
Day 1 Recap
• Introduction:  ML and QML


– ML: Universal approximation theorem

– QML: parametrize the cost function with quantum algorithms 

and use classical optimizers

• Single qubit


– Bloch sphere

– Separable vs entangled states

– Computational basis/Hadamard basis

– Quantum circuits are expressed by unitary transformations 

and measurement 

– Measurement:  inner product / projection 

– Single qubit gates: X, Y, Z, Hadamard, etc


• A system of two or more qubits

– Tensor products 



Day 2 Plan
• Two qubit gates


– CNOT, SWAP

• No cloning

• Superdense coding

• Three qubit gates


– Controlled CNOT, Controlled SWAP

• Teleportation

• A simple QA with two qubits: Deutsch Algorithm

• Deutsch-Jozsa algorithm

• Bernstein-Vazirani Algorithm and Simon’s algorithm

• Quantum Fourier Transformation 



Two Qubit Gates: CNOT and CU gates
• CNOT gate = Controlled Not =Controlled X

• NOT operation is performed on 2nd qubit, when the 1st 

qubit is in state . Otherwise 2nd qubit is unchanged.|1⟩ ⊕

|00⟩ → |00⟩
|01⟩ → |01⟩

|10⟩ → |1⟩ ⊗ U |0⟩ = |1⟩ ⊗ (U00 |0⟩ + U01 |1⟩)
|11⟩ → |1⟩ ⊗ U |1⟩ = |1⟩ ⊗ (U10 |0⟩ + U11 |1⟩)

|00⟩′￼

|01⟩′￼

|10⟩′￼

|11⟩′￼

=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

|00⟩
|01⟩
|10⟩
|11⟩

(I 0
0 X) = exp (i

π
4

(I − Z1)(I − X2))
| i j⟩ → | i i ⊕ j⟩ (mod 2)

• Generally, controlled U-gate

|00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → |11⟩
|11⟩ → |10⟩

U

CU = (I 0
0 U) = exp (i

1
2

(I − Z1)H2) for U = eiH2 = (U00 U01
U10 U11)

U: any arbitrary 
unitary matrix.


U=X, Y, Z leads to 
CX, CY, CZ gates.

eiθA = cos θ + i A sin θ for A2 = I



Two Qubit Gates: SWAP and CPhase gates
• SWAP gate: X

X

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

=
1
2 [I ⊗ I + X ⊗ X + Y ⊗ Y + Z ⊗ Z]

|ab⟩ → |ba⟩ |00⟩ → |00⟩
|01⟩ → |10⟩
|10⟩ → |01⟩
|11⟩ → |11⟩

• CPhase gate = Controlled phase shift: 
shift phase by  only if it acts on ϕ |1⟩

|ab⟩ → |ab⟩ eiϕ for a = b = 1
|ab⟩ otherwise

CPhase(ϕ) =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiϕ

= |0⟩⟨0 | ⊗ I + |1⟩⟨1 | ⊗ Pϕ , Pϕ = (1 0
0 eiϕ) = |0⟩⟨0 | + |1⟩⟨1 |eiϕ

CPhase(π) =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

= CZ = Controlled Z
Z



Two Qubit Gates: Bell state

• Example: how to obtain Bell state.

⊕
H|0⟩

|0⟩
|ψ⟩

|ψ⟩ = CNOT (H ⊗ I ) [|0⟩ ⊗ |0⟩]
= CNOT [ 1

2
( |0⟩ + |1⟩) ⊗ |0⟩]

= CNOT [ 1

2
( |00⟩ + |10⟩)]

=
1

2
( |00⟩ + |11⟩)

=
1

2

1
0
0
1

H =
1

2 (1 1
1 −1) =

1

2 ( |0⟩⟨0 | + |0⟩⟨1 | + |1⟩⟨0 | − |1⟩⟨1 |)
H |0⟩ = | + ⟩

H |1⟩ = | − ⟩

H | + ⟩ = |0⟩

H | − ⟩ = |1⟩

H |x⟩ =
1

2 ( |0⟩ + (−1)x |1⟩)



No-cloning theorem
• Unknown quantum states can not be copied or cloned.


– Suppose U is a unitary transformation that clones  
for all quantum state 


– Let  and  be two orthogonal quantum states.

U( |a⟩ |0⟩) = |a⟩ |a⟩

|a⟩
|a⟩ |b⟩

U( |a⟩ |0⟩) = |a⟩ |a⟩

U( |b⟩ |0⟩) = |b⟩ |b⟩

|c⟩ =
1

2 ( |a⟩ + |b⟩)

U( |c⟩ |0⟩) =
1

2 [U |a⟩ |0⟩ + U |b⟩ |0⟩]
=

1

2 [ |a⟩ |a⟩ + |b⟩ |b⟩]

U |c⟩ |0⟩ = |c⟩ |c⟩ =
1

2 ( |a⟩ + |b⟩) 1

2 ( |a⟩ + |b⟩)

=
1
2 ( |a⟩ |a⟩ + |a⟩ |b⟩ + |b⟩ |a⟩ + |b⟩ |b⟩)

≠



No-cloning theorem

• No unitary operation that can clone all quantum states.

• However it is possible to construct a quantum state from a known 

quantum state.


• It is possible to obtain n particles in an entangled state 
 from unknown state .


• It is not possible to create n particle state 
 from an unknown state 

.


• Profound implication in quantum information and error correction.

a |00⋯0⟩ + b |11⋯1⟩ a |0⟩ + b |1⟩

(a |0⟩ + b |1⟩) ⊗ ⋯ ⊗ (a |0⟩ + b |1⟩)
a |0⟩ + b |1⟩



Superdense Coding

⊕
H|0⟩1

|0⟩2

H |1⟩ =
1

2 ( |0⟩ − |1⟩)

CNOT |a b⟩ = |a a ⊕ b⟩

CNOT (H ⊗ I)( |0⟩1 ⊗ |0⟩2) = CNOT
1

2 ( |0⟩1 + |1⟩1) ⊗ |0⟩2

= CNOT
1

2 ( |00⟩ + |10⟩) =
1

2 ( |00⟩ + |11⟩)

Encoder Decoder

Entangled States

|q1⟩ |q2⟩

|q1⟩a

b

a

b

• How to create two entangled states
H |x⟩ =

1

2 ( |0⟩ + (−1)x |1⟩)

H |0⟩ =
1

2 ( |0⟩ + |1⟩)



Superdense Coding
a

b

A

B ⊕
H

⊕

a

b

a

b

(1) (2) (3) (4) (5)

(1)  are classical bits.a, b ∈ {0,1}

|ψ1⟩ =
1

2 [ |00⟩ + (−1)a |11⟩ ]

|ψ0⟩ =
1

2 [ |00⟩ + |11⟩ ]

• Initial state of qubits A 
and B is the entangled 
Bell state.

if a = 1, |1⟩ ⟶ − |1⟩

|0⟩ ⟶ + |0⟩

if a = 0, |0⟩ ⟶ + |0⟩

|1⟩ ⟶ + |1⟩

Controlled phase gate = CZ ( )ϕ = π



Superdense Coding
a

b

A

B ⊕
H

⊕

a

b

a

b

(1) (2) (3) (4) (5)

(2) If b=0, the first qubit stays unchanged. CNOT : |00⟩ ⟶ |00⟩
If b=1, the first qubit changes bit. |01⟩ ⟶ |01⟩

|10⟩ ⟶ |11⟩
|11⟩ ⟶ |10⟩|ψ2⟩ =

1

2 [ |b0⟩ + (−1)a | b̄1⟩ ]
b = 0 ⟺ b̄ = 1
b = 1 ⟺ b̄ = 0

|ψ1⟩ =
1

2 [ |00⟩ + (−1)a |11⟩ ]

|ψ0⟩ =
1

2 [ |00⟩ + |11⟩ ]



Superdense Coding
a

b

A

B ⊕
H

⊕

a

b

a

b

(1) (2) (3) (4) (5)

(3) Bob performs CNOT.

Alice gives her qubit to Bob.

|ψ3⟩ = CNOT |ψ2⟩

= CNOT
1

2 [ |b0⟩ + (−1)a | b̄1⟩]
=

1

2 [ |bb⟩ + (−1)a | b̄b⟩]

CNOT |b0⟩ = |bb⟩

CNOT | b̄1⟩ = | b̄b⟩

|ψ1⟩ =
1

2 [ |00⟩ + (−1)a |11⟩ ]

|ψ0⟩ =
1

2 [ |00⟩ + |11⟩ ]

|ψ2⟩ =
1

2 [ |b0⟩ + (−1)a | b̄1⟩ ]



Superdense Coding
a

b

A

B ⊕
H

⊕

a

b

a

b

(1) (2) (3) (4) (5)

(4) Bob applies Hadamard.

|ψ1⟩ =
1

2 [ |00⟩ + (−1)a |11⟩ ]

|ψ0⟩ =
1

2 [ |00⟩ + |11⟩ ]

|ψ2⟩ =
1

2 [ |b0⟩ + (−1)a | b̄1⟩ ]
|ψ3⟩ =

1

2 [ |bb⟩ + (−1)a | b̄b⟩]

|ψ4⟩ = (H ⊗ I) |ψ3⟩ = (H ⊗ I) 1

2 [ |bb⟩ + (−1)a | b̄b⟩]
=

1

2

1

2 [ |0b⟩ + (−1)b |1b⟩ + (−1)a( |0b⟩ + (−1)b̄ |1b⟩)]
=

1
2 [(1 + (−1)a) |0b⟩ + ((−1)b + (−1)a+b̄) |1b⟩] H |x⟩ =

1

2 ( |0⟩ + (−1)x |1⟩)



Superdense Coding
a

b

A

B ⊕
H

⊕

a

b

a

b

(1) (2) (3) (4) (5)

(4) Bob applies Hadamard.

|ψ1⟩ =
1

2 [ |00⟩ + (−1)a |11⟩ ]

|ψ0⟩ =
1

2 [ |00⟩ + |11⟩ ]

|ψ2⟩ =
1

2 [ |b0⟩ + (−1)a | b̄1⟩ ]
|ψ3⟩ =

1

2 [ |bb⟩ + (−1)a | b̄b⟩]

|ψ4⟩ =
1
2 [(1 + (−1)a) |0⟩ + ((−1)b + (−1)a+b̄) |1⟩] ⊗ |b⟩

=
1
2 [(1 + (−1)a) |0⟩ + (−1)b(1 − (−1)a) |1⟩] ⊗ |b⟩

(5) Bob performs measurements.



Superdense Coding

|ψ4⟩ = (−1)ab |ab⟩ = (−1)ab |a⟩ ⊗ |b⟩

0 0 1 1

0 1 0 0

1 0 1 0=2

1 1 0 1

a b b̄ |B⟩a + b̄ |A⟩

|ψ4⟩ = |A⟩ ⊗ |B⟩ =
1
2 [(1 + (−1)a) |0⟩ + ((−1)b + (−1)a+b̄) |1⟩] ⊗ |B⟩

|1⟩

|0⟩ |1⟩

|0⟩
− |1⟩

|0⟩

|1⟩

|0⟩

• Measurement of two qubits yield two classical bits a and b with 100% probability.

• By initially sharing some entanglement, one can send two bits of information by 

sending a single qubit.

• Shared entanglement  powerful resource for quantum cryptography→



Superdense Coding
a b

1

2 ( |00⟩ + |11⟩ )

Transformation

(Alice) New state

0 0

0 1

1 0

1 1

I ⊗ I |ψ0⟩

X ⊗ I |ψ0⟩

Z ⊗ I |ψ0⟩

Y ⊗ I |ψ0⟩

1

2 ( |00⟩ − |11⟩ )

1

2 ( |10⟩ + |01⟩ )

1

2 ( − |10⟩ + |01⟩ )

CNOT (Bob)
1

2 ( |00⟩ + |10⟩ )=
1

2 ( |0⟩ + |1⟩ )⊗ |0⟩

1

2 ( |00⟩ − |10⟩ )=
1

2 ( |0⟩ − |1⟩ )⊗ |0⟩

1

2 ( |11⟩ + |01⟩ )=
1

2 ( |1⟩ + |0⟩ )⊗ |1⟩

1

2 ( − |11⟩ + |01⟩ )=
1

2 ( − |1⟩ + |0⟩ )⊗ |1⟩

Alice gives 
her qubit to 

Bob.

|ψ0⟩ =
1

2 ( |00⟩ + |11⟩ )

H ⊗ I
|0⟩ ⊗ |0⟩

|1⟩ ⊗ |0⟩

|0⟩ ⊗ |1⟩

− |1⟩ ⊗ |1⟩

• Bob measures two 
qubits in the standard 
basis to obtain two-bit 
binary encoding of the 
number that Alice 
wishes to send.



Three Qubit Gates
• Toffoli gate=Controlled CNOT=CCNOT=CCX=T


– If 1st qubit is , perform CNOT on the second and third qubits.|1⟩

⊕

|000⟩
|001⟩
|010⟩

|111⟩

|011⟩
|100⟩
|101⟩
|110⟩

|110⟩
|111⟩

T =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

= (I 0
0 CNOT)

T = exp[i
π
8

(I − Z1)(I − Z2)(I − X3)]



Three Qubit Gates
• Fredkin gate=Controlled SWAP=CSWAP gate


– If 1st qubit is , swap the second and third qubits.|1⟩

|000⟩
|001⟩
|010⟩

|111⟩

|011⟩
|100⟩
|101⟩
|110⟩

T =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

= (I 0
0 SWAP)

X

X

|111⟩

|100⟩
|110⟩
|101⟩



Two Qubit Gates: Bell state

• Example: how to obtain Bell state.

⊕
H|0⟩

|0⟩
|ψ⟩

|ψ⟩ = CNOT (H ⊗ I ) [|0⟩ ⊗ |0⟩]
= CNOT [ 1

2
( |0⟩ + |1⟩) ⊗ |0⟩]

= CNOT [ 1

2
( |00⟩ + |10⟩)] =

1

2
( |00⟩ + |11⟩)

=
1

2
( |00⟩ + |11⟩)

=
1

2

1
0
0
1



An example: GHZ state
|0⟩

|0⟩ |ψ⟩⊕
H

⊕|0⟩

|ψ⟩ =
|000⟩ + |111⟩

2

Greenberger-Horne-Zeilinger (GHZ) state, 1989

|ψ⟩ = (I1 ⊗ CNOT23)(CNOT23 ⊗ I3)(H ⊗ I2 ⊗ I3) |0⟩ ⊗ |0⟩ ⊗ |0⟩

= (I1 ⊗ CNOT23) 1

2 ( |00⟩ + |11⟩) ⊗ |0⟩

= (I1 ⊗ CNOT23) 1

2 ( |000⟩ + |110⟩)
=

1

2 ( |0⟩ ⊗ CNOT |00⟩ + |1⟩ ⊗ CNOT |10⟩) =
|000⟩ + |111⟩

2

For N-qubit system: |GHZ⟩ =
|0⟩⊗N + |1⟩⊗N

2
=

|00⋯0⟩ + |11⋯1⟩

2

Maximally entangled quantum state• IBMQ

https://quantum-computing.ibm.com/composer/files/new?initial=N4IgdghgtgpiBcIDMBaAjgVwEYEsAuKA4gBIBaIANCGhAM5QIgDyACgKIByAigIIDKAWQAEAJgB0ABgDcAHTA4wAYwA2GACYwhM6jGU4sARjELF22WDQAnGAHMhaANpIAuubkALew4mu5igB5ePhReBr5KgY5hIY4i4QD08UIAAooA9qpQYLRC3hQGFHGUIBq0ipY4AA54OGlgjCAAvkA




Teleportation
• Use two classical bits and one Bell pair to move a state from 

qubit 1 to qubit 3.

Telemon

Alice Bob

Two classical bits

entangled 

qubit

entangled 

qubit

|ψ⟩

|0⟩

H

|0⟩

⊕⊕

H X Z |ψ⟩
CX

CZ



Teleportation
• Use two classical bits and one Bell pair to move a state from 

qubit 1 to qubit 3.

(1) (2) (3) (5)(4)

|ψ⟩

|0⟩

H

|0⟩

⊕⊕

H X Z |ψ⟩

Qubit 1

Qubit 2

Qubit 3

CX

CZ

initial state = |ψ0⟩ = |ψ⟩1 ⊗ |0⟩2 ⊗ |0⟩3

|ψ1⟩ = H3 |ψ⟩1 ⊗ |0⟩2 ⊗ |0⟩3 = |ψ⟩1 ⊗ |0⟩2 ⊗
1

2 ( |0⟩ + |1⟩)
|ψ2⟩ = CNOT3 |ψ⟩1 ⊗ |0⟩2 ⊗

1

2 ( |0⟩ + |1⟩)
= |ψ⟩1 ⊗

1

2 ( |0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩)
conditioned on q3



Teleportation

(1) (2) (3) (5)(4)

|ψ⟩

|0⟩

H

|0⟩

⊕⊕

H X Z |ψ⟩

Qubit 1

Qubit 2

Qubit 3

CX

CZ

|ψ2⟩ = |ψ⟩1 ⊗
1

2 ( |0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩)
for |ψ⟩ = α |0⟩ + β |1⟩|ψ3⟩ = CNOT1 |ψ⟩1 ⊗

1

2 ( |0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩)
= CNOT1 (α |0⟩ + β |1⟩) ⊗

1

2 ( |0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩)
= CNOT1

1

2 (α |000⟩ + α |011⟩ + β |100⟩ + β |111⟩)
=

1

2 (α |000⟩ + α |011⟩ + β |110⟩ + β |101⟩)



Teleportation

(1) (2) (3) (5)(4)

|ψ⟩

|0⟩

H

|0⟩

⊕⊕

H X Z |ψ⟩

Qubit 1

Qubit 2

Qubit 3

CX

CZ

|ψ3⟩ =
1

2 (α |000⟩ + α |011⟩ + β |110⟩ + β |101⟩)
|ψ4⟩ = H1 |ψ3⟩ =

1
2 [α( |000⟩ + |100⟩) + α( |011⟩ + |111⟩) + β( |010⟩ − |110⟩) + β( |001⟩ − |101⟩)]

qubit1 qubit2 correction step

0 0
0 1
1 0
1 1

α |0⟩ + β |1⟩
β |0⟩ + α |1⟩
α |0⟩ − β |1⟩

−β |0⟩ + α |1⟩

I
X
Z

ZX

final state

α |0⟩ + β |1⟩
α |0⟩ + β |1⟩
α |0⟩ + β |1⟩
α |0⟩ + β |1⟩

Initial state:

 |ψ⟩ = α |0⟩ + β |1⟩

qubit3



Quantum Algorithms and Data Embedding 
Classical Algorithm Quantum Algorithm

Dataset D

Input x

Output y

Dataset D

Input x

Output y

Input encoding

Processing

Read out

Quantum System

State preparation

Unitary evolution

Measurement



Quantum Algorithms and Data Embedding 
Classical data Requirement Quantum state

⃗x ∈ {0 ,1}⊗n

⃗x = (x1, x2, ⋯, xn) ∈ {0 ,1}

|ψ⟩ = |x1 x2 ⋯ xn⟩

= |x1⟩ ⊗ |x2⟩ ⊗ ⋯ ⊗ |xn⟩

⃗x ∈ ℝ2n

xi ∈ ℝ

2n

∑
i=1

|xi |
2 = 1 |ψx⟩ =

2n

∑
i=1

xi | i ⟩

A ∈ ℝ2n×2m

Aij ∈ ℝ
i = 1,⋯,2n

j = 1,⋯,2m ∑
i, j

|Aij |
2 = 1 |ψA⟩ = ∑

i, j

Aij | i ⟩ ⊗ | j ⟩

A ∈ ℝ2n×2n ∑
i

Aii = 1 A† = A
A*ij = Aji

ρA = ∑
i, j

Aij | i ⟩ ⟨ j |

x ∈ [ 0, 2π )x ∈ ℝ

A ∈ ℝ2n×2n

A ∈ ℝ2n×2n

A† = A

A† ≠ A (in general)

U(x) = e−ixH

HA = A

HA = ( 0 A
A† 0)

Basis

Encoding

Amplitude

Encoding

Time-evolution

Encoding

Hamiltonian

Encoding



Quantum versions of classical algorithms
• Any quantum computation is reversible prior to measurement. In contrast, 

classical computations are NOT in general reversible.

– (ex) classical NOT operation is reversible while AND, OR NAND are not

– Every classical computation does have a classical reversible analog 

(which takes slightly more computational resources)

– The construction of efficient classical reversible versions of arbitrary 

Boolean circuits easily generalizes to construction of quantum circuits 
(that implement general classical circuits)


• Any classical reversible computation with n-input and n-ouput simply 
permutes  bit stringsN = 2n

Classical computation:

Quantum computation:

π : ZN ⟶ ZN

Uπ :
N−1

∑
x=0

ax |x⟩ ⟶
N−1

∑
x=0

ax |π(x)⟩



Quantum versions of classical algorithms

• Any classical computation n-inputs and m-outputs defines 

1
0

3
2

1
0

3
2

πn = 2, N = 22 = 4 |0⟩ = |00⟩
|1⟩ = |01⟩
|2⟩ = |10⟩
|3⟩ = |11⟩

f : ZN ⟶ ZM

x ⟶ f(x)
N = 2n M = 2m

 can be extended to a reversible function   acting on n+m bits→ πf

πf : ZL ⟶ ZL L = 2n+m

(x, y) ⟶ (x, y ⊕ f(x))  = bitwise exclusive OR⊕

 = n-bit stringx  = m-bit stringy  = m-bit stringf(x) = n+m-bit stringL

(x,0) ⟶ (x, f(x))• For y=0,    acts like  :  π f

•   is reversible, there is a 
corresponding unitary transformation
πf

Uf

|x⟩
|y⟩

|x⟩
|y ⊕ f(x)⟩

Uf ( |x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y ⊕ f(x)⟩



Quantum versions of simple classical gates
Let   (binary variables)b0, b1 ∈ {0,1}

NOT

XOR

AND

already reversible X = |0⟩⟨1 | + |1⟩⟨0 |

b1 b0

0      0 
0      1 
1      0 
1      1 

b1 XOR b0

0
1
0
1

⊕
|b1⟩

|b1⟩ |b1 ⊕ b0⟩

|b1⟩

|00⟩ ⟶ |0 0 ⊕ 0⟩ = |00⟩
|01⟩ ⟶ |0 1 ⊕ 0⟩ = |01⟩
|10⟩ ⟶ |1 1 ⊕ 0⟩ = |11⟩
|11⟩ ⟶ |1 1 ⊕ 1⟩ = |10⟩

b1 b0

0      0 
0      1 
1      0 
1      1 

b1 AND b0

0
0
0
1

Impossible to perform a reversible AND 
operation with two bits.



Quantum versions of simple classical gates

⊕

|000⟩
|001⟩
|010⟩

|111⟩

|011⟩
|100⟩
|101⟩
|110⟩

|110⟩
|111⟩

|000⟩

T |b1 b0 0⟩ = |b1 b0 b1 ∧ b0⟩

T |b1 b0 1⟩ = |b1 b0 1 ⊕ b1 ∧ b0⟩
∧ = classical AND

• Toffoli gate = T = CCX = CCNOT = Controlled-controlled NOT gate

• Toffoli gate T can be used to construct a 
complete set of Boolean connectives 
(NOT, AND, XOR, NAND)
T |1 1 x⟩ = |1 1 ∼ x⟩
T |x y 0⟩ = |x y x ∧ y⟩
T |1 x y⟩ = |1 x x ⊕ y⟩
T |x y 1⟩ = |x y ∼ (x ∧ y)⟩

∼ = NOT

• Alternative:  Fredkin gate 
F=controlled SWAP

F |x 0 1⟩ = |x x ∼ x⟩
F |x y 1⟩ = |x (y ∨ x) y ∨ ( ∼ x)⟩
F |x 0 y⟩ = |x (y ∧ x) y ∧ ( ∼ x)⟩

T =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

= (I 0
0 CNOT)

X
X



A simple QA with two qubits
• Consider a simple function,   

• For possible functions


– Identity:                        and 

– Bit-flip function:            and 

– Constant function:         or   

f(x) : {0,1} ⟶ {0,1}

f(0) = 0 f(1) = 1
f(0) = 1 f(1) = 0
f(x) = 0 f(x) = 1

Uf

|x⟩
|y⟩

|x⟩
|y ⊕ f(x)⟩

Uf ( |x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y ⊕ f(x)⟩

one-bit domain one-bit range

• Reconstruct a unitary transformation   such that  
, which corresponds to 

Uf
(x, y) ⟶

Uf

(x, y ⊕ f(x))

1

0

X

1

0

Y

1

0

X

1

0

Y

1

0

X

1

0

Y

1

0

X

1

0

Y

•  is mode 2 addition:  and .


•  is not suitable because  is not unitary in general.


•

⊕ 0 ⊕ 0 = 0 = 1 ⊕ 1 0 ⊕ 1 = 1 = 0 ⊕ 1

x ⟶ f(x) f(x)

(x, y)
Uf⟶ (x, y ⊕ f(x))

Uf⟶ (x, y ⊕ f(x) ⊕ f(x)) = (x, y)

Uf ( |x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y ⊕ f(x)⟩



A simple QA with two qubits
• Take advantage of “quantum parallelism” (a qubit can have 

both  and )


• Apply Hadamard gate to the first qubit and then apply U.

|0⟩ |1⟩

Uf

|x⟩
|y⟩

|x⟩
|y ⊕ f(x)⟩

Uf

|0⟩
|0⟩

|0⟩
|0 ⊕ f(0)⟩

Uf
|0⟩
|0⟩

|ψ⟩H H |0⟩ =
1

2 ( |0⟩ + |1⟩)

|ψ⟩ = Uf (H |0⟩ ⊗ |0⟩) =
1

2
Uf ( |0⟩ + |1⟩) ⊗ |0⟩ =

1

2
Uf ( |0⟩ ⊗ |0⟩ + |1⟩ ⊗ |0⟩)

|ψ⟩ =
1

2
Uf ( |0⟩ ⊗ | f(0)⟩ + |1⟩ ⊗ | f(1)⟩) = ∑

x=0,1

1

2
|x⟩ ⊗ | f(x)⟩



|ψ⟩ =
1

2
Uf ( |0⟩ ⊗ | f(0)⟩ + |1⟩ ⊗ | f(1)⟩) = ∑

x=0,1

1

2
|x⟩ ⊗ | f(x)⟩

A simple QA with two qubits
•  contains information on both f(0) and f(1)


– Superposition of f(0) and f(1)

– Need to perform measurement to access the info

– However, measurement returns only one value of x and f(x)

|ψ⟩

Uf
|0⟩
|0⟩

|ψ⟩H





Deutsch Algorithm
• Deutsch algorithm exploits QA to obtain information about global 

property of f(x).

• A function of a single qubit can be either constant  or 

balanced 
f(0) = f(1)

f(0) ≠ f(1)

Uf

|0⟩

|1⟩

H

H

H

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩H ⊗ H
⟶

Uf
⟶

H ⊗ I
⟶

(1) (2) (3)

(1)

|ψ0⟩ ≡ |0⟩ ⊗ |1⟩ = |01⟩

|ψ1⟩ = H ⊗ H |01⟩ =
1

2 ( |0⟩ + |1⟩) ⊗
1

2 ( |0⟩ − |1⟩)
=

1
2 ( |00⟩ − |01⟩ + |10⟩ − |11⟩) =

1
2 (∑

x

|x⟩) ⊗ (|0⟩ − |1⟩)



Deutsch Algorithm

Uf

|0⟩

|1⟩

H

H

H

(1) (2) (3)

(2)

|ψ0⟩ ≡ |0⟩ ⊗ |1⟩ = |01⟩

|ψ1⟩ =
1
2 (∑

x

|x⟩) ⊗ (|0⟩ − |1⟩)
Uf ( |x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y ⊕ f(x)⟩

|ψ2⟩ = Uf |ψ1⟩

For :f(x) = 0 Uf [ |x⟩ ⊗ (|0⟩ − |1⟩)] = Uf ( |x⟩ ⊗ |0⟩) − Uf ( |x⟩ ⊗ |1⟩)

= |x⟩ ⊗ (|0⟩ − |1⟩) = (−1) f(x) |x⟩ ⊗ (|0⟩ − |1⟩)
= |x⟩ ⊗ |0 + f(x)⟩ − |x⟩ ⊗ |1 + f(x)⟩

For :f(x) = 1 Uf [ |x⟩ ⊗ (|0⟩ − |1⟩)] = |x⟩ ⊗ (|1⟩ − |0⟩) = (−1) f(x) |x⟩ ⊗ (|0⟩ − |1⟩)
|ψ2⟩ = Uf |ψ1⟩ =

1

2 [ ∑
x

(−1) f(x) |x⟩ ]⊗
1

2 ( |0⟩ − |1⟩)



Deutsch Algorithm

Uf

|0⟩

|1⟩

H

H

H

(1) (2) (3)

(3)

|ψ0⟩ ≡ |0⟩ ⊗ |1⟩ = |01⟩

|ψ1⟩ =
1
2 (∑

x

|x⟩) ⊗ (|0⟩ − |1⟩)
Uf ( |x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y ⊕ f(x)⟩

|ψ3⟩ = (H ⊗ I) |ψ2⟩ = (H ⊗ I) 1

2 [ ∑
x

(−1) f(x) |x⟩ ]⊗
1

2 ( |0⟩ − |1⟩)

H
1

2 [ ∑
x

(−1) f(x) |x⟩ ]=
1

2
H [ (−1) f(0) |0⟩ + (−1) f(1) |1⟩ ]

=
1

2 [ (−1) f(0) |0⟩ + |1⟩

2
+ (−1) f(1) |0⟩ − |1⟩

2 ]

=
1
2 [ ((−1) f(0) + (−1) f(1)) |0⟩ + ((−1) f(0) − (−1) f(1)) |1⟩ ]



Deutsch Algorithm
• Deutsch algorithm exploits QA to obtain information about global 

property of f(x).

• A function of a single qubit can be either constant  or 

balanced 
f(0) = f(1)

f(0) ≠ f(1)

|ψ3⟩ =
1
2 [((−1) f(0) + (−1) f(1)) |0⟩ + ((−1) f(0) − (−1) f(1)) |1⟩]

Uf

|0⟩

|1⟩
|ψ3⟩

H

H

H

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩H ⊗ H
⟶

Uf
⟶

H ⊗ I
⟶

• If measurement gives .|0⟩, f(0) = f(1) ⟶ f(x) = constant

• If measurement gives .|1⟩, f(0) ≠ f(1) ⟶ f(x) = balanced

• Can be generalized to function with multiple input values, Deutsch-
Josza algorithm



Basic operations with bit strings
•  and  are two n-bit strings:x y |x⟩ = |xn−1 xn−2 ⋯ x1 x0 ⟩

|y⟩ = |yn−1 yn−2 ⋯ y1 y0 ⟩
xi , yi ∈ {0,1}

• Hamming distance =  = the number of bits in which the 
two strings differ.   

dH(x, y)

• Hamming weight =  =  = the number of 1-bit in  = 
the Hamming distance between  and .

dH(x) dH(x,0) x
x 0

•  = the number of common 1-bit in  and  = x ⋅ y x y dH(x, y)

•  = the bitwise exclusive OR = bitwise addition under mod 2x ⊕ y

•  = the bitwise ANDx ∧ y

•  =  = the bit string that flips 0 and 1∼ x x ⊕ 111⋯1

|x⟩ = |10101 ⟩

|y⟩ = |11100 ⟩
dH(x, y) = ?



• x ⋅ y = dH(x, y)

Useful Identities

• x ⋅ y =
1
2 (1 − (−1)x⋅y) mod 2

• x ⋅ y + x ⋅ z = x ⋅ (y ⊕ z) mod 2

• dH(x ⊕ y) = dH(x) + dH(y) mod 2

•
2n−1

∑
x=0

(−1)x⋅x = 0

•
2n−1

∑
x=0

(−1)x⋅y = {2n , if y = 0
0 , otherwise

b/c  successive  and  terms cancel2i 2i + 1



Walsh-Hadamard Transformation
W ≡ H ⊗ H ⊗ ⋯ ⊗ H ≡ H⊗n

W |0⟩ =
1

N

N−1

∑
x=0

|x⟩

apply  to each qubit in an n-qubit systemH

N = 2n

• How does  act on ?W |r⟩

|r⟩ = |rn−1 rn−2 ⋯ r1 r0 ⟩

|s⟩ = |sn−1 sn−2 ⋯ s1 s0 ⟩
ri , si ∈ {0,1}

W |r⟩ = ∑
s

Wrs |s⟩

W |r⟩ = (H ⊗ H ⊗ ⋯ ⊗ H) |rn−1 rn−2 ⋯ r1 r0 ⟩

=
1

2
n [ |0⟩ + (−1)rn−1 |1⟩ ]⊗ ⋯ ⊗ [ |0⟩ + (−1)rn−1 |1⟩ ]

=
1

∑
sn−1=0

(−1)−sn−1⋅rn−1 |sn−1⟩⏟ =
1

∑
s0=0

(−1)−s0⋅r0 |s0⟩⏟=
1
2n

N−1

∑
s=0

(−1)−sn−1⋅rn−1 |sn−1⟩ ⊗ ⋯ ⊗ (−1)−s1⋅r1 |s1⟩ ⊗ (−1)−s0⋅r0 |s0⟩

W( |r⟩) =
1
2n

2n−1

∑
s=0

(−1)s⋅r |r⟩ Wrs = Wsr =
1

2
n (−1)r⋅s



Deutsch-Jozsa Algorithm
• Given a function  that is known to be either constant 

or balanced, and , determine 
whether the function   is constant or balanced. 

f : Z2n ⟶ Z2
Uf : |x⟩ ⊗ |y⟩ ⟶ |x⟩ ⊗ |x ⊕ f(x)⟩

f

• Phase change for a subset of basis vectors 
Consider a superposition : |ψ⟩ = ∑

i

ai | i⟩

Boolean function : f : Z2n ⟶ Z2 where f(x) = {1 , if x ∈ X ⊂ Z2n

0 , otherwise

Sϕ
X :

N−1

∑
x=0

ax |x⟩ ⟶ ∑
x∈X

ax eiϕ |x⟩ + ∑
x∉X

ax |x⟩

For ϕ = π Uf ( |ψ⟩ ⊗ | − ⟩) = Uf (∑
x∈X

ax eiϕ |x⟩ ⊗ | − ⟩) + Uf (∑
x∉X

ax |x⟩ ⊗ | − ⟩)
= − (∑

x∈X

ax |x⟩ ⊗ | − ⟩) + (∑
x∉X

ax |x⟩ ⊗ | − ⟩)
= ∑

x

(−1) f(x) |ψ⟩ ⊗ | − ⟩(−1) f(x)

where X = {x | f(x) = 0}



Deutsch-Jozsa Algorithm

Uf

|0⟩⊗n

|1⟩

|ψ⟩W

H | − ⟩

Uf

|0⟩⊗n

|1⟩

|ψ⟩W

H |1⟩H

|ψ0⟩ = W |0⟩ =
1

N

N−1

∑
x=0

|x⟩

|ψ⟩ = ∑
x

(−1) f(x) |ψ0⟩

Can reuse the ancilla qubit

|ψ⟩ =
1

N

N−1

∑
i=1

(−1) f(i) | i ⟩

N = 2n = dim of Hilbert space
n = number of qubits

|ϕ⟩ = W |ψ⟩ =
1

N

N−1

∑
i=1

(−1) f(i) W | i ⟩ =
1

N

N−1

∑
i=1

(−1) f(i)
N−1

∑
j=0

1

N
(−1)i⋅j | j ⟩

For constant f, (−1) f(i) = (−1) f(0) is a global phase .

|ϕ⟩ = (−1) f(0) 1
N ∑

i
(∑

i

(−1)i⋅j) | j⟩ = (−1) f(0) |0⟩
•

2n−1

∑
x=0

(−1)x⋅y = {2n , if y = 0
0 , otherwise

⏟ only nonzero when j = 0



Deutsch-Jozsa Algorithm
|ϕ⟩ = W |ψ⟩ =

1

N

N−1

∑
i=1

(−1) f(i) W | i ⟩ =
1

N

N−1

∑
i=1

(−1) f(i)
N−1

∑
j=0

1

N
(−1)i⋅j | j ⟩

For balanced f, |ϕ⟩ =
1
2n ∑

j
(∑

i∈X

(−1)i⋅j − ∑
i∉X

(−1)i⋅j) | j⟩ where X = {x | f(x) = 0}

 does not contain |ϕ⟩ |0⟩ .⟺
For   amplitude is zero.j = 0,

∑
i∈X

(−1)i⋅j − ∑
i∉X

(−1)i⋅j = 0 for j = 0

• Measurement of state  (in the standard basis) will return  with probability 1, if  
is constant, and will return a non-zero  with probability 1, if  is balanced.


• Classical algorithm must evaluate  at least  times to solve the problem with 
certainty, while quantum algorithm solves with a single evaluation of  .


• There is an exponential separation between the query complexity of the QA and 
query complexity of any classical algorithm.


• There are classical algorithms that solve the problem in fewer evaluations but only 
with high probability of success (not 100% probability).

|ϕ⟩ |0⟩ f
| j⟩ f

f 2n−1 + 1
Uf



Deutsch-Jozsa Algorithm

Uf

|0⟩⊗n

|1⟩

|ψ⟩W

H |1⟩H

W

H =
1

2 (1 1
1 −1) =

1

2 ∑
x,y∈{0,1}

(−1)xy |y⟩⟨x |

| + ⟩ =
1

2 ( |0⟩ + |1⟩)

| − ⟩ =
1

2 ( |0⟩ − |1⟩)

W ≡ H⊗n =
1

2 ∑
x,y∈{0,1}

(−1)xy |y⟩⟨x |

⊗n

H2 = I

=
1

2 ∑
x0,y0

(−1)x0y0 |y0⟩⟨x0 | ⊗ ⋯ ⊗
1

2 ∑
x0,y0

(−1)xn−1,yn−1 |yn−1⟩⟨xn−1 |

=
1

2
n ∑

x,y∈{0,1}⊗n

(−1)x⋅y |y⟩⟨x | x ⋅ y = xoy0 + x1y1 + ⋯ + xn−1yn−1

H⊗n 1

2
n ∑

x

|x⟩ = 0 H⊗n |0⟩ =
1

2
n ∑

x

|x⟩



Bernstein-Vazirani Algorithm
• A n-bit function , which outputs a singlet bit, is guaranteed 

to be of the form , where s is an unknown n-bit string and 
. Find the unknown string .


• Best classical algorithm uses  calls to . Each query gives 
one bit of information of  (because  outputs one bit).

f : {0,1}⊗n ⟶ {0,1}
fs(x) = x ⋅ s

x ⋅ s = x0s0 + ⋯ + xn−1sn−1 =
n−1

∑
i=0

xisi (mod 2) s = (s0s1⋯sn−1)

𝒪(n) fs(x) = x ⋅ s mod 2
s f

• How do we find  with less than  queries?  Use superposition (over all possible input bit strings)s n →



















Bernstein-Vazirani Algorithm
• A n-bit function , which outputs a singlet bit, is guaranteed 

to be of the form , where s is an unknown n-bit string and 
. Find the unknown string .


• Best classical algorithm uses  calls to . Each query gives 
one bit of information of  (because  outputs one bit).

f : {0,1}⊗n ⟶ {0,1}
fs(x) = x ⋅ s

x ⋅ s = x0s0 + ⋯ + xn−1sn−1 =
n−1

∑
i=0

xisi (mod 2) s = (s0s1⋯sn−1)

𝒪(n) fs(x) = x ⋅ s mod 2
s f

Uf ( |x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y ⊕ f(x)⟩

fs(x) = x ⋅ s mod 2

Uf = ∑
x

∑
y

|x⟩⟨x | ⊗ |y ⊕ f(x)⟩⟨y |

Uf = ∑
x∈{0,1}⊗n

∑
y∈{0,1}⊗n

|x⟩⟨x | ⊗ |y ⊕ s ⋅ x⟩⟨y |

Uf

|0⟩⊗n

|1⟩

|ψs⟩W

H | − ⟩

• How do we find  with less than  queries?  Use superposition (over all possible input bit strings)s n →

|ψs⟩ =
1

2
n ∑

x∈{0,1}⊗n

(−1) f(x) |x⟩ =
1

2
n ∑

x∈{0,1}⊗n

(−1)x⋅s |x⟩

Uf ( |ψ⟩ ⊗ | − ⟩) = ∑
x

(−1) f(x) |ψ⟩ ⊗ | − ⟩



Bernstein-Vazirani Algorithm
•  states are orthogonal!|ψs⟩ ⟨ψs |ψt⟩ = δst

⟨ψs |ψt⟩ =
1
2n ∑

x∈{0,1}⊗n

(−1)x⋅s ⟨x | ∑
y∈{0,1}⊗n

(−1)y⋅t |y⟩ =
1
2n ∑

x,y

(−1)x⋅s+y⋅t ⟨x |y⟩

=
1
2n ∑

x∈{0,1}⊗n

(−1)x⋅s+x⋅t =
1
2n ∑

x∈{0,1}⊗n

(−1)x⋅(s⊕t)

x ⋅ s + x ⋅ t = x ⋅ (s ⊕ t) (mod 2)

x ⋅ s = x0s0 + ⋯ + xn−1sn−1

∑
x∈{0,1}⊗n

(−1)x⋅k = ∑
x∈{0,1}⊗n

(−1)x0k0+⋯+xn−1kn−1 = ∑
x0∈{0,1}

(−1)x0k0 ∑
x1∈{0,1}

(−1)x1k1⋯ ∑
xn−1∈{0,1}

(−1)xn−1kn−1

= 2δk00 × 2δk10⋯ × 2δkn−10 = 2nδk0
2n−1

∑
x=0

(−1)x⋅y = {2n , if y = 0
0 , otherwise

⟨ψs |ψt⟩ = δs⊕t,0 = δs t

• Orthogonal set of vectors from a basis and we can “measure in this basis”.

• Equivalent to performing unitary transformation and measuring in the computational 

basis, from which we should be able to extract the string .s

W ≡ H⊗n =
1

2
n ∑

x,y∈{0,1}⊗n

(−1)x⋅y |y⟩⟨x | = ∑
y∈{0,1}⊗n

|y⟩⟨ψy |



Bernstein-Vazirani Algorithm
• Apply  to : H⊗n |ψs⟩ H⊗n |ψs⟩ = ∑

y

|y⟩⟨ψy |ψs⟩ = |s⟩

Us

|0⟩⊗n

|1⟩

|s⟩W

H |1⟩H

W
|0⟩

|1⟩

|s0⟩H

H

|1⟩

H

H

Us

H

H H

W

|0⟩

|0⟩

|s1⟩

|sn−1⟩
Circuit for Berstein-Vazirani algorithm

in 100% probability

• Simpler explanation: 
Berstein-Vazirani algorithm 
behaves as if it were a 
circuit consisting only of 
CNOT operations from 
ancilla to the qubits 
corresponding to 1-bit of s.

⊕
H H

H H

⊕

=



Bernstein-Vazirani Algorithm
• Berstein-Vazirani algorithm behaves as if it were a circuit consisting 

only of CNOT operations from ancilla to the qubits corresponding to 1-
bit of s. s = 01101

⊕
⊕

⊕

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|1⟩

|0⟩

|1⟩

|1⟩

|0⟩

|1⟩

|1⟩⊕ ⊕ ⊕

0

1

0

1

1

ancilla

• For s=01101, the black box for  
behaves as if it contained this circuit, 
consisting of CNOT gates for each 1-
bit of s.

Us • BV algorithm behaves as if it were 
implemented by this simple circuit, 
consisting of a CNOT for each 1-bit of 
s.



Simon’s Algorithm
• Given a 2-to-1 function    such that    for all , 

find the hidden string . (Simon’s algorithm shows structural 
similarities to Shor’s algorithm)

f f(x) = f(x ⊕ a) x ∈ ℤn
2

a ∈ ℤn
2

Uf : |x⟩ ⊗ |y⟩ ⟶ |x⟩ ⊗ |y ⊕ f(x)⟩ |x⟩ = |x0x1⋯xn−1⟩

xi ∈ {0,1} N = 2n

Uf

|0⟩⊗n
1

|0⟩2

W W

Uf [W |0⟩⊗n ⊗ |0⟩] = Uf
1

N ∑
x

|x⟩ ⊗ | f(x)⟩

• Suppose we perform a measurement on 2nd qubit and  is the 
measured value. Then the 1st qubit becomes .

f(x0)
1

2 ( |x0⟩ + | f (x0)⟩)



Simon’s Algorithm
• Apply Walsh-Hadamard:

W [ 1

2
( |x0⟩ + |x0 ⊕ a⟩)] =

1

2 [ 1

2
n ∑

y
{(−1)x0⋅y + (−1)(x0⊕a)⋅y} |y⟩]

W( |r⟩) =
1
2n

2n−1

∑
s=0

(−1)s⋅r |r⟩

Wrs = Wsr =
1

2
n (−1)r⋅s

=
1

2
n+1 ∑

y

(−1)x0⋅y (1 + (−1)a⋅y) |y⟩

=
1

2
n+1 ∑

y⋅a=even

(−1)x0⋅y |y⟩

Uf

|0⟩⊗n
1

|0⟩2

W W

• Measurement on the 1st qubit results in a random  such that .

• Unknown  must satisfy .

y y ⋅ a = 0 mod 2
ai y0a0 + y1a1 + ⋯yn−1an−1 = 0 mod 2



Simon’s Algorithm
• Repeat the same procedure until n linearly independent equations 

have been found. Each time computation is repeated, at least 50% of 
the time, the resulting equation can be independent.


• Repeating 2n times, there is a 50% chance that n-linearly independent 
equations can be found.


• The equation can be solved to find the string  in  steps.

• With high likelihood, the hidden string  will be found with  calls to  

, followed by  steps to solve the resulting set of equations.

• Classical algorithm needs  calls to  .

a 𝒪(n2)

a 𝒪(n) Uf

𝒪(n2)

𝒪(2n/2) f



Simon’s Algorithm: probability of finding 
n-linearly independent equations

• Consider we have a string, .


• 1st measurement: 

• After 1st measurement, what is the probability that next measurement will be linearly 

independent?    

• Probability that next measurement will be linearly independent: 


• Probability that next string  is linearly independent:  


• Probability of  being linearly independent: 

   

x = (x1x2x3⋯xn)

P1 = 1

P2 = 1 − 1/2n

P2 = 1 − 2/2n

xm+1 P2 = 1 − 2m /2n

n − 1

P = (1 −
1
2n )(1 −

2
2n )⋯(1 −

1
2n−2 ) ≥ 1 −

n

∑
k=2

1
2k

= 1 −
1
4 (1 − 1

2n−1 )
1 − 1

2

≥
1
2

+
1
2n

(1 − a)(1 − b) = 1 − a − b + ab ≥ 1 − a − b for 0 < a, b < 1



Discrete Fourier Transformation
• Simon’s algorithm  Shor’s algorithm (factoring numbers) makes use of QFT.

• Discrete Fourier Transformation (DFT): signal processing, quantum theory 

(position  momentum).

• Assume a vector  of N complex numbers:     

• DFT is a mapping from N complex # to N complex #.

⟶

↔
f fk , k = 0,1,⋯, N − 1

DFT : fk ⟶ f̃j =
1

N

N−1

∑
k=0

w−jk fk w = exp( 2πi
N )

Inverse DFT : f̃k ⟶ f̃j =
1

N

N−1

∑
k=0

wjk f̃k

fj =
1

N

N−1

∑
k=0

wjk f̃k =
1

N

N−1

∑
k=0

wjk ( 1

N

N−1

∑
ℓ=0

w−ℓk fℓ) =
1
N

N−1

∑
ℓ

N−1

∑
k=0

w( j−ℓ)k fℓ =
N−1

∑
ℓ

fℓ δjℓ = fj

1
N

N−1

∑
k=0

w( j−ℓ)k =
1
N

1 − exp( 2πi
N ( j − ℓ)N)

1 − exp( 2πi
N )

= 0 , if j ≠ ℓ

1 , if j = ℓ

1
N

N−1

∑
k=0

w( j−ℓ)k = δjℓ

⏟ nonzero only 
when j = ℓ



Discrete Fourier Transformation
• Convolution (circular convolution, periodic convolution, cyclic convolution)

DFT : fk ⟶ f̃j =
1

N

N−1

∑
k=0

w−jk fk

w = exp( 2πi
N ) Inverse DFT : f̃k ⟶ f̃j =

1

N

N−1

∑
k=0

wjk f̃k

1
N

N−1

∑
k=0

w( j−ℓ)k = δjℓ

( f * g)i =
N−1

∑
j=0

fi gi−j , where g−m = gN−m (periodic condition)

• DFT turns convolution into point wise vector multiplication.

DFT of f * g = c̃k = f̃k g̃k

c̃k =
1

N

N−1

∑
k=0

w−jk ( f * g)j =
1

N

N−1

∑
k=0

w−jk (
N−1

∑
i=0

fi gj−i)

=
1

N

N−1

∑
k=0

w−jk
N−1

∑
i=0

( 1

N ∑
ℓ

wiℓf̃ℓ)( 1

N ∑
m

w( j−i)mg̃m) =
1

N
3 ∑

j,i,ℓ,m

f̃ℓ g̃m w−jk wiℓ wjm w−im = f̃k g̃k

δmk
δik

⏟δℓk



Fast Fourier Transformation



Quantum Fourier Transformation

yk =
1

2
n

2n−1

∑
j=0

wjk xj w = exp( 2πi
2n )

• For classical discrete Fourier transformation

N = 2n

• QFT is defined similarly F : | j⟩ ⟶
1

2
n

2n−1

∑
k=0

wjk xk = F | j⟩

• For arbitrary quantum states,   F : x⟩ =
1

2
n

2n−1

∑
j=0

xj | j⟩ ⟶ |y⟩ =
1

2
n

2n−1

∑
k=0

yk |k⟩

F |x⟩ =
1

2
n

2n−1

∑
j=0

xj F | j⟩ =
1

2
n

2n−1

∑
j=0

1

2
n

2n−1

∑
k=0

xj wjk |k⟩

• For a single quantum state,   F | j⟩ =
1

2
n

2n−1

∑
j=0

wjk |k⟩ F | j′￼⟩ =
1

2
n

2n−1

∑
j′￼=0

wj′￼k′￼|k′￼⟩

⟨ j′￼|F†F | j⟩ =
1
2n

2n−1

∑
k=0

2n−1

∑
k′￼=0

w−j′￼k′￼wjk⟨k′￼|k⟩ =
1
2n

2n−1

∑
k=0

w( j−j′￼)k = δjj′￼

1
2n

2n−1

∑
k=0

w( j−ℓ)k = δjℓ  and QFT is a unitary transformation.F†F = 1



Quantum Fourier Transformation
1
2n

2n−1

∑
k=0

w( j−ℓ)k = δjℓ
For j = j12n−1 + j22n−2 + ⋯ + jn20 = ∑

i=1

nji 2n−i

k = k12n−1 + k22n−2 + ⋯ + kn20 = ∑
i=1

nki 2n−i

F | j⟩ =
1

2
n

2n−1

∑
k=0

wjk |k⟩ =
1

2
n

2n−1

∑
k=0

exp( 2πij
2n

n

∑
ℓ=1

kℓ2n−ℓ) |k⟩

=
1

2
n

2n−1

∑
k=0

exp(2πij
n

∑
ℓ=1

kℓ2−ℓ) |k⟩

=
1

2
n

2n−1

∑
k=0

exp(2πijk12−1) exp(2πijk22−2) ⋯exp(2πijkn2−n) |k⟩

=
1

2
n

1

∑
k1=0

⋯
1

∑
kn=0

exp(2πijk12−1) exp(2πijk22−2) ⋯exp(2πijkn2−n) |k1 k2 ⋯ kn ⟩

⏟= |0⟩ + exp(2πij2−n) |1⟩



Quantum Fourier Transformation

F | j⟩ =
1

2
n ( |0⟩ + exp( 2πij

2 ) |1⟩) ( |0⟩ + exp( 2πij
22 ) |1⟩)⋯( |0⟩ + exp( 2πij

2n ) |1⟩)

=
1

2
n

n

⨂
k=1

( |0⟩ + exp( 2πij
2k ) |1⟩)

• Binary fraction = expression in power of 1/2

In decimal form: 0. jℓ jℓ+1 ⋯ jm =
jℓ
2

+
jℓ+1

22
+ ⋯ +

jm
2m−ℓ+1

ji = 0 ,1

1 ≤ k ≤ n

0 ≤ j ≤ 2n − 1

 is not necessarily an integer: j j
2k

= j1 j2 ⋯ jn−k ⋅ jn−k+1 ⋯ jn =
n

∑
ν=1

jν 2n−ν−k

If  and ,n = 8 k = 3 j = j127 + j226 + j325 + j424 + j523 + j622 + j721 + j820

j
23

= j124 + j223 + j322 + j421 + j520 + j62−1 + j72−2 + j82−3

j1 j2 j3 j4 j5 . j6 j7 j8 ⏟binary fraction: 0 . j6 j7 j8



Quantum Fourier Transformation
j = j12n−1 + j22n−2 + ⋯ + jn−323 + jn−222 + jn−121 + j120 =

n

∑
ν=1

jν2n−ν

exp(2πi
j

2k ) = exp(2πi 0 . jn−k−1 ⋯ jn)

j
2k

=
j12n−1 + j22n−2 + ⋯ + jn−323 + jn−222 + jn−121 + j120

2k
=

n

∑
ν=1

jν 2n−ν

2k
=

n

∑
ν=1

jν 2n−ν−k

= j1 j2⋯jn−k . jn−k+1⋯jn

F | j⟩ =
1

2
n ( |0⟩ + exp( 2πij

2 ) |1⟩) ( |0⟩ + exp( 2πij
22 ) |1⟩)⋯( |0⟩ + exp( 2πij

2n ) |1⟩)

=
1

2
n

n

⨂
k=1

( |0⟩ + exp( 2πij
2k ) |1⟩) =

1

2
n

n

⨂
k=1

( |0⟩ + exp(2πi 0 . jn−k−1 ⋯ jn) |1⟩)
=

1

2
n ( |0⟩ + exp(2πi 0 . jn) |1⟩) ( |0⟩ + exp(2πi 0 . jn−1 jn−2) |1⟩)

⋯( |0⟩ + exp(2πi 0 . j1 j2⋯jn) |1⟩)



Quantum Circuit for QFT
•    transforms into   | jℓ⟩ 1

2 [ |0⟩ + exp(2πi 0 . jℓ⋯jn) |1⟩ ]
=

1

2 [ |0⟩ + e2πi0.jℓ e2πi0.jℓ+1⋯jn/2 |1⟩ ]⏟ ⏟exp(2πi
jℓ
2 ) = exp(πijℓ) = (−1) jℓ use Rk = (1 0

0 e2πi/2k)
Controlled by the 
value of th qubit.jk

if {jk = 0 , Rk = 1
jk = 1 , Rk

1st qubit: |0⟩ + exp(2πi 0 . jℓ⋯jn) |1⟩

Start with | j⟩ = | j2⟩ | j2 j3⋯jn⟩
H1⟶

1

2 ( |0⟩ + (−1) j1 |1⟩) | j2 j3⋯jn⟩

=
1

2 ( |0⟩ + e2πi 0.j1 |1⟩) | j2 j3⋯jn⟩

R2 on q1 with q2 control 1

2 ( |0⟩ + e2πi 0.j1 e2πi j2/22 |1⟩) | j2 j3⋯jn⟩

=
1

2 ( |0⟩ + e2πi 0.j1 j2 |1⟩) | j2 j3⋯jn⟩



Quantum Circuit for QFT
R3 on q1 with q3 control 1

2 ( |0⟩ + e2πi 0.j1 j2 j3 |1⟩) | j2 j3⋯jn⟩

1

2 ( |0⟩ + e2πi 0.j1 j2 j3⋯jn |1⟩) | j2 j3⋯jn⟩
continue down

to qn

The entire procedure is repeated for all other qubits,  j2 , j3 , ⋯ jn

1

2
n [ |0⟩ + e2πi 0.j1⋯jn |1⟩ ][ |0⟩ + e2πi 0.j2⋯jn |1⟩ ] ⋯ [ |0⟩ + e2πi 0.jn |1⟩ ]

Use SWAP gate or relabel to obtain: F | j⟩ =
1

2
n

n

⨂
k=1

( |0⟩ + exp( 2πij
2k ) |1⟩)

1

2
n [ |0⟩ + e2πi 0.jn |1⟩ ][ |0⟩ + e2πi 0.j2⋯jn |1⟩ ] ⋯ [ |0⟩ + e2πi 0.j1⋯jn |1⟩ ]



Quantum Circuit for QFT
1

2 [ |0⟩ + e2πi 0.j1⋯jn |1⟩ ]
1

2 [ |0⟩ + e2πi 0.j2⋯jn |1⟩ ]

=
1

2 [ |0⟩ + e2πi 0.j1 |1⟩ ]

1

2 [ |0⟩ + (−1) jn |1⟩ ]

H R2 R3 Rn

H R2 R3 Rn

H

| j1⟩

| j2⟩

| j3⟩

| jn⟩

How many gates are required?

:  H + (n-1) controlled R gatesq1

:  H + (n-2) controlled R gatesq2

:  H + 0 controlled R gatesqn

→
→

→

n

n-1

1
} n(n + 1)

2
Also need 𝒪(n /2) SWAP gates

Overall scaling of QFT is 𝒪(n2)

• Classical Fourier Transform scales as 

• FFT:      for  

𝒪(N2) = 𝒪((2n)2)
𝒪(Nln(N )) N = 2n



Quantum Phase Estimation and 
Finding Eigenvalues

• Good example of phase kickback and use of QFT

• Unitary operator  

• How to find eigenvalue? = How to measure the phase?

• How to find  to a given level of precision?

• Find the best n-bit estimate of the phase 

ϕ
ϕ

U : U |u⟩ = eiϕ |u⟩ , 0 ≤ ϕ < 2π

U2j |u⟩ = (eiϕ)2j

|u⟩ = eiϕ 2j |u⟩



Quantum Circuit for QPE

H|0⟩

|0⟩

|u⟩

|0⟩

|0⟩

H

H

H

U20

QFT†

U21 U2n−2
U2n−1

(0) (3)(2)(1)

{
{

n control 
registers

m eigenstate 
registers

QPE = H + controlled − U2j + QFT†



Quantum Circuit for QPE
H|0⟩

|0⟩

|u⟩

|0⟩

|0⟩

H

H

H

U20

QFT†

U21 U2n−2 U2n−1

(0) (3)(2)(1)

{
{

n 
co

nt
ro

l 
re

gi
st

er
s

m
 e

ig
en

st
at

e 
re

gi
st

er
s

QPE = H + controlled − U2j + QFT†
|ψ0⟩ = |0⟩⊗n ⊗ |u⟩

|ψ1⟩ = (H |0⟩)
⊗n

⊗ |u⟩ =
1

2
n ( |0⟩ + |1⟩)

⊗n
⊗ |u⟩

|ψ2⟩ =
n−1

∏
j=0

CU2j 1

2
n ( |0⟩ + |1⟩)

⊗n
⊗ |u⟩



Quantum Circuit for QPE
H|0⟩

|0⟩

|u⟩

|0⟩

|0⟩

H

H

H

U20

QFT†

U21 U2n−2 U2n−1

(0) (3)(2)(1)

{
{

n 
co

nt
ro

l 
re

gi
st

er
s

m
 e

ig
en

st
at

e 
re

gi
st

er
s

|ψ2⟩ =
n−1

∏
j=0

CU2j 1

2
n ( |0⟩ + |1⟩)

⊗n
⊗ |u⟩

1

2 ( |0⟩ + |1⟩) ⊗ |u⟩ CU2j 1

2 ( |0⟩ ⊗ |u⟩ + U2j |1⟩ ⊗ |u⟩)
=

1

2 ( |0⟩ + eiϕ 2j |1⟩) ⊗ |u⟩



Quantum Circuit for QPE
|ψ2⟩ =

1

2
n ( |0⟩ + eiϕ 2n−1 |1⟩)( |0⟩ + eiϕ 2n−2 |1⟩)⋯( |0⟩ + ei2ϕ |1⟩)( |0⟩ + eiϕ |1⟩) ⊗ |u⟩

=
1

2
n

2n−1

∑
y=0

eiϕy |y⟩ ⊗ |u⟩} Phase kick-back: phase factor  has been 
propagated back from the second eigenstate 
register to the first control register

eiϕy

QFT |a⟩ =
1

2
n

2n−1

∑
k=0

e2πia/2n |k⟩ 2πia
2n

= iϕ ϕ = 2π( a
2n

+ δ)
a = an−1an−2⋯a0

•  is the best n-bit binary approximation of 


•  is the associated error.

2πa
2n

ϕ .

0 ≤ |δ | ≤
1

2n+1

|ψ3⟩ = QFT−1 |ψ2⟩ =
1
2n

2n−1

∑
x=0

2n−1

∑
y=0

e2πi(a−x)y/2n e2πiδy |x⟩ ⊗ |u⟩

QFT−1 |y⟩ =
1

2
n

2n−1

∑
x=0

e−2πixy)/2n |x⟩

Operate only n control register.



Quantum Circuit for QPE
|ψ3⟩ = QFT−1 |ψ2⟩ =

1
2n

2n−1

∑
x=0

2n−1

∑
y=0

e2πi(a−x)y/2n e2πiδy |x⟩ ⊗ |u⟩

Operate only n control register.

(1) If , δ = 0
1
2n

2n−1

∑
y=0

exp( 2πi(a − x)y
2n ) = δax ⟶ |ψ3⟩ = |a⟩ ⊗ |u⟩ ⟶ ϕ =

2πa
2n

(2) If , δ ≠ 0 Measuring 1st register and getting the state  is the best n-bit 
estimate of . The corresponding probability is 

|x⟩ = |a⟩
ϕ Pa = |Ca |2 ≥

4
π2

≈ 0.405



Quantum Circuit for QPE

|ψ3⟩ = QFT−1 |ψ2⟩ =
1
2n

2n−1

∑
x=0

2n−1

∑
y=0

e2πix(ϕ−y/2n) |y⟩ ⊗ |u⟩

|ψ2⟩ =
1

2
n

2n−1

∑
x=0

e2πixϕ |x⟩ ⊗ |u⟩

QFT−1 |x⟩ =
1

2
n

2n−1

∑
y=0

e−2πixy/2n |y⟩

Probability of observing  =|y⟩ P(y) =
1
2n

2n−1

∑
x=0

e2πix(ϕ−y/2n)

2

=
1

22n

1 − r2n

1 − r

2

, r ≡ exp[2πi(ϕ −
y
2n )]

(1) If , ϕ =
y
2n

(2) If , ϕ ≠
y
2n

|ψ3⟩ = |y⟩ ⊗ |u⟩ P(ϕ =
y
2n

) = 100 %

closest n − bit approximation to ϕ = 0.ν1ν2⋯νn = ≡ ν ϕ − ν ≡ δ , 0 ≤ |δ | ≤
1

2n+1

r ≡ exp[2πi(ϕ −
y
2n )] = exp(2πiδ)

P(y) =
1

22n

1 − r2n

1 − r

2

,

length of minor arc
length of cord

=
2πδ2n

|1 − r2n |
≤

half circumference
diameter

≤
πR
2R

=
π
2

⟶ |1 − r2n | ≥ 4δ2n

-1
r2n = [exp(2πiδ)]

2n

= exp(2πiδ2n) = eiθ

1
-1

1

θ

r2n Length of minor arc = 
θ = 2πδ2n

Length of a cord from 1 to =r2n

|1 − r2n |



Quantum Circuit for QPE

P(y) =
1

22n

1 − r2n

1 − r

2

≥
1

22n ( 4δ2n

2πδ )
2

=
4
π2

> 0.405

length of minor arc
length of cord

=
2πδ

|1 − r |
> 1 , |1 − r | < 2πδ

1

-1

-1

1

θ

r = e2πiδ Length of minor arc = θ = 2πδ2n

Length of a cord from 1 to  =r |1 − r |

• We will get the correct answer with probability greater than a constant.


• Probability of getting incorrect outcome can be calculated using |δ | >
1

2n+1

1-1

1

θ

r2n

-1

|1 − r2n | < 2
length of minor arc

length of cord
=

2πδ
|1 − r |

<
π
2

, |1 − r | > 4πδ

P(y) =
1

22n

1 − r2n

1 − r

2

≤
1

22n ( 2
4δ )

2

=
1

22n(2δ)2
If ,   δ =

c
2n

P(c) ≤
1

4c2

• N-bit estimate of phase   is obtained with a high probability.

• Need to repeat the calculation multiple times.

• Increasing n will increase the probability of success (not obvious but true).

• Increasing n (# of qubits) will improve the precision of the phase estimate.

ϕ


