Day 1 Recap

- Introduction: ML and QML
- ML: Universal approximation theorem
- QML: parametrize the cost function with quantum algorithms and use classical optimizers
- Single qubit
- Bloch sphere
- Separable vs entangled states
- Computational basis/Hadamard basis
- Quantum circuits are expressed by unitary transformations and measurement
- Measurement: inner product / projection
- Single qubit gates: X, Y, Z, Hadamard, etc
- A system of two or more qubits
- Tensor products

Day 2 Plan

- Two qubit gates
- CNOT, SWAP
- No cloning
- Superdense coding
- Three qubit gates
- Controlled CNOT, Controlled SWAP
- Teleportation
- A simple QA with two qubits: Deutsch Algorithm
- Deutsch-Jozsa algorithm
- Bernstein-Vazirani Algorithm and Simon's algorithm
- Quantum Fourier Transformation

Two Qubit Gates: CNOT and CU gates

- CNOT gate = Controlled Not =Controlled X
- NOT operation is performed on 2nd qubit, when the 1st qubit is in state $|1\rangle$. Otherwise 2nd qubit is unchanged.

$$
\begin{aligned}
& |00\rangle \rightarrow|00\rangle \\
& |01\rangle \rightarrow|01\rangle \\
& |10\rangle \rightarrow|11\rangle \\
& |11\rangle \rightarrow|10\rangle
\end{aligned} \quad\left(\begin{array}{l}
|00\rangle^{\prime} \\
|01\rangle^{\prime} \\
|10\rangle^{\prime} \\
|11\rangle^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
|00\rangle \\
|01\rangle \\
|10\rangle \\
|11\rangle
\end{array}\right) \quad\left(\begin{array}{cc}
I & 0 \\
0 & X
\end{array}\right)=\exp \left(i \frac{\pi}{4}\left(I-Z_{1}\right)\left(I-X_{2}\right)\right)
$$

- Generally, controlled U-gate

$$
\begin{aligned}
& |00\rangle \rightarrow|00\rangle \\
& |01\rangle \rightarrow|01\rangle \\
& |10\rangle \rightarrow|1\rangle \otimes U|0\rangle=|1\rangle \otimes\left(U_{00}|0\rangle+U_{01}|1\rangle\right) \\
& |11\rangle \rightarrow|1\rangle \otimes U|1\rangle=|1\rangle \otimes\left(U_{10}|0\rangle+U_{11}|1\rangle\right) \\
& C U=\left(\begin{array}{ll}
I & 0 \\
0 & U
\end{array}\right)=\exp \left(i \frac{1}{2}\left(I-Z_{1}\right) H_{2}\right) \text { for } U=e^{i H_{2}}=\left(\begin{array}{ll}
U_{00} & U_{01} \\
U_{10} & U_{11}
\end{array}\right) \\
& e^{i \theta A}=\cos \theta+i A \sin \theta \text { for } A^{2}=I
\end{aligned}
$$

U: any arbitrary unitary matrix.
$\mathrm{U}=\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ leads to $C X, C Y, C Z$ gates.

Two Qubit Gates: SWAP and CPhase gates

- SWAP gate: $|a b\rangle \rightarrow|b a\rangle$

$$
\text { SWAP }=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\frac{1}{2}[I \otimes I+X \otimes X+Y \otimes Y+Z \otimes Z]
$$

$$
\begin{aligned}
|00\rangle & \rightarrow|00\rangle \\
|01\rangle & \rightarrow|10\rangle \\
|10\rangle & \rightarrow|01\rangle \\
|11\rangle & \rightarrow|11\rangle
\end{aligned}
$$

- CPhase gate $=$ Controlled phase shift: shift phase by ϕ only if it acts on |1>

$$
\begin{aligned}
|a b\rangle \rightarrow & |a b\rangle e^{i \phi} \text { for } a=b=1 \\
& |a b\rangle \quad \text { otherwise } \\
\operatorname{CPhase}(\phi)= & \left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{i \phi}
\end{array}\right)=|0\rangle\langle 0| \otimes I+|1\rangle\langle 1| \otimes P_{\phi}, \quad P_{\phi}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \phi}
\end{array}\right)=|0\rangle\langle 0|+|1\rangle\langle 1| e^{i \phi} \\
\operatorname{CPhase}(\pi)=\left(\begin{array}{lllc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)=\mathrm{CZ}=\text { Controlled } \mathrm{Z} &
\end{aligned}
$$

Two Qubit Gates: Bell state

- Example: how to obtain Bell state.

$$
\begin{aligned}
|\psi\rangle & =\operatorname{CNOT}(H \otimes I)[|0\rangle \otimes|0\rangle] \\
& =\operatorname{CNOT}\left[\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|0\rangle\right] \\
& =\operatorname{CNOT}\left[\frac{1}{\sqrt{2}}(|00\rangle+|10\rangle)\right] \\
& =\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
\end{aligned}
$$

$$
=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)
$$

$$
\begin{aligned}
& H|x\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x}|1\rangle\right) \\
& H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\frac{1}{\sqrt{2}}(|0\rangle\langle 0|+|0\rangle\langle 1|+|1\rangle\langle 0|-|1\rangle\langle 1|)
\end{aligned}
$$

$$
\begin{array}{ll}
H|0\rangle=|+\rangle & H|+\rangle=|0\rangle \\
H|1\rangle=|-\rangle & H|-\rangle=|1\rangle
\end{array}
$$

No-cloning theorem

- Unknown quantum states can not be copied or cloned.
_Suppose U is a unitary transformation that clones $U(|a\rangle|0\rangle)=|a\rangle|a\rangle$ for all quantum state $|a\rangle$
-Let $|a\rangle$ and $|b\rangle$ be two orthogonal quantum states.

$$
\begin{aligned}
U(|c\rangle|0\rangle)= & \frac{1}{\sqrt{2}}[U|a\rangle|0\rangle+U|b\rangle|0\rangle] \\
= & \frac{1}{\sqrt{2}}[|a\rangle|a\rangle+|b\rangle|b\rangle] \\
& \neq \\
U|c\rangle|0\rangle= & |c\rangle|c\rangle=\frac{1}{\sqrt{2}}(|a\rangle+|b\rangle) \frac{1}{\sqrt{2}}(|a\rangle+|b\rangle) \\
= & \frac{1}{2}(|a\rangle|a\rangle+|a\rangle|b\rangle+|b\rangle|a\rangle+|b\rangle|b\rangle)
\end{aligned}
$$

No-cloning theorem

- No unitary operation that can clone all quantum states.
- However it is possible to construct a quantum state from a known quantum state.
- It is possible to obtain n particles in an entangled state $a|00 \cdots 0\rangle+b|11 \cdots 1\rangle$ from unknown state $a|0\rangle+b|1\rangle$.
- It is not possible to create n particle state

$$
(a|0\rangle+b|1\rangle) \otimes \cdots \otimes(a|0\rangle+b|1\rangle) \text { from an unknown state }
$$

$$
a|0\rangle+b|1\rangle \text {. }
$$

- Profound implication in quantum information and error correction.

Superdense Coding

$$
\begin{aligned}
& H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
& H|1\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
\end{aligned}
$$

- How to create two entangled states

$$
\begin{aligned}
& H|x\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x}|1\rangle\right) \\
& \text { CNOT }|a b\rangle=|a a \oplus b\rangle
\end{aligned}
$$

$\operatorname{CNOT}(H \otimes I)\left(|0\rangle_{1} \otimes|0\rangle_{2}\right)=\operatorname{CNOT} \frac{1}{\sqrt{2}}\left(|0\rangle_{1}+|1\rangle_{1}\right) \otimes|0\rangle_{2}$

$$
=\operatorname{CNOT} \frac{1}{\sqrt{2}}(|00\rangle+|10\rangle)=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

Superdense Coding

- Initial state of qubits A and B is the entangled Bell state.

$$
\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{2}}[|00\rangle+|11\rangle]
$$

(1) $a, b \in\{0,1\}$ are classical bits.

Controlled phase gate $=\mathrm{CZ}(\phi=\pi)$

$$
\begin{aligned}
\text { if } a=1,|1\rangle & \longrightarrow-|1\rangle \\
|0\rangle & \longrightarrow+|0\rangle \\
\text { if } a=0,|0\rangle & \longrightarrow+|0\rangle \\
|1\rangle & \longrightarrow+|1\rangle
\end{aligned}
$$

Superdense Coding

(2) If $b=0$, the first qubit stays unchanged.

$$
\text { CNOT }:|00\rangle \longrightarrow|00\rangle
$$

If $b=1$, the first qubit changes bit.

$$
|01\rangle \longrightarrow|01\rangle
$$

$$
\begin{aligned}
&\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}}\left[|b 0\rangle+(-1)^{a}|\bar{b} 1\rangle\right] \\
& b=0 \Longleftrightarrow \bar{b}=1 \\
& b=1 \Longleftrightarrow \bar{b}=0
\end{aligned}
$$

$$
|10\rangle \longrightarrow|11\rangle
$$

$$
|11\rangle \longrightarrow|10\rangle
$$

Superdense Coding

$\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{2}}[|00\rangle+|11\rangle]$
$\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2}}\left[|00\rangle+(-1)^{a}|11\rangle\right]$
$\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}}\left[|b 0\rangle+(-1)^{a}|\bar{b} 1\rangle\right]$

Alice gives her qubit to Bob.
CNOT $|b 0\rangle=|b b\rangle$
(3) Bob performs CNOT. $\quad\left|\psi_{3}\right\rangle=$ CNOT $\left|\psi_{2}\right\rangle$
$\operatorname{CNOT}|\bar{b} 1\rangle=|\bar{b} b\rangle$

$$
\begin{aligned}
& =\operatorname{CNOT} \frac{1}{\sqrt{2}}\left[|b 0\rangle+(-1)^{a}|\bar{b} 1\rangle\right] \\
& =\frac{1}{\sqrt{2}}\left[|b b\rangle+(-1)^{a}|\bar{b} b\rangle\right]
\end{aligned}
$$

Superdense Coding

$$
\begin{aligned}
& \left|\psi_{0}\right\rangle=\frac{1}{\sqrt{2}}[|00\rangle+|11\rangle] \\
& \left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2}}\left[|00\rangle+(-1)^{a}|11\rangle\right] \\
& \left.\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}}\left[|b 0\rangle+(-1)^{a}|\bar{b}\rangle\right\rangle\right] \\
& \left|\psi_{3}\right\rangle=\frac{1}{\sqrt{2}}\left[|b b\rangle+(-1)^{a}|\bar{b} b\rangle\right]
\end{aligned}
$$

(2)

(3)
(4)
(4) Bob applies Hadamard.

$$
\begin{aligned}
\left|\psi_{4}\right\rangle & =(H \otimes I)\left|\psi_{3}\right\rangle=(H \otimes I) \frac{1}{\sqrt{2}}\left[|b b\rangle+(-1)^{a}|\bar{b} b\rangle\right] \\
& =\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\left[|0 b\rangle+(-1)^{b}|1 b\rangle+(-1)^{a}\left(|0 b\rangle+(-1)^{\bar{b}}|1 b\rangle\right)\right] \\
& =\frac{1}{2}\left[\left(1+(-1)^{a}\right)|0 b\rangle+\left((-1)^{b}+(-1)^{a+\bar{b}}\right)|1 b\rangle\right] \quad H|x\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x}|1\rangle\right)
\end{aligned}
$$

Superdense Coding

$$
\begin{aligned}
& \left|\psi_{0}\right\rangle=\frac{1}{\sqrt{2}}[|00\rangle+|11\rangle] \\
& \left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2}}\left[|00\rangle+(-1)^{a}|11\rangle\right] \\
& \left.\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}}\left[|b 0\rangle+(-1)^{a}|\bar{b}\rangle\right\rangle\right] \\
& \left|\psi_{3}\right\rangle=\frac{1}{\sqrt{2}}\left[|b b\rangle+(-1)^{a}|\bar{b} b\rangle\right]
\end{aligned}
$$

(1) (2)

(5)
(4) Bob applies Hadamard.

$$
\begin{aligned}
\left|\psi_{4}\right\rangle & =\frac{1}{2}\left[\left(1+(-1)^{a}\right)|0\rangle+\left((-1)^{b}+(-1)^{a+\bar{b}}\right)|1\rangle\right] \otimes|b\rangle \\
& =\frac{1}{2}\left[\left(1+(-1)^{a}\right)|0\rangle+(-1)^{b}\left(1-(-1)^{a}\right)|1\rangle\right] \otimes|b\rangle
\end{aligned}
$$

(5) Bob performs measurements.

Superdense Coding

a	b	\bar{b}	$a+\bar{b}$	$\|A\rangle$	$\|B\rangle$
0	0	1	1	$\|0\rangle$	$\|0\rangle$
0	1	0	0	$\|0\rangle$	$\|1\rangle$
1	0	1	$0=2$	$\|1\rangle$	$\|0\rangle$
1	1	0	1	$-\|1\rangle$	$\|1\rangle$

$\left|\psi_{4}\right\rangle=|A\rangle \otimes|B\rangle=\frac{1}{2}\left[\left(1+(-1)^{a}\right)|0\rangle+\left((-1)^{b}+(-1)^{a+\bar{b}}\right)|1\rangle\right] \otimes|B\rangle$
$\left|\psi_{4}\right\rangle=(-1)^{a b}|a b\rangle=(-1)^{a b}|a\rangle \otimes|b\rangle$

- Measurement of two qubits yield two classical bits a and b with 100% probability.
- By initially sharing some entanglement, one can send two bits of information by sending a single qubit.
- Shared entanglement \rightarrow powerful resource for quantum cryptography

Superdense Coding

a	b	Transformation (Alice)	New state
0	0	$I \otimes I\left\|\psi_{0}\right\rangle$	$\frac{1}{\sqrt{2}}(\|00\rangle+\|11\rangle)$
0	1	$X \otimes I\left\|\psi_{0}\right\rangle$	$\frac{1}{\sqrt{2}}(\|10\rangle+\|01\rangle)$
1	0	$Z \otimes I\left\|\psi_{0}\right\rangle$	$\frac{1}{\sqrt{2}}(\|00\rangle-\|11\rangle)$
1	1	$Y \otimes I\left\|\psi_{0}\right\rangle$	$\frac{1}{\sqrt{2}}(-\|10\rangle+\|01\rangle)$

$$
\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

CNOT (Bob)
Alice gives her qubit to Bob.

$$
\begin{array}{ll}
\frac{1}{\sqrt{2}}(|00\rangle+|10\rangle)=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|0\rangle & |0\rangle \otimes|0\rangle \\
\frac{1}{\sqrt{2}}(|11\rangle+|01\rangle)=\frac{1}{\sqrt{2}}(|1\rangle+|0\rangle) \otimes|1\rangle & \\
\frac{1}{\sqrt{2}}(|00\rangle-|10\rangle)=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \otimes|0\rangle & |1\rangle \otimes|0\rangle \\
\frac{1}{\sqrt{2}}(-|11\rangle+|01\rangle)=\frac{1}{\sqrt{2}}(-|1\rangle+|0\rangle) \otimes|1\rangle & -|1\rangle \otimes|1\rangle
\end{array}
$$

0

$$
\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

$$
\frac{1}{\sqrt{2}}(|10\rangle+|01\rangle)
$$

$$
\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)
$$

- Bob measures two qubits in the standard

$$
\frac{1}{\sqrt{2}}(-|10\rangle+|01\rangle)
$$ basis to obtain two-bit binary encoding of the number that Alice wishes to send.

Three Qubit Gates

- Toffoli gate=Controlled CNOT=CCNOT=CCX=T
- If 1st qubit is $|1\rangle$, perform CNOT on the second and third qubits.

$$
T=\left(\begin{array}{llll:llll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ll}
I & 0 \\
\hdashline 0 & \mathrm{CNOT}
\end{array}\right)
$$

$$
T=\exp \left[i \frac{\pi}{8}\left(I-Z_{1}\right)\left(I-Z_{2}\right)\left(I-X_{3}\right)\right]
$$

Three Qubit Gates

- Fredkin gate=Controlled SWAP=CSWAP gate
- If 1st qubit is $|1\rangle$, swap the second and third qubits.

Two Qubit Gates: Bell state

- Example: how to obtain Bell state.

$$
\begin{aligned}
|\psi\rangle & =\operatorname{CNOT}(H \otimes I)[|0\rangle \otimes|0\rangle] \\
& =\operatorname{CNOT}\left[\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|0\rangle\right] \\
& =\operatorname{CNOT}\left[\frac{1}{\sqrt{2}}(|00\rangle+|10\rangle)\right]=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
& =\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
& =\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

An example: GHZ state

$$
|\psi\rangle=\frac{|000\rangle+|111\rangle}{\sqrt{2}}
$$

Greenberger-Horne-Zeilinger (GHZ) state, 1989

$$
\begin{aligned}
|\psi\rangle & =\left(I_{1} \otimes C N O T_{23}\right)\left(C N O T_{23} \otimes I_{3}\right)\left(H \otimes I_{2} \otimes I_{3}\right)|0\rangle \otimes|0\rangle \otimes|0\rangle \\
& =\left(I_{1} \otimes C N O T_{23}\right) \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \otimes|0\rangle \\
& =\left(I_{1} \otimes \text { CNOT }_{23}\right) \frac{1}{\sqrt{2}}(|000\rangle+|110\rangle) \\
& =\frac{1}{\sqrt{2}}(|0\rangle \otimes C N O T|00\rangle+|1\rangle \otimes C N O T|10\rangle)=\frac{|000\rangle+|111\rangle}{\sqrt{2}}
\end{aligned}
$$

For N-qubit system: $\quad|G H Z\rangle=\frac{|0\rangle^{\otimes N}+|1\rangle^{\otimes N}}{\sqrt{2}}=\frac{|00 \cdots 0\rangle+|11 \cdots 1\rangle}{\sqrt{2}}$

- IBMQ

Maximally entangled quantum state

Pauli-X (X)

$$
\mathbf{x}
$$

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Pauli-Y (Y)

$$
\left[\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right]
$$

Pauli-Z (Z)
Hadamard (H)
Phase (S, P)
$\pi / 8$ (T)

$\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
$\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$
$\left[\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right]$
$\left[\begin{array}{ll}1 & 0 \\ 0 & e^{i \pi / 4}\end{array}\right]$

Controlled Not

 (CNOT, CX)
$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

Controlled Z (CZ)

$$
\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

SWAP

$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Toffoli
(CCNOT,
CCX, TOFF)

$\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$

Teleportation

- Use two classical bits and one Bell pair to move a state from qubit 1 to qubit 3 .

Two classical bits

Teleportation

- Use two classical bits and one Bell pair to move a state from qubit 1 to qubit 3.

initial state $=\left|\psi_{0}\right\rangle=|\psi\rangle_{1} \otimes|0\rangle_{2} \otimes|0\rangle_{3}$

$$
\begin{aligned}
\left|\psi_{1}\right\rangle & =H_{3}|\psi\rangle_{1} \otimes|0\rangle_{2} \otimes|0\rangle_{3}=|\psi\rangle_{1} \otimes|0\rangle_{2} \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
\left|\psi_{2}\right\rangle & =C N O T_{3}|\psi\rangle_{1} \otimes|0\rangle_{2} \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \quad \text { conditioned on q3 } \\
& =|\psi\rangle_{1} \otimes \frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)
\end{aligned}
$$

Teleportation

Teleportation

Quantum Algorithms and Data Embedding

Classical Algorithm
Quantum Algorithm

Dataset D
Input x

Output y
Dataset D Input x

Quantum System

State preparation
Unitary evolution
Read out
Measurement

Output y

Quantum Algorithms and Data Embedding

Basis Encoding	Classical data	Requirement	Quantum state
	$\begin{gathered} \vec{x} \in\{0,1\}^{\otimes n} \\ \vec{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in\{0,1\} \end{gathered}$		$\begin{aligned} \|\psi\rangle & =\left\|x_{1} x_{2} \cdots x_{n}\right\rangle \\ & =\left\|x_{1}\right\rangle \otimes\left\|x_{2}\right\rangle \otimes \cdots \otimes\left\|x_{n}\right\rangle \end{aligned}$
	$\begin{aligned} & \vec{x} \in \mathbb{R}^{2^{n}} \\ & x_{i} \in \mathbb{R} \end{aligned}$	$\sum_{i=1}^{2^{n}}\left\|x_{i}\right\|^{2}=1$	$\left\|\psi_{x}\right\rangle=\sum_{i=1}^{2^{n}} x_{i}\|i\rangle$
Amplitude Encoding	$\begin{array}{cl} A \in \mathbb{R}^{2^{2} \times 2^{m}} & i=1, \cdots, 2^{n} \\ A_{i j} \in \mathbb{R} & j=1, \cdots, 2^{m} \end{array}$	$\sum_{i, j}\left\|A_{i j}\right\|^{2}=1$	$\left\|\psi_{A}\right\rangle=\sum_{i, j} A_{i j}\|i\rangle \otimes\|j\rangle$
	$A \in \mathbb{R}^{2^{n} \times 2^{n}}$	$\begin{array}{ll}\sum_{i} A_{i i}=1 & A^{\dagger}=A \\ & A_{i j}^{*}=A_{j i}\end{array}$	$\rho_{A}=\sum_{i, j} A_{i j}\|i\rangle\langle j\|$
Time-evolution Encoding	$x \in \mathbb{R}$	$x \in[0,2 \pi)$	$U(x)=e^{-i x H}$
Hamiltonian Encoding	$A \in \mathbb{R}^{2^{n} \times 2^{n}}$	$A^{\dagger}=A$	$H_{A}=A$
	$A \in \mathbb{R}^{2^{n} \times 2^{n}}$	$A^{\dagger} \neq A$ (in general)	$H_{A}=\left(\begin{array}{cc}0 & A \\ A^{\dagger} & 0\end{array}\right)$

Quantum versions of classical algorithms

- Any quantum computation is reversible prior to measurement. In contrast, classical computations are NOT in general reversible.
- (ex) classical NOT operation is reversible while AND, OR NAND are not
- Every classical computation does have a classical reversible analog (which takes slightly more computational resources)
- The construction of efficient classical reversible versions of arbitrary Boolean circuits easily generalizes to construction of quantum circuits (that implement general classical circuits)
- Any classical reversible computation with n-input and n-ouput simply permutes $N=2^{n}$ bit strings

Classical computation:
Quantum computation:

$$
\begin{aligned}
& \pi: Z_{N} \longrightarrow Z_{N} \\
& U_{\pi}: \sum_{x=0}^{N-1} a_{x}|x\rangle
\end{aligned}>\sum_{x=0}^{N-1} a_{x}|\pi(x)\rangle, ~ l
$$

Quantum versions of classical algorithms

$$
\begin{array}{ll}
n=2, N=2^{2}=4 & |0\rangle=|00\rangle \\
|1\rangle=|01\rangle \\
|2\rangle=|10\rangle \\
& |3\rangle=|11\rangle
\end{array}
$$

$\left(\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array} \begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right.$

- Any classical computation n -inputs and m-outputs defines

$$
\begin{aligned}
f: Z_{N} & \longrightarrow Z_{M} \\
x & \longrightarrow f(x)
\end{aligned} \quad N=2^{n} \quad M=2^{m}
$$

\rightarrow can be extended to a reversible function π_{f} acting on $\mathrm{n}+\mathrm{m}$ bits

$$
\begin{array}{rlrl}
\pi_{f}: Z_{L} & \longrightarrow Z_{L} & L=2^{n+m} \\
(x, y) & \longrightarrow & (x, y \oplus f(x)) & \oplus=\text { bitwise exclusive OR }
\end{array}
$$

$x=\mathrm{n}$-bit string $\quad y=\mathrm{m}$-bit string $\quad L=\mathrm{n}+\mathrm{m}$-bit string $\quad f(x)=\mathrm{m}$-bit string

- For $\mathrm{y}=0, \pi$ acts like $f:(x, 0) \longrightarrow(x, f(x))$

$$
U_{f}(|x\rangle \otimes|y\rangle)=|x\rangle \otimes|y \oplus f(x)\rangle
$$

- π_{f} is reversible, there is a corresponding unitary transformation

Quantum versions of simple classical gates

Let $b_{0}, b_{1} \in\{0,1\}$ (binary variables)

Quantum versions of simple classical gates

- Toffoli gate = T = CCX = CCNOT = Controlled-controlled NOT gate

$$
T=\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & \text { CNOT }
\end{array}\right)
$$

$T\left|b_{1} b_{0} 0\right\rangle=\left|b_{1} b_{0} b_{1} \wedge b_{0}\right\rangle$
$T\left|b_{1} b_{0} 1\right\rangle=\left|b_{1} b_{0} 1 \oplus b_{1} \wedge b_{0}\right\rangle$

$$
\wedge=\text { classical AND } \quad \sim=\text { NOT }
$$

- Toffoli gate T can be used to construct a complete set of Boolean connectives (NOT, AND, XOR, NAND)
$T|11 x\rangle=|11 \sim x\rangle$
$T|x y 0\rangle=|x y x \wedge y\rangle$
$T|1 x y\rangle=|1 x x \oplus y\rangle$
$T|x y 1\rangle=|x y \sim(x \wedge y)\rangle$
- Alternative: Fredkin gate F=controlled SWAP

$$
\begin{aligned}
F|x 01\rangle & =|x x \sim x\rangle \\
F|x y 1\rangle & =|x(y \vee x) y \vee(\sim x)\rangle \\
F|x 0 y\rangle & =|x(y \wedge x) y \wedge(\sim x)\rangle
\end{aligned}
$$

A simple QA with two qubits

- Consider a simple function, $f(x):\{0,1\} \longrightarrow\{0,1\}$
- For possible functions

- Identity:

$$
f(0)=0 \text { and } f(1)=1
$$

- Bit-flip function: $\quad f(0)=1$ and $f(1)=0$
- Constant function: $\quad f(x)=0$ or $f(x)=1$
- Reconstruct a unitary transformation U_{f} such that
 $(x, y) \underset{U_{f}}{\longrightarrow}(x, y \oplus f(x))$, which corresponds to

$$
U_{f}(|x\rangle \otimes|y\rangle)=|x\rangle \otimes|y \oplus f(x)\rangle
$$

- \oplus is mode 2 addition: $0 \oplus 0=0=1 \oplus 1$ and $0 \oplus 1=1=0 \oplus 1$.

- $\quad x \longrightarrow f(x)$ is not suitable because $f(x)$ is not unitary in general.
- $(x, y) \xrightarrow{U_{f}}(x, y \oplus f(x)) \xrightarrow{U_{f}}(x, y \oplus f(x) \oplus f(x))=(x, y)$

$$
U_{f}(|x\rangle \otimes|y\rangle)=|x\rangle \otimes|y \oplus f(x)\rangle
$$

A simple QA with two qubits

- Take advantage of "quantum parallelism" (a qubit can have both $|0\rangle$ and |1>)

- Apply Hadamard gate to the first qubit and then apply U.

$$
\begin{aligned}
& |0\rangle-\mathrm{H}-U_{f}-|\psi\rangle \quad H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
& |0\rangle=U_{f}(H|0\rangle \otimes|0\rangle)=\frac{1}{\sqrt{2}} U_{f}(|0\rangle+|1\rangle) \otimes|0\rangle=\frac{1}{\sqrt{2}} U_{f}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|0\rangle) \\
& |\psi\rangle=\frac{1}{\sqrt{2}} U_{f}(|0\rangle \otimes|f(0)\rangle+|1\rangle \otimes|f(1)\rangle)=\sum_{x=0,1} \frac{1}{\sqrt{2}}|x\rangle \otimes|f(x)\rangle
\end{aligned}
$$

A simple QA with two qubits

- $|\psi\rangle$ contains information on both $f(0)$ and $f(1)$
- Superposition of $f(0)$ and $f(1)$
- Need to perform measurement to access the info
- However, measurement returns only one value of x and $f(x)$

$$
\begin{aligned}
& |0\rangle=\mathrm{H}=U_{f}-|\psi\rangle \\
& |0\rangle=\frac{1}{\sqrt{2}} U_{f}(|0\rangle \otimes|f(0)\rangle+|1\rangle \otimes|f(1)\rangle)=\sum_{x=0,1} \frac{1}{\sqrt{2}}|x\rangle \otimes|f(x)\rangle
\end{aligned}
$$

FUNDAMENTAL PHYSICS BOARD TROPHY EVENTS NOMINATIONS NEWS CONTACTS Search BREAKTHROUGH
PRIZE COMMITTEE PRIZES LAUREATES RULES MANIFESTO

LAUREATES

\[

\]

Charles H. Bennett

Deutsch Algorithm

- Deutsch algorithm exploits QA to obtain information about global property of $f(x)$.
- A function of a single qubit can be either constant $f(0)=f(1)$ or balanced $f(0) \neq f(1)$

$\left|\psi_{0}\right\rangle \xrightarrow{H \otimes H}\left|\psi_{1}\right\rangle \xrightarrow{U_{f}}\left|\psi_{2}\right\rangle \xrightarrow{H \otimes I}\left|\psi_{3}\right\rangle$

$$
\left|\psi_{0}\right\rangle \equiv|0\rangle \otimes|1\rangle=|01\rangle
$$

(1) $\left|\psi_{1}\right\rangle=H \otimes H|01\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$

$$
=\frac{1}{2}(|00\rangle-|01\rangle+|10\rangle-|11\rangle)=\frac{1}{2}\left(\sum_{x}|x\rangle\right) \otimes(|0\rangle-|1\rangle)
$$

Deutsch Algorithm

(2) $\left|\psi_{2}\right\rangle=U_{f}\left|\psi_{1}\right\rangle$

$$
\text { For } \begin{aligned}
f(x)=0: \quad U_{f}[|x\rangle \otimes(|0\rangle-|1\rangle)] & =U_{f}(|x\rangle \otimes|0\rangle)-U_{f}(|x\rangle \otimes|1\rangle) \\
& =|x\rangle \otimes|0+f(x)\rangle-|x\rangle \otimes|1+f(x)\rangle \\
& =|x\rangle \otimes(|0\rangle-|1\rangle)=(-1)^{f(x)}|x\rangle \otimes(|0\rangle-|1\rangle)
\end{aligned}
$$

For $f(x)=1: \quad U_{f}[|x\rangle \otimes(|0\rangle-|1\rangle)]=|x\rangle \otimes(|1\rangle-|0\rangle)=(-1)^{f(x)}|x\rangle \otimes(|0\rangle-|1\rangle)$
$\left|\psi_{2}\right\rangle=U_{f}\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2}}\left[\sum_{x}(-1)^{f(x)}|x\rangle\right] \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$

Deutsch Algorithm

(3) $\quad\left|\psi_{3}\right\rangle=(H \otimes I)\left|\psi_{2}\right\rangle=(H \otimes I) \frac{1}{\sqrt{2}}\left[\sum_{x}(-1)^{f(x)}|x\rangle\right] \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$

$$
\begin{aligned}
H \frac{1}{\sqrt{2}}\left[\sum_{x}(-1)^{f(x)}|x\rangle\right] & =\frac{1}{\sqrt{2}} H\left[(-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle\right] \\
& =\frac{1}{\sqrt{2}}\left[(-1)^{f(0)} \frac{|0\rangle+|1\rangle}{\sqrt{2}}+(-1)^{f(1)} \frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] \\
& =\frac{1}{2}\left[\left((-1)^{f(0)}+(-1)^{f(1)}\right)|0\rangle+\left((-1)^{f(0)}-(-1)^{f(1)}\right)|1\rangle\right]
\end{aligned}
$$

Deutsch Algorithm

- Deutsch algorithm exploits QA to obtain information about global property of $f(x)$.
- A function of a single qubit can be either constant $f(0)=f(1)$ or balanced $f(0) \neq f(1)$

$$
\left|\psi_{0}\right\rangle \xrightarrow{H \otimes H}\left|\psi_{1}\right\rangle \xrightarrow{U_{f}}\left|\psi_{2}\right\rangle \xrightarrow{H \otimes I}\left|\psi_{3}\right\rangle
$$

$$
\left|\psi_{3}\right\rangle=\frac{1}{2}\left[\left((-1)^{f(0)}+(-1)^{f(1)}\right)|0\rangle+\left((-1)^{f(0)}-(-1)^{f(1)}\right)|1\rangle\right]
$$

- If measurement gives $|0\rangle, f(0)=f(1) \longrightarrow f(x)=$ constant.
- If measurement gives | 1$\rangle, f(0) \neq f(1) \longrightarrow f(x)=$ balanced.
- Can be generalized to function with multiple input values, DeutschJosza algorithm

Basic operations with bit strings

- x and y are two n-bit strings: $\quad|x\rangle=\left|x_{n-1} x_{n-2} \cdots x_{1} x_{0}\right\rangle$

$$
x_{i}, y_{i} \in\{0,1\}
$$

- Hamming distance $=d_{H}(x, y)=$ the number of bits in which the two strings differ.

$$
\begin{aligned}
& |x\rangle=|10101\rangle \\
& |y\rangle=|11100\rangle
\end{aligned} \quad d_{H}(x, y)=?
$$

- Hamming weight $=d_{H}(x)=d_{H}(x, 0)=$ the number of 1-bit in $x=$ the Hamming distance between x and 0 .
- $x \cdot y=$ the number of common 1-bit in x and $y=d_{H}(x, y)$
- $x \oplus y=$ the bitwise exclusive $\mathrm{OR}=$ bitwise addition under mod 2
- $x \wedge y=$ the bitwise AND
- $\sim x=x \oplus 111 \cdots 1=$ the bit string that flips 0 and 1

Useful Identities

- $x \cdot y=d_{H}(x, y)$
- $x \cdot y=\frac{1}{2}\left(1-(-1)^{x \cdot y}\right) \bmod 2$
- $x \cdot y+x \cdot z=x \cdot(y \oplus z) \bmod 2$
- $d_{H}(x \oplus y)=d_{H}(x)+d_{H}(y) \bmod 2$
- $\sum_{x=0}^{2^{n}-1}(-1)^{x \cdot x}=0$
b/c successive $2 i$ and $2 i+1$ terms cancel
- $\sum_{x=0}^{2^{n}-1}(-1)^{x \cdot y}= \begin{cases}2^{n}, & \text { if } \mathrm{y}=0 \\ 0, & \text { otherwise }\end{cases}$

Walsh-Hadamard Transformation

$$
W \equiv H \otimes H \otimes \cdots \otimes H \equiv H^{\otimes n}
$$

$W|0\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x\rangle \quad N=2^{n}$
apply H to each qubit in an n-qubit system

$$
\begin{aligned}
& |r\rangle=\left|r_{n-1} r_{n-2} \cdots r_{1} r_{0}\right\rangle \\
& |s\rangle=\left|s_{n-1} s_{n-2} \cdots s_{1} s_{0}\right\rangle
\end{aligned} \quad r_{i}, s_{i} \in\{0,1\}
$$

- How does W act on $|r\rangle$?

$$
W|r\rangle=\sum W_{r s}|s\rangle
$$

$$
W|r\rangle=(H \otimes H \otimes \cdots \otimes H)\left|r_{n-1} r_{n-2} \cdots r_{1} r_{0}\right\rangle
$$

$$
=\frac{1}{\sqrt{2}^{n}}[\underbrace{|c| c|c| c}_{\left.=\sum_{s_{n-1}=0}^{1}(0\rangle+(-1)^{r_{n-1}}|1\rangle\right] \otimes \cdots \otimes\left[|0\rangle+(-1)^{r_{n-1}}|1\rangle\right]} \sum_{s_{0}=0}^{1}(-1)^{-s_{0} \cdot r_{0}}\left|s_{0}\right\rangle
$$

$$
=\frac{1}{2^{n}} \sum_{s=0}^{N-1}(-1)^{-s_{n-1} \cdot r_{n-1}}\left|s_{n-1}^{s_{n-1}=0}\right\rangle \otimes \cdots \otimes(-1)^{-s_{1} \cdot r_{1}}\left|s_{1}\right\rangle \otimes(-1)^{-s_{0} \cdot r_{0}}\left|s_{0}\right\rangle
$$

$W(|r\rangle)=\frac{1}{2^{n}} \sum_{s=0}^{2^{n}-1}(-1)^{s \cdot r}|r\rangle$

$$
W_{r s}=W_{s r}=\frac{1}{\sqrt{2}^{n}}(-1)^{r \cdot s}
$$

Deutsch-Jozsa Algorithm

- Given a function $f: Z_{2^{n}} \longrightarrow Z_{2}$ that is known to be either constant or balanced, and $U_{f}:|x\rangle \otimes|y\rangle \longrightarrow|x\rangle \otimes|x \oplus f(x)\rangle$, determine whether the function f is constant or balanced.
- Phase change for a subset of basis vectors

$$
\text { Consider a superposition : }|\psi\rangle=\sum_{i} a_{i}|i\rangle
$$

Boolean function : $f: Z_{2^{n}} \longrightarrow \quad Z_{2}^{i}$ where $f(x)= \begin{cases}1, & \text { if } x \in X \subset Z_{2^{n}} \\ 0, & \text { otherwise }\end{cases}$

$$
S_{X}^{\phi}: \sum_{x=0}^{N-1} a_{x}|x\rangle \longrightarrow \sum_{x \in X} a_{x} e^{i \phi}|x\rangle+\sum_{x \notin X} a_{x}|x\rangle \quad \text { where } X=\{x \mid f(x)=0\}
$$

For $\phi=\pi$

$$
\begin{aligned}
U_{f}(|\psi\rangle \otimes|-\rangle) & =U_{f}\left(\sum_{x \in X} a_{x} e^{i \phi}|x\rangle \otimes|-\rangle\right)+U_{f}\left(\sum_{x \notin X} a_{x}|x\rangle \otimes|-\rangle\right) \\
& =-\left(\sum_{x \in X} a_{x}|x\rangle \otimes|-\rangle\right)+\left(\sum_{x \notin X} a_{x}|x\rangle \otimes|-\rangle\right) \\
(-1)^{f(x)} & =\sum_{x}(-1)^{f(x)}|\psi\rangle \otimes|-\rangle
\end{aligned}
$$

Deutsch-Jozsa Algorithm

Deutsch-Jozsa Algorithm

$|\phi\rangle=W|\psi\rangle=\frac{1}{\sqrt{N}} \sum_{i=1}^{N-1}(-1)^{f(i)} W|i\rangle=\frac{1}{\sqrt{N}} \sum_{i=1}^{N-1}(-1)^{f(i)} \sum_{j=0}^{N-1} \frac{1}{\sqrt{N}}(-1)^{i \cdot j}|j\rangle$
For balanced $f, \quad|\phi\rangle=\frac{1}{2^{n}} \sum_{j}\left(\sum_{i \in X}(-1)^{i \cdot j}-\sum_{i \notin X}(-1)^{i \cdot j}\right)|j\rangle \quad$ where $X=\{x \mid f(x)=0\}$
For $j=0$, amplitude is zero.
$\sum_{i \in X}(-1)^{i \cdot j}-\sum_{i \notin X}(-1)^{i \cdot j}=0$ for $j=0$
$\Longleftrightarrow \quad|\phi\rangle$ does not contain $|0\rangle$.

- Measurement of state $|\phi\rangle$ (in the standard basis) will return $|0\rangle$ with probability 1 , if f is constant, and will return a non-zero $|j\rangle$ with probability 1 , if f is balanced.
- Classical algorithm must evaluate f at least $2^{n-1}+1$ times to solve the problem with certainty, while quantum algorithm solves with a single evaluation of U_{f}.
- There is an exponential separation between the query complexity of the QA and query complexity of any classical algorithm.
- There are classical algorithms that solve the problem in fewer evaluations but only with high probability of success (not 100\% probability).

Deutsch-Jozsa Algorithm

$H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)=\frac{1}{\sqrt{2}} \sum_{x, y \in\{0,1\}}(-1)^{x y}|y\rangle\langle x| \quad H^{2}=I$

$$
\begin{aligned}
W \equiv H^{\otimes n} & =\left(\frac{1}{\sqrt{2}} \sum_{x, y \in\{0,1\}}(-1)^{x y}|y\rangle\langle x|\right)^{\otimes n} \\
& =\left(\frac{1}{\sqrt{2}} \sum_{x_{0}, y_{0}}(-1)^{x_{0} y_{0}}\left|y_{0}\right\rangle\left\langle x_{0}\right|\right) \otimes \cdots \otimes\left(\frac{1}{\sqrt{2}} \sum_{x_{0}, y_{0}}(-1)^{\left.x_{n-1}, y_{n-1}\left|y_{n-1}\right\rangle\left\langle x_{n-1}\right|\right)}\right. \\
& =\frac{1}{\sqrt{2}^{n}} \sum_{x, y \in\{0,1\}^{\otimes n}}(-1)^{x y}|y\rangle\langle x| \quad x \cdot y=x_{o} y_{0}+x_{1} y_{1}+\cdots+x_{n-1} y_{n-1}
\end{aligned}
$$

$$
H^{\otimes n} \frac{1}{\sqrt{2}^{n}} \sum_{x}|x\rangle=0
$$

$$
H^{\otimes n}|0\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{x}|x\rangle
$$

Bernstein-Vazirani Algorithm

- A n-bit function $f:\{0,1\}^{\otimes n} \longrightarrow\{0,1\}$, which outputs a singlet bit, is guaranteed to be of the form $f_{s}(x)=x \cdot s$, where s is an unknown n -bit string and $x \cdot s=x_{0} s_{0}+\cdots+x_{n-1} s_{n-1}=\sum_{i=0}^{n-1} x_{i} s_{i}(\bmod 2)$. Find the unknown string $s=\left(s_{0} s_{1} \cdots s_{n-1}\right)$.
- Best classical algorithm uses $\mathcal{O}(n)$ calls to $f_{s}(x)=x \cdot s \bmod 2$. Each query gives one bit of information of s (because f outputs one bit).
- How do we find s with less than n queries? \rightarrow Use superposition (over all possible input bit strings)

1	3	5	7	9	11	13	15
17	19	21	23	25	27	29	31
33	35	37	39	41	43	45	47
49	51	53	55	57	59	61	63

2	3	6	7	10	11	14	15
18	19	22	23	26	27	30	31
34	35	38	39	42	43	46	47
50	51	54	55	58	59	62	63

4	5	6	7	12	13	14	15
20	21	22	23	28	29	30	31
36	37	38	39	44	45	46	47
52	53	54	55	60	61	62	63

8	9	10	11	12	13	14	15
24	25	26	27	28	29	30	31
40	41	42	43	44	45	46	47
56	57	58	59	60	61	62	63

16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

$\begin{array}{llllllll}1 & 3 & 5 & 7 & 9 & 11 & 13 & 15\end{array}$ $17 \quad 19212325272931$ 3335373941434547 4951535557596163 $\begin{array}{llllllll}8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$ $\begin{array}{lllll}24 & 25 & 26 & 27 & 28 \\ 29 & 30 & 31\end{array}$ $40 \quad 41424344454647$ 5657585960616263
$\begin{array}{llllllll}2 & 3 & 6 & 7 & 10 & 11 & 14 & 15\end{array}$ $\begin{array}{llllll}18 & 19 & 22 & 23 & 26 & 27 \\ 30 & 31\end{array}$ $3435 \quad 38 \quad 3942434647$ 5051545558596263
$\begin{array}{llllllll}4 & 5 & 6 & 7 & 12 & 13 & 14 & 15\end{array}$
2021222328293031 $\begin{array}{lllllll}36 & 37 & 38 & 39 & 44 & 45 & 46 \\ 47\end{array}$ 5253545560616263
$3233 \quad 3435363738 \quad 39$ $40 \quad 41424344454647$ 4849505152535455

5657585960616263

Bernstein-Vazirani Algorithm

- A n-bit function $f:\{0,1\}^{\otimes n} \longrightarrow\{0,1\}$, which outputs a singlet bit, is guaranteed to be of the form $f_{s}(x)=x \cdot s$, where s is an unknown n -bit string and $x \cdot s=x_{0} s_{0}+\cdots+x_{n-1} s_{n-1}=\sum_{i=0}^{n-1} x_{i} s_{i}(\bmod 2)$. Find the unknown string $s=\left(s_{0} s_{1} \cdots s_{n-1}\right)$.
- Best classical algorithm uses $\mathcal{O}(n)$ calls to $f_{s}(x)=x \cdot s \bmod 2$. Each query gives one bit of information of s (because f outputs one bit).

$$
\begin{array}{rlrl}
U_{f}(|x\rangle \otimes|y\rangle) & =|x\rangle \otimes|y \oplus f(x)\rangle & U_{f} & =\sum_{x} \sum_{y}|x\rangle\langle x| \otimes|y \oplus f(x)\rangle\langle y| \\
f_{s}(x) & =x \cdot s \bmod 2 & U_{f}=\sum_{x \in\left\{0,11^{8 n}\right.} \sum_{y \in\{0,1\}^{8 n}}|x\rangle\langle x| \otimes|y \oplus s \cdot x\rangle\langle y|
\end{array}
$$

- How do we find s with less than n queries? \rightarrow Use superposition (over all possible input bit strings)

$$
\begin{aligned}
& \left|\psi_{s}\right\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{x \in\{0,1\}^{\otimes n}}(-1)^{f(x)}|x\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{x \in\{0,1)^{\otimes n}}(-1)^{x \cdot s}|x\rangle \\
& U_{f}(|\psi\rangle \otimes|-\rangle)=\sum_{x}(-1)^{f(x)}|\psi\rangle \otimes|-\rangle
\end{aligned}
$$

Bernstein-Vazirani Algorithm

- $\left|\psi_{s}\right\rangle$ states are orthogonal! $\left\langle\psi_{s} \mid \psi_{t}\right\rangle=\delta_{s t}$

$$
\begin{aligned}
& \left\langle\psi_{s} \mid \psi_{t}\right\rangle=\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{\otimes n}}(-1)^{x \cdot s}\langle x| \sum_{y \in\{0,1\}^{\otimes n}}(-1)^{y \cdot t}|y\rangle=\frac{1}{2^{n}} \sum_{x, y}(-1)^{x \cdot s+y \cdot t}\langle x \mid y\rangle \\
& =\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{\otimes n}}(-1)^{x \cdot s+x \cdot t}=\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{\otimes n}}(-1)^{x \cdot(s \oplus t)} \\
& x \cdot s=x_{0} s_{0}+\cdots+x_{n-1} s_{n-1} \\
& x \cdot s+x \cdot t=x \cdot(s \oplus t)(\bmod 2) \\
& \sum_{x \in\{0,1\}^{\otimes n}}(-1)^{x \cdot k}=\sum_{x \in\{0,1\}^{\otimes n}}(-1)^{x_{0} k_{0}+\cdots+x_{n-1} k_{n-1}}=\sum_{x_{0} \in\{0,1\}}(-1)^{x_{0} k_{0}} \sum_{x_{1} \in\{0,1\}}(-1)^{x_{1} k_{1}} \ldots \sum_{x_{n-1} \in\{0,1\}}(-1)^{x_{n-1} k_{n-1}} \\
& =2 \delta_{k_{0} 0} \times 2 \delta_{k_{1} 0} \cdots \times 2 \delta_{k_{n-1} 0}=2^{n} \delta_{k 0} \\
& \sum_{x=0}^{2^{n}-1}(-1)^{x \cdot y}= \begin{cases}2^{n}, & \text { if } y=0 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\left\langle\psi_{s} \mid \psi_{t}\right\rangle=\delta_{s \oplus t, 0}=\delta_{s t}
$$

- Orthogonal set of vectors from a basis and we can "measure in this basis".
- Equivalent to performing unitary transformation and measuring in the computational basis, from which we should be able to extract the string s.

$$
W \equiv H^{\otimes n}=\frac{1}{\sqrt{2}^{n}} \sum_{x, y \in\{0,1\}^{8 n}}(-1)^{x y}|y\rangle\langle x|=\sum_{y \in\{0,1\}^{\otimes n}}|y\rangle\left\langle\psi_{y}\right|
$$

Bernstein-Vazirani Algorithm

- Apply $H^{\otimes n}$ to $\left|\psi_{s}\right\rangle: \quad H^{\otimes n}\left|\psi_{s}\right\rangle=\sum_{y}|y\rangle\left\langle\psi_{y} \mid \psi_{s}\right\rangle=|s\rangle \quad$ in 100% probability

Circuit for Berstein-Vazirani algorithm

- Simpler explanation: Berstein-Vazirani algorithm behaves as if it were a circuit consisting only of CNOT operations from
 ancilla to the qubits corresponding to 1-bit of s.

Bernstein-Vazirani Algorithm

- Berstein-Vazirani algorithm behaves as if it were a circuit consisting only of CNOT operations from ancilla to the qubits corresponding to 1bit of s.

$$
s=01101
$$

- For $\mathrm{s}=01101$, the black box for U_{s} behaves as if it contained this circuit, consisting of CNOT gates for each 1 bit of s.

- BV algorithm behaves as if it were implemented by this simple circuit, consisting of a CNOT for each 1-bit of s.

Simon's Algorithm

- Given a 2-to-1 function f such that $f(x)=f(x \oplus a)$ for all $x \in \mathbb{Z}_{2}^{n}$, find the hidden string $a \in \mathbb{Z}_{2}^{n}$. (Simon's algorithm shows structural similarities to Shor's algorithm)

$$
\begin{array}{ll}
U_{f}:|x\rangle \otimes|y\rangle \longrightarrow|x\rangle \otimes|y \oplus f(x)\rangle & |x\rangle=\left|x_{0} x_{1} \cdots x_{n-1}\right\rangle \\
U_{f}\left[W|0\rangle^{\otimes n} \otimes|0\rangle\right]=U_{f} \frac{1}{\sqrt{N}} \sum_{x}|x\rangle \otimes|f(x)\rangle & x_{i} \in\{0,1\} \quad N=2^{n}
\end{array}
$$

- Suppose we perform a measurement on 2 nd qubit and $f\left(x_{0}\right)$ is the measured value. Then the 1 st qubit becomes $\frac{1}{\sqrt{2}}\left(\left|x_{0}\right\rangle+\left|f\left(x_{0}\right)\right\rangle\right)$.

Simon's Algorithm

- Apply Walsh-Hadamard:

$$
\begin{aligned}
W\left[\frac{1}{\sqrt{2}}\left(\left|x_{0}\right\rangle+\left|x_{0} \oplus a\right\rangle\right)\right] & =\frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}^{n}} \sum_{y}\left\{(-1)^{x_{0} \cdot y}+(-1)^{\left(x_{0} \oplus a\right) \cdot y}\right\}|y\rangle\right] \\
W(|r\rangle)=\frac{1}{2^{n}} \sum_{s=0}^{2^{n}-1}(-1)^{s \cdot r}|r\rangle & =\frac{1}{\sqrt{2}^{n+1}} \sum_{y}(-1)^{x_{0} \cdot y}\left(1+(-1)^{a \cdot y}\right)|y\rangle \\
W_{r s}=W_{s r}=\frac{1}{\sqrt{2}^{n}}(-1)^{r \cdot s} & =\frac{1}{\sqrt{2}^{n+1}} \sum_{y \cdot a=\text { even }}(-1)^{x_{0} \cdot y}|y\rangle
\end{aligned}
$$

- Measurement on the 1st qubit results in a random y such that $y \cdot a=0 \bmod 2$.
- Unknown a_{i} must satisfy $y_{0} a_{0}+y_{1} a_{1}+\cdots y_{n-1} a_{n-1}=0 \bmod 2$.

Simon's Algorithm

- Repeat the same procedure until n linearly independent equations have been found. Each time computation is repeated, at least 50% of the time, the resulting equation can be independent.
- Repeating $2 n$ times, there is a 50% chance that n-linearly independent equations can be found.
- The equation can be solved to find the string a in $\mathcal{O}\left(n^{2}\right)$ steps.
- With high likelihood, the hidden string a will be found with $\mathcal{O}(n)$ calls to U_{f} , followed by $\mathcal{O}\left(n^{2}\right)$ steps to solve the resulting set of equations.
- Classical algorithm needs $\mathcal{O}\left(2^{n / 2}\right)$ calls to f.

Simon's Algorithm: probability of finding n-linearly independent equations

- Consider we have a string, $x=\left(x_{1} x_{2} x_{3} \cdots x_{n}\right)$.
- 1st measurement: $P_{1}=1$
- After 1st measurement, what is the probability that next measurement will be linearly independent? $P_{2}=1-1 / 2^{n}$
- Probability that next measurement will be linearly independent: $P_{2}=1-2 / 2^{n}$
- Probability that next string x_{m+1} is linearly independent: $P_{2}=1-2^{m} / 2^{n}$
- Probability of $n-1$ being linearly independent:

$$
P=\left(1-\frac{1}{2^{n}}\right)\left(1-\frac{2}{2^{n}}\right) \cdots\left(1-\frac{1}{2^{n-2}}\right) \geq 1-\sum_{k=2}^{n} \frac{1}{2^{k}}=1-\frac{\frac{1}{4}\left(1-\frac{1}{2^{n-1}}\right)}{1-\frac{1}{2}} \geq \frac{1}{2}+\frac{1}{2^{n}}
$$

Discrete Fourier Transformation

- Simon's algorithm \longrightarrow Shor's algorithm (factoring numbers) makes use of QFT.
- Discrete Fourier Transformation (DFT): signal processing, quantum theory (position \leftrightarrow momentum).
- Assume a vector f of N complex numbers: $\quad f_{k}, k=0,1, \cdots, N-1$
- DFT is a mapping from N complex \# to N complex \#.

$$
\begin{gathered}
\text { DFT : } f_{k} \longrightarrow \tilde{f}_{j}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{-j k} f_{k} \\
\text { Inverse DFT }: \tilde{f}_{k} \longrightarrow \tilde{f}_{j}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{j k} \tilde{f}_{k} \\
f_{j}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{j k} \tilde{f}_{k}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{j k}\left(\frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} w^{-\ell k} f_{\ell}\right)=\frac{1}{N} \sum_{\ell}^{N-1} \sum_{k=0}^{N-1} w^{(j-\ell t) k} f_{\ell}=\sum_{\ell}^{N-1} f_{\ell} \delta_{j \ell}=f_{j} \\
\text { nhen } j=\ell
\end{gathered}
$$

Discrete Fourier Transformation

- Convolution (circular convolution, periodic convolution, cyclic convolution)

$$
\left(f^{*} g\right)_{i}=\sum_{j=0}^{N-1} f_{i} g_{i-j}, \quad \text { where } g_{-m}=g_{N-m} \text { (periodic condition) }
$$

- DFT turns convolution into point wise vector multiplication.

$$
\begin{gathered}
\text { DFT of } f * g=\tilde{c}_{k}=\tilde{f}_{k} \tilde{g}_{k} \\
\tilde{c}_{k}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{-j k}(f * g)_{j}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{-j k}\left(\sum_{i=0}^{N-1} f_{i} g_{j-i}\right) \\
=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{-j k} \sum_{i=0}^{N-1}\left(\frac{1}{\sqrt{N}} \sum_{\ell} w^{i \ell} \tilde{f}_{\ell}\right)\left(\frac{1}{\sqrt{N}} \sum_{m} w^{(j-i) m} \tilde{g}_{m}\right)=\frac{1}{\sqrt{N}^{3}} \sum_{j, i, \ell, m} \tilde{f}_{\ell} \tilde{g}_{m} \underbrace{}_{\underbrace{-j k}_{\delta_{\ell k}} w^{i \ell} w^{j m}} w^{-i m}=\tilde{f}_{k} \tilde{g}_{k} \\
\frac{1}{N} \sum_{k=0}^{N-1} w^{(j-\ell) k}=\delta_{j \ell} \quad w=\exp \left(\frac{2 \pi i}{N}\right) \quad \text { Inverse DFT : } f_{k} \longrightarrow \tilde{f}_{k} \longrightarrow \tilde{f}_{j}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{-j k} f_{k} \\
\frac{1}{N} \sum_{k=0}^{N-1} w^{j k} \tilde{f}_{k}
\end{gathered}
$$

Fast Fourier Transformation

Quantum Fourier Transformation

- For classical discrete Fourier transformation

$$
y_{k}=\frac{1}{\sqrt{2}^{n}} \sum_{j=0}^{2^{n}-1} w^{j k} x_{j} \quad w=\exp \left(\frac{2 \pi i}{2^{n}}\right) \quad N=2^{n}
$$

- QFT is defined similarly

$$
F:|j\rangle \longrightarrow \frac{1}{\sqrt{2}^{n}} \sum_{k=0}^{2^{n}-1} w^{j k} x_{k}=F|j\rangle
$$

- For arbitrary quantum states, $\quad F: \quad x\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{j=0}^{2^{n}-1} x_{j}|j\rangle \longrightarrow|y\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{k=0}^{2^{n}-1} y_{k}|k\rangle$

$$
F|x\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{j=0}^{2^{n}-1} x_{j} F|j\rangle={\frac{1}{\sqrt{2}^{n}}}^{2} \sum_{j=0}^{2^{n}-1} \frac{1}{\sqrt{2}^{n}} \sum_{k=0}^{2^{n}-1} x_{j} w^{j k}|k\rangle
$$

- For a single quantum state, $\quad F|j\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{j=0}^{2^{n}-1} w^{j k}|k\rangle \quad F\left|j^{\prime}\right\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{j^{\prime}=0}^{2^{n}-1} w^{j^{\prime} k^{\prime}}\left|k^{\prime}\right\rangle$

$$
\left\langle j^{\prime}\right| F^{\dagger} F|j\rangle=\frac{1}{2^{n}} \sum_{k=0}^{2^{n}-1} \sum_{k^{\prime}=0}^{2^{n}-1} w^{-j^{\prime} k^{\prime}} w^{j k}\left\langle k^{\prime} \mid k\right\rangle=\frac{1}{2^{n}} \sum_{k=0}^{2^{n}-1} w^{\left(j-j^{\prime}\right) k}=\delta_{j j^{\prime}}
$$

Quantum Fourier Transformation

$$
\begin{aligned}
& \text { For } \quad j=j_{1} 2^{n-1}+j_{2} 2^{n-2}+\cdots+j_{n} 2^{0}=\sum_{i=1}^{n} j_{i} 2^{n-i} \\
& k=k_{1} 2^{n-1}+k_{2} 2^{n-2}+\cdots+k_{n} 2^{0}=\sum_{i=1}^{n} k_{i} 2^{n-i} \\
& F|j\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{k=0}^{2^{n}-1} w^{j k}|k\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{k=0}^{2^{n}-1} \exp \left(\frac{2 \pi i j}{2^{n}} \sum_{\ell=1}^{n} k_{t} 2^{n-\ell}\right)|k\rangle \\
& =\frac{1}{\sqrt{2}^{n}} \sum_{k=0}^{2^{n}-1} \exp \left(2 \pi i j \sum_{\ell=1}^{n} k_{\ell} 2^{-\ell}\right)|k\rangle \\
& =\frac{1}{\sqrt{2}^{n}} \sum_{k=0}^{2^{n}-1} \exp \left(2 \pi i j k_{1} 2^{-1}\right) \exp \left(2 \pi i j k_{2} 2^{-2}\right) \cdots \exp \left(2 \pi i j k_{n} 2^{-n}\right)|k\rangle \\
& \begin{array}{r}
\frac{1}{\sqrt{2}^{n}} \sum_{k_{1}=0}^{1} \cdots \sum_{k_{n}=0}^{1} \exp \left(2 \pi i j k_{1} 2^{-1}\right) \exp \left(2 \pi i j k_{2} 2^{-2}\right) \cdots \underbrace{\left(2 \pi i j k_{n} 2^{-n}\right.}_{=|0\rangle+\exp \left(2 \pi i j 2^{-n}\right)|1\rangle})\left|k_{1} k_{2} \cdots k_{n}\right\rangle \\
\hline \exp
\end{array}
\end{aligned}
$$

Quantum Fourier Transformation

$$
\begin{align*}
F|j\rangle & =\frac{1}{\sqrt{2}^{n}}\left(|0\rangle+\exp \left(\frac{2 \pi i j}{2}\right)|1\rangle\right)\left(|0\rangle+\exp \left(\frac{2 \pi i j}{2^{2}}\right)|1\rangle\right) \cdots\left(\left.|0\rangle+\exp \left(\frac{2 \pi i j}{2^{n}}\right) \right\rvert\,\right. \\
& =\frac{1}{\sqrt{2}^{n}} \bigotimes_{k=1}^{n}\left(|0\rangle+\exp \left(\frac{2 \pi i j}{2^{k}}\right)|1\rangle\right)
\end{align*}
$$

$$
j_{i}=0,1
$$

- Binary fraction $=$ expression in power of $1 / 2$

In decimal form:

$$
0 . j_{\ell} j_{\ell+1} \cdots j_{m}=\frac{j_{\ell}}{2}+\frac{j_{\ell+1}}{2^{2}}+\cdots+\frac{j_{m}}{2^{m-\ell+1}}
$$

$$
0 \leq j \leq 2^{n}-1
$$

j is not necessarily an integer: $\quad \frac{j}{2^{k}}=j_{1} j_{2} \cdots j_{n-k} \cdot j_{n-k+1} \cdots j_{n}=\sum_{\nu=1}^{n} j_{\nu} 2^{n-\nu-k}$
If $n=8$ and $k=3, \quad j=j_{1} 2^{7}+j_{2} 2^{6}+j_{3} 2^{5}+j_{4} 2^{4}+j_{5} 2^{3}+j_{6} 2^{2}+j_{7} 2^{1}+j_{8} 2^{0}$

$$
\frac{j}{2^{3}}=j_{1} 2^{4}+j_{2} 2^{3}+j_{3} 2^{2}+j_{4} 2^{1}+j_{5} 2^{0}+j_{6} 2^{-1}+j_{j_{7}} 2^{-2}+j_{8} 2^{-3}
$$

Quantum Fourier Transformation

$$
\begin{aligned}
j & =j_{1} 2^{n-1}+j_{2} 2^{n-2}+\cdots+j_{n-3} 2^{3}+j_{n-2} 2^{2}+j_{n-1} 2^{1}+j_{1} 2^{0}=\sum_{\nu=1}^{n} j_{\nu} 2^{n-\nu} \\
\frac{j}{2^{k}} & =\frac{j_{1} 2^{n-1}+j_{2} 2^{n-2}+\cdots+j_{n-3} 2^{3}+j_{n-2} 2^{2}+j_{n-1} 2^{1}+j_{1} 2^{0}}{2^{k}}=\sum_{\nu=1}^{n} \frac{j_{\nu} 2^{n-\nu}}{2^{k}}=\sum_{\nu=1}^{n} j_{\nu} 2^{n-\nu-k} \\
& =j_{1} j_{2} \cdots j_{n-k} \cdot j_{n-k+1} \cdots j_{n}
\end{aligned} \quad \begin{aligned}
\exp \left(2 \pi i \frac{j}{2^{k}}\right)=\exp \left(2 \pi i 0 \cdot j_{n-k-1} \cdots j_{n}\right) & \frac{1}{\sqrt{2}^{n}}\left(|0\rangle+\exp \left(\frac{2 \pi i j}{2}\right)|1\rangle\right)\left(|0\rangle+\exp \left(\frac{2 \pi i j}{2^{2}}\right)|1\rangle\right) \cdots\left(|0\rangle+\exp \left(\frac{2 \pi i j}{2^{n}}\right)|1\rangle\right) \\
& =\frac{1}{\sqrt{2}^{n}} \bigotimes_{k=1}^{n}\left(|0\rangle+\exp \left(\frac{2 \pi i j}{2^{k}}\right)|1\rangle\right)={\frac{1}{\sqrt{2}^{n}}}^{\bigotimes} \bigotimes_{k=1}^{n}\left(|0\rangle+\exp \left(2 \pi i 0 . j_{n-k-1} \cdots j_{n}\right)|1\rangle\right) \\
& =\frac{1}{\sqrt{2}^{n}}\left(|0\rangle+\exp \left(2 \pi i 0 . j_{n}\right)|1\rangle\right)\left(|0\rangle+\exp \left(2 \pi i 0 . j_{n-1} j_{n-2}\right)|1\rangle\right) \\
& \cdots\left(|0\rangle+\exp \left(2 \pi i 0 . j_{1} j_{2} \cdots j_{n}\right)|1\rangle\right)
\end{aligned}
$$

Quantum Circuit for QFT

- $\left|j_{\ell}\right\rangle$ transforms into $\frac{1}{\sqrt{2}}\left[|0\rangle+\exp \left(2 \pi i 0 \cdot j_{\epsilon^{\prime} \cdots j_{n}}\right)|1\rangle\right]$

Controlled by the value of j_{k} th qubit. if $\begin{cases}j_{k}=0, & R_{k}=1 \\ j_{k}=1, & R_{k}\end{cases}$
1st qubit: $|0\rangle+\exp \left(2 \pi i 0 \cdot j_{j^{\prime}} \cdots j_{n}\right)|1\rangle$
Start with $|j\rangle=\left|j_{2}\right\rangle\left|j_{2} j_{3} \cdots j_{n}\right\rangle \xrightarrow{H_{1}} \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{j_{1}}|1\rangle\right)\left|j_{2} j_{3} \cdots j_{n}\right\rangle$

$$
=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i \cdot j_{1}}|1\rangle\right)\left|j_{2} j_{3} \cdots j_{n}\right\rangle
$$

$$
\begin{aligned}
\mathrm{R}_{2} \text { on } \mathrm{q}_{1} \text { with } \mathrm{q}_{2} \text { control } & \frac{1}{\sqrt{2}}\left(|0\rangle+e^{\left.2 \pi i 0 \cdot j_{1} e^{2 \pi i j_{2} j^{2}}|1\rangle\right)\left|j_{2} j_{3} \cdots j_{n}\right\rangle}\right. \\
= & \frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i 0 \cdot j_{j} j_{2}}|1\rangle\right)\left|j_{2} j_{3} \cdots j_{n}\right\rangle
\end{aligned}
$$

Quantum Circuit for QFT

The entire procedure is repeated for all other qubits, $j_{2}, j_{3}, \cdots j_{n}$

$$
\frac{1}{\sqrt{2}^{n}}\left[|0\rangle+e^{2 \pi i 0 \cdot j_{1} \cdots j_{n}}|1\rangle\right]\left[|0\rangle+e^{2 \pi i 0 \cdot j_{2} \cdots j_{n}}|1\rangle\right] \cdots\left[|0\rangle+e^{2 \pi i 0 \cdot j_{n}}|1\rangle\right]
$$

Use SWAP gate or relabel to obtain: $\quad F|j\rangle=\frac{1}{\sqrt{2}^{n}} \bigotimes_{k=1}^{n}\left(|0\rangle+\exp \left(\frac{2 \pi i j}{2^{k}}\right)|1\rangle\right)$

$$
\frac{1}{\sqrt{2}^{n}}\left[|0\rangle+e^{2 \pi i 0 \cdot j_{n}}|1\rangle\right]\left[|0\rangle+e^{2 \pi i 0 \cdot j_{2} \cdots j_{n}}|1\rangle\right] \cdots\left[|0\rangle+e^{2 \pi i 0 \cdot j_{1} \cdots j_{n}}|1\rangle\right]
$$

Quantum Circuit for QFT

- Classical Fourier Transform scales as $\mathcal{O}\left(N^{2}\right)=\mathcal{O}\left(\left(2^{n}\right)^{2}\right)$
- FFT: $\mathcal{O}(N \ln (N))$ for $N=2^{n}$

Quantum Phase Estimation and Finding Eigenvalues

- Good example of phase kickback and use of QFT
- Unitary operator $U: U|u\rangle=e^{i \phi}|u\rangle, \quad 0 \leq \phi<2 \pi$
- How to find eigenvalue? = How to measure the phase?
- How to find ϕ to a given level of precision?
- Find the best n-bit estimate of the phase ϕ

$$
U^{2 j}|u\rangle=\left(e^{i \phi}\right)^{2^{j}}|u\rangle=e^{i \phi 2^{j}}|u\rangle
$$

Quantum Circuit for QPE

Quantum Circuit for QPE

$$
\left|\psi_{0}\right\rangle=|0\rangle^{\otimes n} \otimes|u\rangle
$$

$$
\mathrm{QPE}=H+\text { controlled }-U^{2^{j}}+\mathrm{QFT}^{\dagger}
$$

$$
\left|\Psi_{1}\right\rangle=(H|0\rangle)^{\otimes n} \otimes|u\rangle=\frac{1}{\sqrt{2}^{n}}(|0\rangle+|1\rangle)^{\otimes n} \otimes|u\rangle
$$

$$
\left|\psi_{2}\right\rangle=\prod_{j=0}^{n-1} \mathrm{CU}^{2} \frac{1}{\sqrt{2}^{n}}(|0\rangle+|1\rangle)^{\otimes n} \otimes|u\rangle
$$

Quantum Circuit for QPE

$$
\begin{aligned}
& \left|\psi_{2}\right\rangle=\prod_{j=0}^{n-1} \mathrm{CU}^{2^{j}} \frac{1}{\sqrt{2}^{n}}(|0\rangle+|1\rangle)^{\otimes n} \otimes|u\rangle \\
& \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|u\rangle \xrightarrow{\mathrm{CU}^{2}} \frac{1}{\sqrt{2}}\left(|0\rangle \otimes|u\rangle+U^{2^{j}}|1\rangle \otimes|u\rangle\right) \\
& =\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i \phi 2^{j}}|1\rangle\right) \otimes|u\rangle
\end{aligned}
$$

Quantum Circuit for QPE

$$
\begin{aligned}
& \left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}^{n}}\left(|0\rangle+e^{i \phi 2^{n-1}}|1\rangle\right)\left(|0\rangle+e^{i \phi 2^{n-2}}|1\rangle\right) \cdots\left(|0\rangle+e^{i 2 \phi}|1\rangle\right)\left(|0\rangle+e^{i \phi}|1\rangle\right) \otimes|u\rangle \\
& =\frac{1}{\sqrt{2}^{n}} \sum_{y=0}^{2^{n}-1} \underbrace{e^{i \phi y}}|y\rangle \otimes|u\rangle \quad \begin{array}{l}
\text { Phase kick-back: phase factor } e^{i \phi y} \text { has been } \\
\text { propagated back from the second eigenstate } \\
\text { register to the first control register }
\end{array} \\
& \text { QFT }|a\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{k=0}^{2^{n}-1} e^{2 \pi i a / 2^{n}}|k\rangle \longrightarrow \quad \frac{2 \pi i a}{2^{n}}=i \phi \longrightarrow 2 \pi\left(\frac{a}{2^{n}}+\delta\right) \\
& a=a_{n-1} a_{n-2} \cdots a_{0}
\end{aligned}
$$

- $\frac{2 \pi a}{2^{n}}$ is the best n-bit binary approximation of ϕ.
- $0 \leq|\delta| \leq \frac{1}{2^{n+1}}$ is the associated error.

$$
\begin{aligned}
& \mathrm{QFT}^{-1}|y\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{x=0}^{2^{n}-1} e^{-2 \pi i x y) / 2^{n}}|x\rangle \\
& \left|\psi_{3}\right\rangle=\mathrm{QFT}^{-1}\left|\psi_{2}\right\rangle=\frac{1}{2^{n}} \sum_{x=0}^{2^{n}-1} \sum_{y=0}^{2^{n}-1} e^{2 \pi i(a-x) y / 2^{n}} e^{2 \pi i \delta y}|x\rangle \otimes|u\rangle
\end{aligned}
$$

Quantum Circuit for QPE

$\left|\psi_{3}\right\rangle=\mathrm{QFT}^{-1}\left|\psi_{2}\right\rangle=\frac{1}{2^{n}} \sum_{x=0}^{2^{n}-1} \sum_{y=0}^{2^{n}-1} e^{2 \pi i(a-x) y / 2^{n}} e^{2 \pi i \delta y}|x\rangle \otimes|u\rangle$
Operate only n control register.
(1) If $\delta=0, \quad \frac{1}{2^{n}} \sum_{y=0}^{2^{n}-1} \exp \left(\frac{2 \pi i(a-x) y}{2^{n}}\right)=\delta_{a x} \quad \longrightarrow\left|\psi_{3}\right\rangle=|a\rangle \otimes|u\rangle \quad \longrightarrow \phi=\frac{2 \pi a}{2^{n}}$
(2) If $\delta \neq 0, \quad$ Measuring 1st register and getting the state $|x\rangle=|a\rangle$ is the best n -bit estimate of ϕ. The corresponding probability is $P_{a}=\left|C_{a}\right|^{2} \geq \frac{4}{\pi^{2}} \approx 0.405$

Quantum Circuit for QPE

$$
\begin{gathered}
\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{x=0}^{2^{n}-1} e^{2 \pi i x \phi}|x\rangle \otimes|u\rangle \\
\mathrm{QFT}^{-1}|x\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{y=0}^{2^{n}-1} e^{-2 \pi i x y / 2^{n}}|y\rangle
\end{gathered}
$$

$$
\left|\psi_{3}\right\rangle=\mathrm{QFT}^{-1}\left|\psi_{2}\right\rangle=\frac{1}{2^{n}} \sum_{x=0}^{2^{n-1}} \sum_{y=0}^{2^{n}-1} e^{2 \pi i x\left(\phi-y / 2^{n}\right)}|y\rangle \otimes|u\rangle
$$

Probability of observing $|y\rangle=P(y)=\left|\frac{1}{2^{n}} \sum_{x=0}^{2^{n}-1} e^{2 \pi i x\left(\phi-y-y 2^{n}\right)}\right|^{2}=\frac{1}{2^{2 n}}\left|\frac{1-r^{2^{n}}}{1-r}\right|^{2}, r \equiv \exp \left[2 \pi i\left(\phi-\frac{y}{2^{n}}\right)\right]$
(1) If $\phi=\frac{y}{2^{n}}, \quad\left|\psi_{3}\right\rangle=|y\rangle \otimes|u\rangle \quad P\left(\phi=\frac{y}{2^{n}}\right)=100 \%$
(2) If $\phi \neq \frac{y}{2^{n}}, \quad$ closest $\mathrm{n}-$ bit approximation to $\phi=0 . \nu_{1} \nu_{2} \cdots \nu_{n}=\equiv \nu \quad \phi-\nu \equiv \delta, \quad 0 \leq|\delta| \leq \frac{1}{2^{n+1}}$
$r \equiv \exp \left[2 \pi i\left(\phi-\frac{y}{2^{n}}\right)\right]=\exp (2 \pi i \delta)$
$P(y)=\frac{1}{2^{2 n}}\left|\frac{1-r^{n}}{1-r}\right|^{2}$,
$r^{2^{n}}=[\exp (2 \pi i \delta)]^{2^{2}}=\exp \left(2 \pi i \delta 2^{n}\right)=e^{i \theta}$

Length of minor arc $=$ $\theta=2 \pi \delta 2^{n}$
$\frac{\text { length of minor arc }}{\text { length of cord }}=\frac{2 \pi \delta 2^{n}}{\left|1-r^{2^{n}}\right|} \leq \frac{\text { half circumference }}{\text { diameter }} \leq \frac{\pi R}{2 R}=\frac{\pi}{2} \longrightarrow\left|1-r^{2^{n}}\right| \geq 4 \delta 2^{n}$

Quantum Circuit for QPE

- We will get the correct answer with probability greater than a constant.
- Probability of getting incorrect outcome can be calculated using $|\delta|>\frac{1}{2^{n+1}}$

$$
\begin{aligned}
& \left|1-r^{2^{n}}\right|<2 \quad \frac{\text { length of minor arc }}{\text { length of cord }}=\frac{2 \pi \delta}{|1-r|}<\frac{\pi}{2}, \quad|1-r|>4 \pi \delta \\
& P(y)=\frac{1}{2^{2 n}}\left|\frac{1-r^{2^{n}}}{1-r}\right|^{2} \leq \frac{1}{2^{2 n}}\left(\frac{2}{4 \delta}\right)^{2}=\frac{1}{2^{2 n}(2 \delta)^{2}} \quad \text { If } \delta=\frac{c}{2^{n}}, \quad P(c) \leq \frac{1}{4 c^{2}}
\end{aligned}
$$

- N-bit estimate of phase ϕ is obtained with a high probability.
- Need to repeat the calculation multiple times.
- Increasing n will increase the probability of success (not obvious but true).
- Increasing n (\# of qubits) will improve the precision of the phase estimate.

