A2 , |a1⟩ ∈ A1 , |a2⟩ ∈ A2

2( |a1⟩ ⊗ |a2⟩) = (2 |a1⟩) ⊗ |a2⟩ = |a1⟩ ⊗ (2 |a2⟩)

dim(A1 × A2) = dim(A1) + dim(A2)

dim(A1 ⊗ A2) = dim(A1) ⋅ dim(A2)

ℝ2 = ℝ × ℝ



Tensor Products of Operators
• Tensor product: A = A1 ⊗ A2 , |a1⟩ ∈ A1 , |a2⟩ ∈ A2

2( |a1⟩ ⊗ |a2⟩) = (2 |a1⟩) ⊗ |a2⟩ = |a1⟩ ⊗ (2 |a2⟩)
dim(A1 ⊗ A2) = dim(A1) ⋅ dim(A2)

For A with {α1, α2, ⋯, αn} basis and B with {β1, β2, ⋯, βm} basis , dim(A) = n and dim(B) = m

A ⊗ B with basis {αiβj} , dim(A ⊗ B) = n ⋅ m

• Direct product: 

For A with operation ∙ and B with operation ∘ , one can consider A × B with operation ⋆ .

a ∈ A (a , b) ∈ A × B
b ∈ B

(a , b) ⋆ (a′ , b′ ) = (a ∙ a′ , b ∘ b′ ) ∈ A × B

element-wise operation

• For operators A = (a00 a01
a10 a11) , B = (b00 b01

b10 b11)

A ⊗ B = (a00 a01
a10 a11) ⊗ (b00 b01

b10 b11) =
a00 (b00 b01

b10 b11) a01 (b00 b01

b10 b11)
a10 (b00 b01

b10 b11) a11 (b00 b01

b10 b11)
=

a00b00 a00b01 a01b00 a01b01

a00b10 a00b11 a01b10 a01b11

a10b00 a10b01 a11b00 a11b01

a10b10 a10b11 a11b10 a11b11



Tensor Products of Operators
• Commuting operators: I = σ0 , X = σ1 , Y = σ2 , Z = σ3

σi σj = δij + i ϵijk σk M =
3

∑
i=0

aiσi , ai ∈ ℂ H = H† =
3

∑
i=0

aiσi , ai ∈ ℝ

|a⟩ = a0 |0⟩ + a1 |1⟩ ∈ H1 |b⟩ = b0 |0⟩ + b1 |1⟩ ∈ H2

I1 ⊗ I2 = I1

X1 ⊗ I2 = X1

Z1 ⊗ I2 = Z1

Y1 ⊗ I2 = Y1

I1 ⊗ I2 = I2

I1 ⊗ X2 = X2

I1 ⊗ Z2 = Z2

I1 ⊗ Y2 = Y2

Z1Z2 = Z2Z1

act on 1st state act on 2nd state

|ψ⟩ = |b1b2b3⟩ bi ∈ {0 ,1}

⟨Z1⟩ = ⟨ψ |Z1 |ψ⟩ = ⟨b1 b2 b3 |Z1 ⊗ I2 ⊗ I3 |b1 b2 b3⟩ = ⟨b1 |Z1 |b1⟩⟨b2 | I2 |b2⟩⟨b3 | I3 |b3⟩

= (−1)b1

Z1 |0⟩ = + 1 |0⟩
Z1 |1⟩ = − 1 |1⟩

Z1 | j⟩ = (−1) j | j⟩

• Example:



Tensor Products of Operators
• Bell basis for a two-qubit system |Φ+⟩ =

1

2 ( |00⟩ + |11⟩)
|Φ−⟩ =

1

2 ( |00⟩ − |11⟩)
|Ψ+⟩ =

1

2 ( |01⟩ + |10⟩)
|Ψ−⟩ =

1

2 ( |01⟩ − |10⟩)

|v⟩ ⊗ (eiϕ |w⟩) = (eiϕ |v⟩) ⊗ |w⟩ = eiϕ( |v⟩ ⊗ |w⟩)
1

2 (eiϕ |00⟩ + eiϕ |11⟩) =
1

2
eiϕ( |00⟩ + |11⟩) ∼

1

2 ( |00⟩ + |11⟩)

1

2 (eiϕ |00⟩ + |11⟩) ≠
1

2 ( |00⟩ + eiϕ |11⟩) ≠
1

2 ( |00⟩ + |11⟩)

• Overall phase is not important.

• Relative phase is important and observable. The interference term is crucial in QM.



Partial Trace
• Partial trace

A ⊗ B = (a00 a01
a10 a11) ⊗ (b00 b01

b10 b11) =
a00 (b00 b01

b10 b11) a01 (b00 b01

b10 b11)
a10 (b00 b01

b10 b11) a11 (b00 b01

b10 b11)

=

a00b00 a00b01 a01b00 a01b01

a00b10 a00b11 a01b10 a01b11

a10b00 a10b01 a11b00 a11b01

a10b10 a10b11 a11b10 a11b11

(a00 tr(B) a01 tr(B)
a10 tr(B) a11 tr(B)) = tr(B)(a00 a01

a10 a11)

(b00 tr(A) b01 tr(A)
b10 tr(A) b11 tr(A)) = tr(A)(b00 b01

b10 b11)

tr2

tr1

tracing out 
2nd system

tracing out 
1st system



Direct Sum of Vector Space

• If  with bases  and  with  are vector 
spaces,  is also a vector space with bases 

 and 

V { |α1⟩, ⋯, |αn⟩} W { |β1⟩, ⋯, |βm⟩}
V ⊕ W

{ |α1⟩, ⋯, |αn⟩, |β1⟩, ⋯, |βm⟩} dim(V ⊕ W ) = dim(V ) + dim(W )

|v⟩ = (x1
x2) |w⟩ = (y1

y2) |v⟩ ⊕ |W⟩ =

x1
x2
y1
y2

O1 |v⟩ = O1(x1
x2) O2 |w⟩ = O2(y1

y2)

(O1 + O2)( |v⟩ ⊕ |W⟩) = (O1 0
0 O2)

x1
x2
y1
y2


