# Day 1 Recap

- Introduction: ML and QML
  - ML: Universal approximation theorem
  - QML: parametrize the cost function with quantum algorithms and use classical optimizers
- Single qubit
  - Bloch sphere
  - Separable vs entangled states
  - Computational basis/Hadamard basis
  - Quantum circuits are expressed by unitary transformations and measurement
  - Measurement: inner product / projection
  - Single qubit gates: X, Y, Z, Hadamard, etc
- A system of two or more qubits
  - Tensor products

## Day 2 Plan

- Two qubit gates
   CNOT, SWAP
- No cloning
- Superdense coding
- Three qubit gates
  - Controlled CNOT, Controlled SWAP
- Teleportation
- A simple QA with two qubits: Deutsch Algorithm
- Deutsch-Jozsa algorithm
- Bernstein-Vazirani Algorithm and Simon's algorithm
- Quantum Fourier Transformation

### Two Qubit Gates: CNOT and CU gates

- CNOT gate = Controlled Not =Controlled X
- NOT operation is performed on 2nd qubit, when the 1st qubit is in state |1>. Otherwise 2nd qubit is unchanged.

$$\begin{vmatrix} 00 \rangle \to |00 \rangle \\ |01 \rangle \to |01 \rangle \\ |10 \rangle \to |11 \rangle \\ |11 \rangle \to |10 \rangle \\ \end{vmatrix} \begin{pmatrix} |00 \rangle' \\ |01 \rangle' \\ |10 \rangle' \\ |11 \rangle' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} |00 \rangle \\ |01 \rangle \\ |10 \rangle \\ |10 \rangle \\ |11 \rangle \end{pmatrix} \\ \end{vmatrix} \begin{pmatrix} I & 0 \\ 0 & X \end{pmatrix} = \exp\left(i\frac{\pi}{4}(I - Z_1)(I - X_2) + I_1(I - X_2) + I_2(I - X_2) + I_$$

• Generally, controlled U-gate

$$|00\rangle \rightarrow |00\rangle$$
  

$$|01\rangle \rightarrow |01\rangle$$
  

$$|10\rangle \rightarrow |1\rangle \otimes U|0\rangle = |1\rangle \otimes (U_{00}|0\rangle + U_{01}|1\rangle)$$
  

$$|11\rangle \rightarrow |1\rangle \otimes U|1\rangle = |1\rangle \otimes (U_{10}|0\rangle + U_{11}|1\rangle)$$
  

$$CU = \begin{pmatrix} I & 0 \\ 0 & U \end{pmatrix} = \exp\left(i\frac{1}{2}(I - Z_1)H_2\right) \text{ for } U = e^{iH_2} = \begin{pmatrix} U_{00} & U_{01} \\ U_{10} & U_{11} \end{pmatrix}$$

U: any arbitrary unitary matrix. U=X, Y, Z leads to CX, CY, CZ gates.

 $e^{i\theta A} = \cos\theta + iA \sin\theta$  for  $A^2 = I$ 





#### Two Qubit Gates: SWAP and CPhase gates

• SWAP gate: 
$$|ab\rangle \rightarrow |ba\rangle$$
  
(1 0 0 0)  
 $(1 0 0 0)$ 

$$SWAP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \frac{1}{2} \begin{bmatrix} I \otimes I + X \otimes X + Y \otimes Y + Z \otimes Z \end{bmatrix}$$
 
$$\begin{array}{c} |10\rangle \rightarrow |01\rangle \\ |11\rangle \rightarrow |11\rangle \\ |11\rangle \rightarrow |11\rangle \end{array}$$



$$|ab\rangle \rightarrow |ab\rangle e^{i\phi} \text{ for } a = b = 1$$
  

$$|ab\rangle \text{ otherwise}$$

$$CPhase(\phi) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{i\phi} \end{pmatrix} = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes P_{\phi}, \qquad P_{\phi} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = |0\rangle\langle 0| + |1\rangle\langle 1| e^{i\phi}$$

$$CPhase(\pi) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = CZ = Controlled Z$$

#### Two Qubit Gates: Bell state

Example: how to obtain Bell state.

$$|0\rangle - H \qquad |\psi\rangle = \text{CNOT} (H \otimes I) [|0\rangle \otimes |0\rangle]$$

$$= \text{CNOT} \left[\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |0\rangle\right]$$

$$= \text{CNOT} \left[\frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)\right]$$

$$= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$= \frac{1}{\sqrt{2}}\left(|00\rangle + |11\rangle\right)$$

$$H|x\rangle = \frac{1}{\sqrt{2}}\left(|0\rangle + (-1)^{x}|1\rangle\right)$$

$$H|0\rangle = |+\rangle \qquad H|+\rangle = |0\rangle$$

$$H|z\rangle = \frac{1}{\sqrt{2}}\left(1 - \frac{1}{1}\right) = \frac{1}{\sqrt{2}}(|0\rangle\langle 0| + |0\rangle\langle 1| + |1\rangle\langle 0| - |1\rangle\langle 1|)$$

$$H|z\rangle = |-\rangle \qquad H|-\rangle = |1\rangle$$

 $H|+\rangle = |0\rangle$ 

#### No-cloning theorem

- Unknown quantum states can not be copied or cloned.
  - Suppose U is a unitary transformation that clones  $U(|a\rangle|0\rangle) = |a\rangle|a\rangle$ for all quantum state  $|a\rangle$

-Let  $|a\rangle$  and  $|b\rangle$  be two orthogonal quantum states.

#### No-cloning theorem

- No unitary operation that can clone all quantum states.
- However it is possible to construct a quantum state from a known quantum state.
- It is possible to obtain n particles in an entangled state  $a|00\cdots0\rangle + b|11\cdots1\rangle$  from unknown state  $a|0\rangle + b|1\rangle$ .
- It is not possible to create n particle state  $(a|0\rangle + b|1\rangle) \otimes \cdots \otimes (a|0\rangle + b|1\rangle)$  from an unknown state  $a|0\rangle + b|1\rangle$ .
- Profound implication in quantum information and error correction.



 Initial state of qubits A and B is the entangled Bell state.

$$|\psi_0\rangle = \frac{1}{\sqrt{2}} \left[ |00\rangle + |11\rangle \right]$$

(1)  $a, b \in \{0,1\}$  are classical bits.

if 
$$a = 1$$
,  $|1\rangle \longrightarrow -|1\rangle$   
 $|0\rangle \longrightarrow +|0\rangle$   
if  $a = 0$ ,  $|0\rangle \longrightarrow +|0\rangle$   
 $|1\rangle \longrightarrow +|1\rangle$ 



Controlled phase gate = CZ ( $\phi = \pi$ )

$$|\psi_1\rangle = \frac{1}{\sqrt{2}} \left[ |00\rangle + (-1)^a |11\rangle \right]$$



 $|11\rangle \longrightarrow |10\rangle$ 

$$|\psi_{2}\rangle = \frac{1}{\sqrt{2}} \Big[ |b0\rangle + (-1)^{a} |\bar{b}1\rangle \Big]$$
$$b = 0 \iff \bar{b} = 1$$
$$b = 1 \iff \bar{b} = 0$$



$$= \text{CNOT} \frac{1}{\sqrt{2}} \Big[ |b0\rangle + (-1)^a |\bar{b}1\rangle \Big]$$
$$= \frac{1}{\sqrt{2}} \Big[ |bb\rangle + (-1)^a |\bar{b}b\rangle \Big]$$



(4) Bob applies Hadamard.

$$\begin{aligned} |\psi_{4}\rangle &= \left(H \otimes I\right) |\psi_{3}\rangle = \left(H \otimes I\right) \frac{1}{\sqrt{2}} \Big[ |bb\rangle + (-1)^{a} |\bar{b}b\rangle \Big] \\ &= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \Big[ |0b\rangle + (-1)^{b} |1b\rangle + (-1)^{a} \Big( |0b\rangle + (-1)^{\bar{b}} |1b\rangle \Big) \Big] \\ &= \frac{1}{2} \Big[ \Big(1 + (-1)^{a} \Big) |0b\rangle + \Big( (-1)^{b} + (-1)^{a+\bar{b}} \Big) |1b\rangle \Big] \\ H|x\rangle &= \frac{1}{\sqrt{2}} \Big( |0\rangle + (-1)^{x} |1\rangle \Big] \end{aligned}$$



(4) Bob applies Hadamard.

$$|\psi_4\rangle = \frac{1}{2} \Big[ \Big( 1 + (-1)^a \Big) |0\rangle + \Big( (-1)^b + (-1)^{a+\bar{b}} \Big) |1\rangle \Big] \otimes |b\rangle$$
  
=  $\frac{1}{2} \Big[ \Big( 1 + (-1)^a \Big) |0\rangle + (-1)^b \Big( 1 - (-1)^a \Big) |1\rangle \Big] \otimes |b\rangle$ 

(5) Bob performs measurements.

| a | b | $\bar{b}$ | $a + \bar{b}$ | $ A\rangle$ | $ B\rangle$ |
|---|---|-----------|---------------|-------------|-------------|
| 0 | 0 | 1         | 1             | 0           | 0>          |
| 0 | 1 | 0         | 0             | 0           | 1>          |
| 1 | 0 | 1         | 0=2           | 1>          | 0>          |
| 1 | 1 | 0         | 1             | - 1>        | 1>          |

$$|\psi_4\rangle = |A\rangle \otimes |B\rangle = \frac{1}{2} \Big[ \Big( 1 + (-1)^a \Big) |0\rangle + \Big( (-1)^b + (-1)^{a+\bar{b}} \Big) |1\rangle \Big] \otimes |B\rangle$$
$$|\psi_4\rangle = (-1)^{ab} |ab\rangle = (-1)^{ab} |a\rangle \otimes |b\rangle$$

- Measurement of two qubits yield two classical bits a and b with 100% probability.
- By initially sharing some entanglement, one can send two bits of information by sending a single qubit.
- Shared entanglement  $\rightarrow$  powerful resource for quantum cryptography

| а       | b                 | Transformation<br>(Alice)                            | New state                                                                                                                                                                                                                    | $ \psi_0 $    | $\rangle = \frac{1}{\sqrt{2}} \Big( \mid 00 \rangle - \frac{1}{\sqrt{2}} \Big( \mid 00 \rangle - \frac{1}{\sqrt{2}} \Big) \Big) \Big( \mid 00 \rangle - \frac{1}{\sqrt{2}} \Big) \Big( \mid 00 \rangle - \frac{1}{\sqrt{2}} \Big) \Big( \mid 00 \rangle - \frac{1}{\sqrt{2}} \Big) \Big) \Big( \mid 00 \rangle - \frac{1}{\sqrt{2}} \Big) \Big) \Big( \mid 00 \rangle - \frac{1}{\sqrt{2}} \Big) \Big) \Big( \mid 00 \rangle - \frac{1}{\sqrt{2}} \Big) \Big( \mid 00 $ |
|---------|-------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0       | 0                 | $I \otimes I   \psi_0 \rangle$                       | $\frac{1}{\sqrt{2}} \Big( \left  00 \right\rangle + \left  11 \right\rangle \Big)$                                                                                                                                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0       | 1                 | $X \otimes I   \psi_0 \rangle$                       | $\frac{1}{\sqrt{2}} \Big(  10\rangle +  01\rangle \Big)$                                                                                                                                                                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1       | 0                 | $Z \otimes I   \psi_0 \rangle$                       | $\frac{1}{\sqrt{2}} \Big( \left  00 \right\rangle - \left  11 \right\rangle \Big)$                                                                                                                                           | •             | Bob measu<br>qubits in th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1       | 1                 | $Y \otimes I   \psi_0 \rangle$                       | $\frac{1}{\sqrt{2}} \left( -  10\rangle +  01\rangle \right)$                                                                                                                                                                |               | basis to ob<br>binary enco<br>number tha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                   | → CNOT (Bo                                           | ob)                                                                                                                                                                                                                          |               | wishes to s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A<br>he | lice gi<br>er qub | bit to $\frac{1}{\sqrt{2}} ( 00\rangle +  1\rangle)$ | $ 0\rangle = \frac{1}{\sqrt{2}} \left(  0\rangle +  1\rangle \right) \otimes  0\rangle \qquad \qquad$ | $H \otimes I$ | $ 0 angle\otimes 0 angle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | Bob               | $\frac{1}{\sqrt{2}} \Big(  11\rangle +  0\rangle$    | $ 1\rangle = \frac{1}{\sqrt{2}} \left(  1\rangle +  0\rangle \right) \otimes  1\rangle$                                                                                                                                      | 11 & 1        | $ 0\rangle \otimes  1\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                   | $\frac{1}{\sqrt{2}} \Big(  00\rangle -  1\rangle$    | $ 0\rangle = \frac{1}{\sqrt{2}} ( 0\rangle -  1\rangle) \otimes  0\rangle$                                                                                                                                                   |               | $ 1\rangle \otimes  0\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                   | $\frac{1}{\sqrt{2}}\left( - 11\rangle +\right.$      | $ 01\rangle = \frac{1}{\sqrt{2}} (- 1\rangle +  0\rangle) \otimes  1\rangle$                                                                                                                                                 |               | $- 1\rangle\otimes 1\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

 $|00\rangle + |11\rangle$ 

easures two in the standard o obtain two-bit encoding of the r that Alice to send.

#### Three Qubit Gates

Toffoli gate=Controlled CNOT=CCNOT=CCX=T

– If 1st qubit is  $|1\rangle$ , perform CNOT on the second and third qubits.



$$T = \exp\left[i\frac{\pi}{8}(I - Z_1)(I - Z_2)(I - X_3)\right]$$

#### Three Qubit Gates

- Fredkin gate=Controlled SWAP=CSWAP gate
  - If 1st qubit is  $|1\rangle$ , swap the second and third qubits.



#### Two Qubit Gates: Bell state

• Example: how to obtain Bell state.

$$|0\rangle - H = CNOT (H \otimes I) [|0\rangle \otimes |0\rangle]$$

$$|\psi\rangle = CNOT \left[\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |0\rangle\right]$$

$$= CNOT \left[\frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)\right] = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$= \frac{1}{\sqrt{2}} \begin{pmatrix}1\\0\\0\\1\end{pmatrix}$$

#### An example: GHZ state



$$|\psi\rangle = \frac{|000\rangle + |111\rangle}{\sqrt{2}}$$

Greenberger-Horne-Zeilinger (GHZ) state, 1989

 $|\psi\rangle = (I_1 \otimes CNOT_{23})(CNOT_{23} \otimes I_3)(H \otimes I_2 \otimes I_3)|0\rangle \otimes |0\rangle \otimes |0\rangle$ 

$$= (I_1 \otimes CNOT_{23}) \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \otimes |0\rangle$$
  
$$= (I_1 \otimes CNOT_{23}) \frac{1}{\sqrt{2}} (|000\rangle + |110\rangle)$$
  
$$= \frac{1}{\sqrt{2}} (|0\rangle \otimes CNOT |00\rangle + |1\rangle \otimes CNOT |10\rangle) = \frac{|000\rangle + |111\rangle}{\sqrt{2}}$$

For N-qubit system:  $|GHZ\rangle = \frac{|0\rangle^{\otimes N} + |1\rangle^{\otimes N}}{\sqrt{2}} = \frac{|00\cdots0\rangle + |11\cdots1\rangle}{\sqrt{2}}$ **IBNQ** Maximally entangled quantum state

| Operator                         | Gate(s)       |                                                                  | Matrix                                                                                                                                                                                                                                                                                                        |  |  |  |
|----------------------------------|---------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Pauli-X (X)                      | - <b>X</b> -  | $-\bigoplus \qquad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ |                                                                                                                                                                                                                                                                                                               |  |  |  |
| Pauli-Y (Y)                      | $-\mathbf{Y}$ | $\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$                  |                                                                                                                                                                                                                                                                                                               |  |  |  |
| Pauli-Z (Z)                      | $-\mathbf{Z}$ |                                                                  | $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$                                                                                                                                                                                                                                                               |  |  |  |
| Hadamard (H)                     | $-\mathbf{H}$ |                                                                  | $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$                                                                                                                                                                                                                                             |  |  |  |
| Phase (S, P)                     | $-\mathbf{S}$ | $\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$                   |                                                                                                                                                                                                                                                                                                               |  |  |  |
| $\pi/8~(\mathrm{T})$             | - <b>T</b> -  | $egin{bmatrix} 1 & 0 \ 0 & e^{i\pi/4} \end{bmatrix}$             |                                                                                                                                                                                                                                                                                                               |  |  |  |
| Controlled Not<br>(CNOT, CX)     |               |                                                                  | $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$                                                                                                                                                                                                              |  |  |  |
| Controlled Z (CZ)                |               |                                                                  | $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$                                                                                                                                                                                                             |  |  |  |
| SWAP                             |               | _*_<br>_*_                                                       | $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$                                                                                                                                                                                                              |  |  |  |
| Toffoli<br>(CCNOT,<br>CCX, TOFF) |               |                                                                  | $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ |  |  |  |

#### Teleportation

 Use two classical bits and one Bell pair to move a state from qubit 1 to qubit 3.



#### Teleportation

 Use two classical bits and one Bell pair to move a state from qubit 1 to qubit 3.



initial state =  $|\psi_0\rangle = |\psi\rangle_1 \otimes |0\rangle_2 \otimes |0\rangle_3$ 

$$\begin{split} |\psi_{1}\rangle &= H_{3} |\psi\rangle_{1} \otimes |0\rangle_{2} \otimes |0\rangle_{3} = |\psi\rangle_{1} \otimes |0\rangle_{2} \otimes \frac{1}{\sqrt{2}} \Big( |0\rangle + |1\rangle \Big) \\ |\psi_{2}\rangle &= CNOT_{3} |\psi\rangle_{1} \otimes |0\rangle_{2} \otimes \frac{1}{\sqrt{2}} \Big( |0\rangle + |1\rangle \Big) \\ &= |\psi\rangle_{1} \otimes \frac{1}{\sqrt{2}} \Big( |0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle \Big) \end{split}$$
 conditioned on q3





| qubit1 | qubit2 | qubit3                                | correction step | final state                          |
|--------|--------|---------------------------------------|-----------------|--------------------------------------|
| 0      | 0      | $\alpha  0\rangle + \beta  1\rangle$  | Ι               | $\alpha  0\rangle + \beta  1\rangle$ |
| 0      | 1      | $\beta  0\rangle + \alpha  1\rangle$  | X               | $\alpha  0\rangle + \beta  1\rangle$ |
| 1      | 0      | $\alpha  0\rangle - \beta  1\rangle$  | Z               | $\alpha  0\rangle + \beta  1\rangle$ |
| 1      | 1      | $-\beta  0\rangle + \alpha  1\rangle$ | ZX              | $\alpha  0\rangle + \beta  1\rangle$ |

### Quantum Algorithms and Data Embedding



#### Quantum Algorithms and Data Embedding

|                            | Classical data                                                                                            | Requirement                                                        | Quantum state                                                                                                                                         |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Basis<br>Encoding          | $\vec{x} \in \{0, 1\}^{\otimes n}$<br>$\vec{x} = (x_1, x_2, \dots, x_n) \in \{0, 1\}$                     |                                                                    | $ \begin{aligned}  \psi\rangle &=  x_1 x_2 \cdots x_n\rangle \\ &=  x_1\rangle \otimes  x_2\rangle \otimes \cdots \otimes  x_n\rangle \end{aligned} $ |  |  |
|                            | $\vec{x} \in \mathbb{R}^{2^n}$ $x_i \in \mathbb{R}$                                                       | $\sum_{i=1}^{2^n}  x_i ^2 = 1$                                     | $ \psi_x\rangle = \sum_{i=1}^{2^n} x_i  i\rangle$                                                                                                     |  |  |
| Amplitude<br>Encoding      | $A \in \mathbb{R}^{2^n \times 2^m}  i = 1, \cdots, 2^n$ $A_{ij} \in \mathbb{R} \qquad j = 1, \cdots, 2^m$ | $\sum_{i,j}  A_{ij} ^2 = 1$                                        | $ \psi_A angle = \sum_{i,j} A_{ij}  i angle \otimes  j angle$                                                                                         |  |  |
|                            | $A \in \mathbb{R}^{2^n \times 2^n}$                                                                       | $\sum_{i} A_{ii} = 1 \qquad A^{\dagger} = A$ $A_{ij}^{*} = A_{ji}$ | $\rho_A = \sum_{i,j} A_{ij}   i \rangle \langle j  $                                                                                                  |  |  |
| Time-evolution<br>Encoding | $x \in \mathbb{R}$                                                                                        | $x \in [0, 2\pi)$                                                  | $U(x) = e^{-ixH}$                                                                                                                                     |  |  |
| Hamiltonian<br>Encoding    | $A \in \mathbb{R}^{2^n \times 2^n}$                                                                       | $A^{\dagger} = A$                                                  | $H_A = A$                                                                                                                                             |  |  |
|                            | $A \in \mathbb{R}^{2^n \times 2^n}$                                                                       | $A^{\dagger} \neq A$ (in general)                                  | $H_A = \begin{pmatrix} 0 & A \\ A^{\dagger} & 0 \end{pmatrix}$                                                                                        |  |  |

### Quantum versions of classical algorithms

- Any quantum computation is reversible prior to measurement. In contrast, classical computations are NOT in general reversible.
  - (ex) classical NOT operation is reversible while AND, OR NAND are not
  - Every classical computation does have a classical reversible analog (which takes slightly more computational resources)
  - The construction of efficient classical reversible versions of arbitrary Boolean circuits easily generalizes to construction of quantum circuits (that implement general classical circuits)
- Any classical reversible computation with n-input and n-ouput simply permutes  $N = 2^n$  bit strings

Classical computation: Quantum computation:

$$\pi: Z_N \longrightarrow Z_N$$
$$U_{\pi}: \sum_{x=0}^{N-1} a_x |x\rangle \longrightarrow \sum_{x=0}^{N-1} a_x |\pi(x)\rangle$$

### Quantum versions of classical algorithms

Any classical computation n-inputs and m-outputs defines

 $\rightarrow$  can be extended to a reversible function  $\pi_f$  acting on n+m bits

$$\begin{array}{cccc} \pi_f \colon & Z_L & \longrightarrow & Z_L & & L = 2^{n+m} \\ (x,y) & \longrightarrow & (x,y \oplus f(x)) & & \oplus = \text{bitwise exclusive OR} \end{array}$$

x = n-bit string y = m-bit string L = n+m-bit string

f(

$$(x) = m$$
-bit string

- For y=0,  $\pi$  acts like  $f: (x,0) \longrightarrow (x, f(x))$
- $\pi_f$  is reversible, there is a • corresponding unitary transformation

$$\begin{array}{c|c} |x\rangle & & \\ |y\rangle & & \\ |y\rangle & & \\ |y \oplus f(x)\rangle \end{array}$$

 $U_f(|x\rangle \otimes |y\rangle) = |x\rangle \otimes |y \oplus f(x)\rangle$ 

#### Quantum versions of simple classical gates

Let  $b_0, b_1 \in \{0,1\}$  (binary variables)



#### Quantum versions of simple classical gates

• Toffoli gate = T = CCX = CCNOT = Controlled-controlled NOT gate



 $T | b_1 b_0 0 \rangle = | b_1 b_0 b_1 \wedge b_0 \rangle$  $T | b_1 b_0 1 \rangle = | b_1 b_0 1 \oplus b_1 \wedge b_0 \rangle$ 

 Toffoli gate T can be used to construct a complete set of Boolean connectives (NOT, AND, XOR, NAND)

$$T | 1 1 x \rangle = | 1 1 \sim x \rangle$$
  

$$T | x y 0 \rangle = | x y x \wedge y \rangle$$
  

$$T | 1 x y \rangle = | 1 x x \oplus y \rangle$$
  

$$T | x y 1 \rangle = | x y \sim (x \wedge y) \rangle$$

 $\wedge = classical AND \qquad \sim = NOT$ 

Alternative: Fredkin gate
 F=controlled SWAP

 $F | x 0 1 \rangle = | x x \sim x \rangle$   $F | x y 1 \rangle = | x (y \lor x) y \lor (\sim x) \rangle$  $F | x 0 y \rangle = | x (y \land x) y \land (\sim x) \rangle$ 

## A simple QA with two qubits

one-bit domain

- Consider a simple function,  $f(x) : \{0,1\} \longrightarrow \{0,1\}$
- For possible functions
  - Identity: f(0) = 0 and f(1) = 1
  - Bit-flip function: f(0) = 1 and f(1) = 0
  - Constant function: f(x) = 0 or f(x) = 1
- Reconstruct a unitary transformation  $U_f$  such that  $(x, y) \xrightarrow{U_f} (x, y \oplus f(x))$ , which corresponds to

$$U_f(|x\rangle \otimes |y\rangle) = |x\rangle \otimes |y \oplus f(x)\rangle$$

- $\oplus$  is mode 2 addition:  $0 \oplus 0 = 0 = 1 \oplus 1$  and  $0 \oplus 1 = 1 = 0 \oplus 1$ .
- $x \longrightarrow f(x)$  is not suitable because f(x) is not unitary in general.
- $(x, y) \xrightarrow{U_f} (x, y \oplus f(x)) \xrightarrow{U_f} (x, y \oplus f(x) \oplus f(x)) = (x, y)$

$$U_f(|x\rangle \otimes |y\rangle) = |x\rangle \otimes |y \oplus f(x)\rangle$$







one-bit range





#### A simple QA with two qubits

 Take advantage of "quantum parallelism" (a qubit can have both |0> and |1>)

$$\begin{vmatrix} x \\ - \\ U_f \end{vmatrix} = \begin{vmatrix} x \\ - \\ - \\ y \oplus f(x) \end{vmatrix} = \begin{vmatrix} 0 \\ - \\ 0 \\ - \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\$$

• Apply Hadamard gate to the first qubit and then apply U.

$$|0\rangle - H - U_{f} |\psi\rangle \qquad H|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$
$$|\psi\rangle = U_{f} (H|0\rangle \otimes |0\rangle) = \frac{1}{\sqrt{2}} U_{f} (|0\rangle + |1\rangle) \otimes |0\rangle = \frac{1}{\sqrt{2}} U_{f} (|0\rangle \otimes |0\rangle + |1\rangle \otimes |0\rangle)$$
$$|\psi\rangle = \frac{1}{\sqrt{2}} U_{f} (|0\rangle \otimes |f(0)\rangle + |1\rangle \otimes |f(1)\rangle) = \sum_{x=0,1} \frac{1}{\sqrt{2}} |x\rangle \otimes |f(x)\rangle$$

#### A simple QA with two qubits

- $|\psi\rangle$  contains information on both f(0) and f(1)
  - Superposition of f(0) and f(1)
  - -Need to perform measurement to access the info
  - However, measurement returns only one value of x and f(x)



$$|\psi\rangle = \frac{1}{\sqrt{2}} U_f \left( |0\rangle \otimes |f(0)\rangle + |1\rangle \otimes |f(1)\rangle \right) = \sum_{x=0,1} \frac{1}{\sqrt{2}} |x\rangle \otimes |f(x)\rangle$$

#### 

#### LAUREATES

| Breakth | Breakthrough Prize |             | Special Breakthrough Prize |             | <u>New</u>  | New Horizons Prize |             |             | Physics Frontiers Prize |             |             |
|---------|--------------------|-------------|----------------------------|-------------|-------------|--------------------|-------------|-------------|-------------------------|-------------|-------------|
| 2023    | <u>2022</u>        | <u>2021</u> | <u>2020</u>                | <u>2019</u> | <u>2018</u> | <u>2017</u>        | <u>2016</u> | <u>2015</u> | <u>2014</u>             | <u>2013</u> | <u>2012</u> |
|         |                    |             |                            |             |             |                    |             |             |                         |             |             |



Charles H. Bennett



Peter W. Shor



Gilles Brassard



David Deutsch

#### **Deutsch Algorithm**

- Deutsch algorithm exploits QA to obtain information about global property of f(x).
- A function of a single qubit can be either constant f(0) = f(1) or balanced  $f(0) \neq f(1)$



#### **Deutsch Algorithm**



$$|\psi_0\rangle \equiv |0\rangle \otimes |1\rangle = |01\rangle$$
$$|\psi_1\rangle = \frac{1}{2} \left(\sum_{x} |x\rangle\right) \otimes \left(|0\rangle - |1\rangle\right)$$
$$U_f \left(|x\rangle \otimes |y\rangle\right) = |x\rangle \otimes |y \oplus f(x)\rangle$$

(2) 
$$|\psi_2\rangle = U_f |\psi_1\rangle$$
  
For  $f(x) = 0$ :  $U_f \Big[ |x\rangle \otimes (|0\rangle - |1\rangle) \Big] = U_f \Big( |x\rangle \otimes |0\rangle \Big) - U_f \Big( |x\rangle \otimes |1\rangle \Big)$   
 $= |x\rangle \otimes |0 + f(x)\rangle - |x\rangle \otimes |1 + f(x)\rangle$   
 $= |x\rangle \otimes \Big( |0\rangle - |1\rangle \Big) = (-1)^{f(x)} |x\rangle \otimes \Big( |0\rangle - |1\rangle \Big)$   
For  $f(x) = 1$ :  $U_f \Big[ |x\rangle \otimes (|0\rangle - |1\rangle) \Big] = |x\rangle \otimes \Big( |1\rangle - |0\rangle \Big) = (-1)^{f(x)} |x\rangle \otimes \Big( |0\rangle - |1\rangle \Big)$   
 $|\psi_2\rangle = U_f |\psi_1\rangle = \frac{1}{\sqrt{2}} \Big[ \sum_x (-1)^{f(x)} |x\rangle \Big] \otimes \frac{1}{\sqrt{2}} \Big( |0\rangle - |1\rangle \Big)$
#### **Deutsch Algorithm**



### **Deutsch Algorithm**

- Deutsch algorithm exploits QA to obtain information about global property of f(x).
- A function of a single qubit can be either constant f(0) = f(1) or balanced  $f(0) \neq f(1)$



- If measurement gives  $|0\rangle$ ,  $f(0) = f(1) \longrightarrow f(x) = \text{constant}$ .
- If measurement gives  $|1\rangle$ ,  $f(0) \neq f(1) \longrightarrow f(x)$  = balanced.
- Can be generalized to function with multiple input values, Deutsch-Josza algorithm

# Basic operations with bit strings

- x and y are two n-bit strings:  $|x\rangle = |x_{n-1}x_{n-2} \cdots x_1x_0\rangle$  $|y\rangle = |y_{n-1}y_{n-2} \cdots y_1y_0\rangle$   $x_i, y_i \in \{0,1\}$
- Hamming distance =  $d_H(x, y)$  = the number of bits in which the two strings differ.  $|x\rangle = |10101\rangle$

$$|x\rangle = |10101\rangle$$
  
$$|y\rangle = |11100\rangle$$
  
$$d_H(x, y) = ?$$

- Hamming weight =  $d_H(x) = d_H(x,0)$  = the number of 1-bit in x = the Hamming distance between x and 0.
- $x \cdot y =$  the number of common 1-bit in x and  $y = d_H(x, y)$
- $x \oplus y$  = the bitwise exclusive OR = bitwise addition under mod 2
- $x \land y$  = the bitwise AND
- $\sim x = x \oplus 111 \cdots 1 =$  the bit string that flips 0 and 1

#### **Useful Identities**

•  $x \cdot y = d_H(x, y)$ 

• 
$$x \cdot y = \frac{1}{2} \left( 1 - (-1)^{x \cdot y} \right) \mod 2$$

•  $x \cdot y + x \cdot z = x \cdot (y \oplus z) \mod 2$ 

• 
$$d_H(x \oplus y) = d_H(x) + d_H(y) \mod 2$$



#### Walsh-Hadamard Transformation

 $W \equiv H \otimes H \otimes \cdots \otimes H \equiv H^{\otimes n}$ 

apply *H* to each qubit in an n-qubit system

$$W|0\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle \qquad N = 2^n$$

$$|r\rangle = |r_{n-1}r_{n-2}\cdots r_1r_0\rangle$$
  

$$|s\rangle = |s_{n-1}s_{n-2}\cdots s_1s_0\rangle$$
  

$$r_i, s_i \in \{0,1\}$$

How does W act on  $|r\rangle$ ?  $W|r\rangle = \sum W_{rs}|s\rangle$  $W|r\rangle = \left(H \otimes H \otimes \cdots \otimes H\right) |r_{n-1}r_{n-2} \cdots r_1r_0\rangle$  $= \frac{1}{\sqrt{2}^{n}} \left[ \begin{array}{c} |0\rangle + (-1)^{r_{n-1}} |1\rangle \\ = \sum_{s_{n-1}=0}^{1} (-1)^{-s_{n-1} \cdot r_{n-1}} |s_{n-1}\rangle \\ = \sum_{s_{0}=0}^{1} (-1)^{-s_{0} \cdot r_{0}} |s_{0}\rangle \\ = \frac{1}{2^{n}} \sum_{s=0}^{N-1} (-1)^{-s_{n-1} \cdot r_{n-1}} |s_{n-1}\rangle \otimes \cdots \otimes (-1)^{-s_{1} \cdot r_{1}} |s_{1}\rangle \otimes (-1)^{-s_{0} \cdot r_{0}} |s_{0}\rangle \end{array}$  $W(|r\rangle) = \frac{1}{2^n} \sum_{r=1}^{2^n-1} (-1)^{s \cdot r} |r\rangle \qquad \qquad W_{rs} = W_{sr} = \frac{1}{\sqrt{2^n}} (-1)^{r \cdot s}$ 

- Given a function  $f: Z_{2^n} \longrightarrow Z_2$  that is known to be either constant or balanced, and  $U_f: |x\rangle \otimes |y\rangle \longrightarrow |x\rangle \otimes |x \oplus f(x)\rangle$ , determine whether the function f is constant or balanced.
- Phase change for a subset of basis vectors

Consider a superposition : 
$$|\psi\rangle = \sum_{i} a_{i} |i\rangle$$
  
Boolean function :  $f: Z_{2^{n}} \longrightarrow Z_{2}^{i}$  where  $f(x) = \begin{cases} 1, & \text{if } x \in X \subset Z_{2^{n}} \\ 0, & \text{otherwise} \end{cases}$   
 $S_{X}^{\phi}: \sum_{x=0}^{N-1} a_{x} |x\rangle \longrightarrow \sum_{x \in X} a_{x} e^{i\phi} |x\rangle + \sum_{x \notin X} a_{x} |x\rangle \quad \text{where } X = \{x | f(x) = 0\}$   
For  $\phi = \pi$   $U_{f}(|\psi\rangle \otimes |-\rangle) = U_{f}(\sum_{x \in X} a_{x} e^{i\phi} |x\rangle \otimes |-\rangle) + U_{f}(\sum_{x \notin X} a_{x} |x\rangle \otimes |-\rangle)$   
 $= -(\sum_{x \in X} a_{x} |x\rangle \otimes |-\rangle) + (\sum_{x \notin X} a_{x} |x\rangle \otimes |-\rangle)$   
 $(-1)^{f(x)} = \sum_{x} (-1)^{f(x)} |\psi\rangle \otimes |-\rangle$ 



For constant f,  $(-1)^{f(i)} = (-1)^{f(0)}$  is a global phase.

$$|\phi\rangle = (-1)^{f(0)} \frac{1}{N} \sum_{i} \left( \sum_{i} (-1)^{i \cdot j} \right) |j\rangle = (-1)^{f(0)} |0\rangle$$
 only nonzero when  $j =$ 

$$\sum_{x=0}^{2^n-1} (-1)^{x \cdot y} = \begin{cases} 2^n, & \text{if } y = 0\\ 0, & \text{otherwise} \end{cases}$$

0

$$\phi \rangle = W |\psi\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N-1} (-1)^{f(i)} W |i\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N-1} (-1)^{f(i)} \sum_{j=0}^{N-1} \frac{1}{\sqrt{N}} (-1)^{i\cdot j} |j\rangle$$
  
For balanced  $f$ ,  $|\phi\rangle = \frac{1}{2^n} \sum_{j} \left( \sum_{i \in X} (-1)^{i \cdot j} - \sum_{i \notin X} (-1)^{i \cdot j} \right) |j\rangle$  where  $X = \{x | f(x) = 0\}$ 

For j = 0, amplitude is zero.

$$\sum_{i \in X} (-1)^{i \cdot j} - \sum_{i \notin X} (-1)^{i \cdot j} = 0 \text{ for } j = 0$$

 $|\phi\rangle$  does not contain  $|0\rangle$ .

- Measurement of state |φ⟩ (in the standard basis) will return |0⟩ with probability 1, if f is constant, and will return a non-zero |j⟩ with probability 1, if f is balanced.
- Classical algorithm must evaluate f at least  $2^{n-1} + 1$  times to solve the problem with certainty, while quantum algorithm solves with a single evaluation of  $U_f$ .
- There is an exponential separation between the query complexity of the QA and query complexity of any classical algorithm.
- There are classical algorithms that solve the problem in fewer evaluations but only with high probability of success (not 100% probability).



- A n-bit function  $f: \{0,1\}^{\otimes n} \longrightarrow \{0,1\}$ , which outputs a singlet bit, is guaranteed to be of the form  $f_s(x) = x \cdot s$ , where s is an unknown n-bit string and  $x \cdot s = x_0 s_0 + \dots + x_{n-1} s_{n-1} = \sum_{i=0}^{n-1} x_i s_i \pmod{2}$ . Find the unknown string  $s = (s_0 s_1 \dots s_{n-1})$ .
- Best classical algorithm uses  $\mathcal{O}(n)$  calls to  $f_s(x) = x \cdot s \mod 2$ . Each query gives one bit of information of *s* (because *f* outputs one bit).
- How do we find s with less than n queries?  $\rightarrow$  Use superposition (over all possible input bit strings)

| I  | 3  | 5  | 7  | 9  | 11 | 13 | 15 |
|----|----|----|----|----|----|----|----|
| 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 |
| 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
| 49 | 51 | 53 | 55 | 57 | 59 | 61 | 63 |
|    |    |    |    |    |    |    |    |

| 2  | 3  | 6  | 7  | 10 | 11 | 14 | 15 |
|----|----|----|----|----|----|----|----|
| 18 | 19 | 22 | 23 | 26 | 27 | 30 | 31 |
| 34 | 35 | 38 | 39 | 42 | 43 | 46 | 47 |
| 50 | 51 | 54 | 55 | 58 | 59 | 62 | 63 |

| 4  | 5  | 6  | 7  | 12 | 13 | 14 | 15 |
|----|----|----|----|----|----|----|----|
| 20 | 21 | 22 | 23 | 28 | 29 | 30 | 31 |
| 36 | 37 | 38 | 39 | 44 | 45 | 46 | 47 |
| 52 | 53 | 54 | 55 | 60 | 61 | 62 | 63 |

| 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|----|----|----|----|----|----|----|----|
| 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
| 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |

| 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|----|----|----|----|----|----|----|----|
| 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 |
| 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |

| 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 |
|----|----|----|----|----|----|----|----|
| 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
| 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 |
| 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |

| ī        |                |                |                |                |                |                |                |                | · |                |                |                |                      |                      |                      |                      | !                    | <u>ات</u> ! |                |                      |                      |                      |                      |                      |                      |                      |
|----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---|----------------|----------------|----------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------|----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|          | I              | 3              | 5              | 7              | 9              | П              | 13             | 15             |   | 2              | 3              | 6              | 7                    | 10                   | П                    | 14                   | 15                   |             | 4              | 5                    | 6                    | 7                    | 12                   | 13                   | 14                   | 15                   |
|          | 17             | 19             | 21             | 23             | 25             | 27             | 29             | 31             |   | 18             | 19             | 22             | 23                   | 26                   | 27                   | 30                   | 31                   |             | 20             | 21                   | 22                   | 23                   | 28                   | 29                   | 30                   | 31                   |
|          | 33             | 35             | 37             | 39             | 41             | 43             | 45             | 47             |   | 34             | 35             | 38             | 39                   | 42                   | 43                   | 46                   | 47                   |             | 36             | 37                   | 38                   | 39                   | 44                   | 45                   | 46                   | 47                   |
|          | 49             | 51             | 53             | 55             | 57             | 59             | 61             | 63             |   | 50             | 51             | 54             | 55                   | 58                   | 59                   | 62                   | 63                   |             | 52             | 53                   | 54                   | 55                   | 60                   | 61                   | 62                   | 63                   |
| <u> </u> |                |                |                |                |                |                |                |                |   |                |                |                |                      |                      |                      |                      | j                    | iL          |                |                      |                      |                      |                      |                      |                      |                      |
| Ī        |                |                |                |                |                |                |                |                |   |                |                |                |                      |                      |                      |                      |                      | Ī           |                |                      |                      |                      |                      |                      |                      |                      |
|          | 8              | 9              | 10             | П              | 12             | 13             | 14             | 15             |   | 16             | 17             | 10             | 10                   |                      |                      |                      |                      |             | 22             | 22                   | <b></b>              | _                    |                      |                      | 00                   | ~ ~                  |
| :        |                |                |                |                |                |                | •••            |                |   |                | 17             | 10             | 19                   | 20                   | 21                   | 22                   | 23                   |             | 32             | 33                   | 34                   | 35                   | 36                   | 37                   | 38                   | 39                   |
|          | 24             | 25             | 26             | 27             | 28             | 29             | 30             | 31             |   | 24             | 25             | 26             | 19<br>27             | 20<br>28             | 21<br>29             | 22<br>30             | 23<br>31             |             | 40             | 33<br>41             | 34<br>42             | 35<br>43             | 36<br>44             | 37<br>45             | 38<br>46             | 39<br>47             |
|          | 24<br>40       | 25<br>41       | 26<br>42       | 27<br>43       | 28<br>44       | 29<br>45       | 30<br>46       | 31<br>47       |   | 24<br>48       | 25<br>49       | 26<br>50       | 19<br>27<br>51       | 20<br>28<br>52       | 21<br>29<br>53       | 22<br>30<br>54       | 23<br>31<br>55       |             | 40<br>48       | 33<br>41<br>49       | 34<br>42<br>50       | 35<br>43<br>51       | 36<br>44<br>52       | 37<br>45<br>53       | 38<br>46<br>54       | 39<br>47<br>55       |
|          | 24<br>40<br>56 | 25<br>41<br>57 | 26<br>42<br>58 | 27<br>43<br>59 | 28<br>44<br>60 | 29<br>45<br>61 | 30<br>46<br>62 | 31<br>47<br>63 |   | 24<br>48<br>56 | 25<br>49<br>57 | 26<br>50<br>58 | 19<br>27<br>51<br>59 | 20<br>28<br>52<br>60 | 21<br>29<br>53<br>61 | 22<br>30<br>54<br>62 | 23<br>31<br>55<br>63 |             | 40<br>48<br>56 | 33<br>41<br>49<br>57 | 34<br>42<br>50<br>58 | 35<br>43<br>51<br>59 | 36<br>44<br>52<br>60 | 37<br>45<br>53<br>61 | 38<br>46<br>54<br>62 | 39<br>47<br>55<br>63 |

- A n-bit function  $f: \{0,1\}^{\otimes n} \longrightarrow \{0,1\}$ , which outputs a singlet bit, is guaranteed to be of the form  $f_s(x) = x \cdot s$ , where s is an unknown n-bit string and  $x \cdot s = x_0 s_0 + \dots + x_{n-1} s_{n-1} = \sum_{i=0}^{n-1} x_i s_i \pmod{2}$ . Find the unknown string  $s = (s_0 s_1 \dots s_{n-1})$ .
- Best classical algorithm uses  $\mathcal{O}(n)$  calls to  $f_s(x) = x \cdot s \mod 2$ . Each query gives one bit of information of *s* (because *f* outputs one bit).

$$U_{f}(|x\rangle \otimes |y\rangle) = |x\rangle \otimes |y \oplus f(x)\rangle \qquad \qquad U_{f} = \sum_{x} \sum_{y} |x\rangle \langle x| \otimes |y \oplus f(x)\rangle \langle y|$$
$$f_{s}(x) = x \cdot s \mod 2 \qquad \qquad U_{f} = \sum_{x \in \{0,1\}^{\otimes n}} \sum_{y \in \{0,1\}^{\otimes n}} |x\rangle \langle x| \otimes |y \oplus s \cdot x\rangle \langle y|$$

• How do we find s with less than n queries?  $\rightarrow$  Use superposition (over all possible input bit strings)

$$\begin{split} |\psi_{s}\rangle &= \frac{1}{\sqrt{2}^{n}} \sum_{x \in \{0,1\}^{\otimes n}} (-1)^{f(x)} |x\rangle = \frac{1}{\sqrt{2}^{n}} \sum_{x \in \{0,1\}^{\otimes n}} (-1)^{x \cdot s} |x\rangle \\ U_{f}\Big( |\psi\rangle \otimes |-\rangle \Big) &= \sum_{x} (-1)^{f(x)} |\psi\rangle \otimes |-\rangle \\ \end{split}$$

- $|\psi_s\rangle$  states are orthogonal!  $\langle \psi_s | \psi_t \rangle = \delta_{st}$ ۲  $\begin{aligned} \langle \psi_s | \psi_t \rangle &= \frac{1}{2^n} \sum_{x \in \{0,1\}^{\otimes n}} (-1)^{x \cdot s} \langle x | \sum_{y \in \{0,1\}^{\otimes n}} (-1)^{y \cdot t} | y \rangle = \frac{1}{2^n} \sum_{x,y} (-1)^{x \cdot s + y \cdot t} \langle x | y \rangle \\ &= \frac{1}{2^n} \sum_{x \in \{0,1\}^{\otimes n}} (-1)^{x \cdot s + x \cdot t} = \frac{1}{2^n} \sum_{x \in \{0,1\}^{\otimes n}} (-1)^{x \cdot (s \oplus t)} (-1)^{x \cdot (s \oplus t)} \\ &\quad x \cdot s = x_0 s_0 + \dots + x_{n-1} s_{n-1} \\ &\quad x \cdot s + x \cdot t = x \cdot (s \oplus t) \pmod{2} \end{aligned}$  $\sum_{x \in \{0,1\}^{\otimes n}} (-1)^{x \cdot k} = \sum_{x \in \{0,1\}^{\otimes n}} (-1)^{x_0 k_0 + \dots + x_{n-1} k_{n-1}} = \sum_{x_0 \in \{0,1\}} (-1)^{x_0 k_0} \sum_{x_1 \in \{0,1\}} (-1)^{x_1 k_1} \dots \sum_{x_{n-1} \in \{0,1\}} (-1)^{x_{n-1} k_{n-1}}$  $x \in \{0,1\}^{\otimes n}$  $= 2\delta_{k_00} \times 2\delta_{k_10} \cdots \times 2\delta_{k_{n-1}0} = 2^n \delta_{k0} \qquad \qquad \sum_{k=1}^{2^n-1} (-1)^{x \cdot y} = \begin{cases} 2^n, & \text{if } y = 0\\ 0, & \text{otherwise} \end{cases}$  $\langle \psi_s | \psi_t \rangle = \delta_{s \oplus t,0} = \delta_{st}$
- Orthogonal set of vectors from a basis and we can "measure in this basis".
- Equivalent to performing unitary transformation and measuring in the computational basis, from which we should be able to extract the string *s*.

$$W \equiv H^{\otimes n} = \frac{1}{\sqrt{2}^n} \sum_{x,y \in \{0,1\}^{\otimes n}} (-1)^{x \cdot y} |y\rangle \langle x| = \sum_{y \in \{0,1\}^{\otimes n}} |y\rangle \langle \psi_y|$$

• Apply  $H^{\otimes n}$  to  $|\psi_s\rangle$ :







Circuit for Berstein-Vazirani algorithm

 Simpler explanation: Berstein-Vazirani algorithm behaves as if it were a circuit consisting only of CNOT operations from ancilla to the qubits corresponding to 1-bit of s.



• Berstein-Vazirani algorithm behaves as if it were a circuit consisting only of CNOT operations from ancilla to the qubits corresponding to 1-bit of s. s = 01101



• For s=01101, the black box for U<sub>s</sub> behaves as if it contained this circuit, consisting of CNOT gates for each 1-bit of s.



 BV algorithm behaves as if it were implemented by this simple circuit, consisting of a CNOT for each 1-bit of s.

# Simon's Algorithm

Given a 2-to-1 function *f* such that *f*(*x*) = *f*(*x* ⊕ *a*) for all *x* ∈ Z<sup>n</sup><sub>2</sub>, find the hidden string *a* ∈ Z<sup>n</sup><sub>2</sub>. (Simon's algorithm shows structural similarities to Shor's algorithm)

$$\begin{split} U_f : |x\rangle \otimes |y\rangle &\longrightarrow |x\rangle \otimes |y \oplus f(x)\rangle & |x\rangle = |x_0 x_1 \cdots x_{n-1}\rangle \\ U_f \Big[ W |0\rangle^{\otimes n} \otimes |0\rangle \Big] = U_f \frac{1}{\sqrt{N}} \sum_{x} |x\rangle \otimes |f(x)\rangle & x_i \in \{0,1\} \quad N = 2^n \end{split}$$

• Suppose we perform a measurement on 2nd qubit and  $f(x_0)$  is the measured value. Then the 1st qubit becomes  $\frac{1}{\sqrt{2}}(|x_0\rangle + |f(x_0)\rangle)$ .

$$|0\rangle_{1}^{\otimes n}$$
  $W$   $U_{f}$   $W$   $M$ 

# Simon's Algorithm

• Apply Walsh-Hadamard:

$$W\left[\frac{1}{\sqrt{2}}(|x_{0}\rangle + |x_{0} \oplus a\rangle)\right] = \frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}^{n}}\sum_{y}\left\{(-1)^{x_{0}\cdot y} + (-1)^{(x_{0} \oplus a)\cdot y}\right\}|y\rangle\right]$$
$$W(|r\rangle) = \frac{1}{2^{n}}\sum_{s=0}^{2^{n}-1}(-1)^{s\cdot r}|r\rangle = \frac{1}{\sqrt{2}^{n+1}}\sum_{y}(-1)^{x_{0}\cdot y}\left(1 + (-1)^{a\cdot y}\right)|y\rangle$$
$$W_{rs} = W_{sr} = \frac{1}{\sqrt{2}^{n}}(-1)^{r\cdot s} = \frac{1}{\sqrt{2}^{n+1}}\sum_{y\cdot a=even}(-1)^{x_{0}\cdot y}|y\rangle$$

- Measurement on the 1st qubit results in a random y such that  $y \cdot a = 0 \mod 2$ .
- Unknown  $a_i$  must satisfy  $y_0a_0 + y_1a_1 + \cdots + y_{n-1}a_{n-1} = 0 \mod 2$ .



# Simon's Algorithm

- Repeat the same procedure until n linearly independent equations have been found. Each time computation is repeated, at least 50% of the time, the resulting equation can be independent.
- Repeating 2n times, there is a 50% chance that n-linearly independent equations can be found.
- The equation can be solved to find the string *a* in  $O(n^2)$  steps.
- With high likelihood, the hidden string *a* will be found with  $\mathcal{O}(n)$  calls to  $U_f$ , followed by  $\mathcal{O}(n^2)$  steps to solve the resulting set of equations.
- Classical algorithm needs  $\mathcal{O}(2^{n/2})$  calls to f.

### Simon's Algorithm: probability of finding n-linearly independent equations

- Consider we have a string,  $x = (x_1x_2x_3\cdots x_n)$ .
- 1st measurement:  $P_1 = 1$
- After 1st measurement, what is the probability that next measurement will be linearly independent?  $P_2 = 1 1/2^n$
- Probability that next measurement will be linearly independent:  $P_2 = 1 2/2^n$
- Probability that next string  $x_{m+1}$  is linearly independent:  $P_2 = 1 \frac{2^m}{2^n}$
- Probability of n 1 being linearly independent:

$$P = \left(1 - \frac{1}{2^n}\right) \left(1 - \frac{2}{2^n}\right) \cdots \left(1 - \frac{1}{2^{n-2}}\right) \ge 1 - \sum_{k=2}^n \frac{1}{2^k} = 1 - \frac{\frac{1}{4}\left(1 - \frac{1}{2^{n-1}}\right)}{1 - \frac{1}{2}} \ge \frac{1}{2} + \frac{1}{2^n}$$

$$(1-a)(1-b) = 1 - a - b + ab \ge 1 - a - b$$
 for  $0 < a, b < 1$ 

# **Discrete Fourier Transformation**

- Simon's algorithm  $\longrightarrow$  Shor's algorithm (factoring numbers) makes use of QFT.
- Discrete Fourier Transformation (DFT): signal processing, quantum theory (position ↔ momentum).
- Assume a vector *f* of N complex numbers:  $f_k$ ,  $k = 0, 1, \dots, N-1$
- DFT is a mapping from N complex # to N complex #.

 $f_i$ 

$$\begin{aligned} \text{DFT}: \ f_k &\longrightarrow \tilde{f}_j = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{-jk} f_k & w = \exp\left(\frac{2\pi i}{N}\right) \\ \text{Inverse DFT}: \ \tilde{f}_k &\longrightarrow \tilde{f}_j = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{jk} \tilde{f}_k & \text{nonzero only when } j = \ell \end{aligned}$$
$$= \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{jk} \tilde{f}_k = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{jk} \left(\frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} w^{-\ell k} f_\ell\right) = \frac{1}{N} \sum_{\ell=0}^{N-1} \sum_{k=0}^{N-1} w^{(j-\ell)k} f_\ell = \sum_{\ell=0}^{N-1} f_\ell \delta_{j\ell} = f_j \\ \frac{1}{N} \sum_{k=0}^{N-1} w^{(j-\ell)k} = \delta_{j\ell} & \frac{1}{N} \sum_{k=0}^{N-1} w^{(j-\ell)k} = \begin{cases} \frac{1}{N} \frac{1 - \exp\left(\frac{2\pi i}{N}(j-\ell)N\right)}{1 - \exp\left(\frac{2\pi i}{N}\right)} = 0, & \text{if } j \neq \ell \\ 1, & \text{if } j = \ell \end{cases} \end{aligned}$$

# **Discrete Fourier Transformation**

• Convolution (circular convolution, periodic convolution, cyclic convolution)

$$(f * g)_i = \sum_{j=0}^{N-1} f_i g_{i-j}$$
, where  $g_{-m} = g_{N-m}$  (periodic condition)

• DFT turns convolution into point wise vector multiplication.

 $\frac{1}{N}\sum_{k=0}^{N-1} w^{(j-\ell)k} = \delta_{j\ell} \qquad w = \exp\left(\frac{2\pi i}{N}\right)$ 

DFT of 
$$f * g = \tilde{c}_k = \tilde{f}_k \tilde{g}_k$$

$$\begin{split} \tilde{c}_{k} &= \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{-jk} (f * g)_{j} = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{-jk} \left( \sum_{i=0}^{N-1} f_{i} g_{j-i} \right) \\ &= \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{-jk} \sum_{i=0}^{N-1} \left( \frac{1}{\sqrt{N}} \sum_{\ell} w^{i\ell} \tilde{f}_{\ell} \right) \left( \frac{1}{\sqrt{N}} \sum_{m} w^{(j-i)m} \tilde{g}_{m} \right) = \frac{1}{\sqrt{N}^{3}} \sum_{j,i,\ell,m} \tilde{f}_{\ell} \tilde{g}_{m} w^{-jk} w^{i\ell} w^{jm} w^{-im} = \tilde{f}_{k} \tilde{g}_{k} \end{split}$$

DFT : 
$$f_k \longrightarrow \tilde{f}_j = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{-jk} f_k$$
  
Inverse DFT :  $\tilde{f}_k \longrightarrow \tilde{f}_j = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{jk} \tilde{f}_k$ 

#### **Fast Fourier Transformation**

• For classical discrete Fourier transformation

$$y_k = \frac{1}{\sqrt{2}^n} \sum_{j=0}^{2^n - 1} w^{jk} x_j \qquad \qquad w = \exp\left(\frac{2\pi i}{2^n}\right) \qquad \qquad N = 2^n$$

- QFT is defined similarly  $F: |j\rangle \longrightarrow \frac{1}{\sqrt{2}^n} \sum_{k=0}^{2^{-1}} w^{jk} x_k = F |j\rangle$
- For arbitrary quantum states,

 $\frac{1}{2^n} \sum_{j \in \mathcal{I}}^{2^n - 1} w^{(j - \ell)k} = \delta_{j\ell}$ 

$$F: x \rangle = \frac{1}{\sqrt{2}^n} \sum_{j=0}^{2^n - 1} x_j |j\rangle \longrightarrow |y\rangle = \frac{1}{\sqrt{2}^n} \sum_{k=0}^{2^n - 1} y_k |k\rangle$$

$$F |x\rangle = \frac{1}{\sqrt{2}^{n}} \sum_{j=0}^{2^{n}-1} x_{j} F |j\rangle = \frac{1}{\sqrt{2}^{n}} \sum_{j=0}^{2^{n}-1} \frac{1}{\sqrt{2}^{n}} \sum_{k=0}^{2^{n}-1} x_{j} w^{jk} |k\rangle$$

• For a single quantum state,  $F|j\rangle = \frac{1}{\sqrt{2}^n} \sum_{j=0}^{2^n-1} w^{jk} |k\rangle$   $F|j'\rangle = \frac{1}{\sqrt{2}^n} \sum_{j'=0}^{2^n-1} w^{j'k'} |k'\rangle$ 

$$\langle j' | F^{\dagger}F | j \rangle = \frac{1}{2^n} \sum_{k=0}^{2^n - 1} \sum_{k'=0}^{2^n - 1} w^{-j'k'} w^{jk} \langle k' | k \rangle = \frac{1}{2^n} \sum_{k=0}^{2^n - 1} w^{(j-j')k} = \delta_{jj'}$$

 $F^{\dagger}F = 1$  and QFT is a unitary transformation.

For 
$$j = j_1 2^{n-1} + j_2 2^{n-2} + \dots + j_n 2^0 = \sum_{i=1}^n n_{j_i} 2^{n-i}$$
  
 $k = k_1 2^{n-1} + k_2 2^{n-2} + \dots + k_n 2^0 = \sum_{i=1}^n n_{k_i} 2^{n-i}$   
 $F|j\rangle = \frac{1}{\sqrt{2}^n} \sum_{k=0}^{2^n-1} w^{jk} |k\rangle = \frac{1}{\sqrt{2}^n} \sum_{k=0}^{2^n-1} \exp\left(\frac{2\pi i j}{2^n} \sum_{\ell=1}^n k_\ell 2^{n-\ell}\right) |k\rangle$   
 $= \frac{1}{\sqrt{2}^n} \sum_{k=0}^{2^n-1} \exp\left(2\pi i j \sum_{\ell=1}^n k_\ell 2^{-\ell}\right) |k\rangle$   
 $= \frac{1}{\sqrt{2}^n} \sum_{k=0}^{2^n-1} \exp\left(2\pi i j k_1 2^{-1}\right) \exp\left(2\pi i j k_2 2^{-2}\right) \dots \exp\left(2\pi i j k_n 2^{-n}\right) |k\rangle$   
 $= \frac{1}{\sqrt{2}^n} \sum_{k_1=0}^1 \dots \sum_{k_n=0}^1 \exp\left(2\pi i j k_1 2^{-1}\right) \exp\left(2\pi i j k_2 2^{-2}\right) \dots \exp\left(2\pi i j k_n 2^{-n}\right) |k_1 k_2 \dots k_n\rangle$   
 $= |0\rangle + \exp\left(2\pi i j 2^{-n}\right) |1\rangle$ 

$$F|j\rangle = \frac{1}{\sqrt{2}^{n}} \left( |0\rangle + \exp\left(\frac{2\pi i j}{2}\right) |1\rangle \right) \left( |0\rangle + \exp\left(\frac{2\pi i j}{2^{2}}\right) |1\rangle \right) \cdots \left( |0\rangle + \exp\left(\frac{2\pi i j}{2^{n}}\right) |1\rangle \right)$$
$$= \frac{1}{\sqrt{2}^{n}} \bigotimes_{k=1}^{n} \left( |0\rangle + \exp\left(\frac{2\pi i j}{2^{k}}\right) |1\rangle \right) \qquad j_{i} = 0,1$$

• Binary fraction = expression in power of 1/2 In decimal form:  $0.j_{\ell} j_{\ell+1} \cdots j_m = \frac{j_{\ell}}{2} + \frac{j_{\ell+1}}{2^2} + \cdots + \frac{j_m}{2^{m-\ell+1}}$  j = n for mean integer:  $j_{2^k} = j_1 j_2 \cdots j_{n-k} \cdot j_{n-k+1} \cdots j_n = \sum_{\nu=1}^n j_\nu 2^{n-\nu-k}$ If n = 8 and k = 3,  $j = j_1 2^7 + j_2 2^6 + j_3 2^5 + j_4 2^4 + j_5 2^3 + j_6 2^2 + j_7 2^1 + j_8 2^0$   $j_1 j_2 j_3 j_4 j_5 \cdot j_6 j_7 j_8$ binary fraction:  $0.j_6 j_7 j_8$ 

$$\begin{split} j &= j_1 2^{n-1} + j_2 2^{n-2} + \dots + j_{n-3} 2^3 + j_{n-2} 2^2 + j_{n-1} 2^1 + j_1 2^0 = \sum_{\nu=1}^n j_\nu 2^{n-\nu} \\ \frac{j}{2^k} &= \frac{j_1 2^{n-1} + j_2 2^{n-2} + \dots + j_{n-3} 2^3 + j_{n-2} 2^2 + j_{n-1} 2^1 + j_1 2^0}{2^k} = \sum_{\nu=1}^n \frac{j_\nu 2^{n-\nu}}{2^k} = \sum_{\nu=1}^n j_\nu 2^{n-\nu-k} \\ &= j_1 j_2 \dots j_{n-k} \cdot j_{n-k+1} \dots j_n \\ \exp\left(2\pi i \frac{j}{2^k}\right) &= \exp\left(2\pi i 0 \cdot j_{n-k-1} \dots j_n\right) \\ F|j\rangle &= \frac{1}{\sqrt{2}^n} \left(|0\rangle + \exp\left(\frac{2\pi i j}{2}\right)|1\rangle\right) \left(|0\rangle + \exp\left(\frac{2\pi i j}{2^2}\right)|1\rangle\right) \dots \left(|0\rangle + \exp\left(\frac{2\pi i j}{2^n}\right)|1\rangle\right) \\ &= \frac{1}{\sqrt{2}^n} \bigotimes_{k=1}^n \left(|0\rangle + \exp\left(\frac{2\pi i j}{2^k}\right)|1\rangle\right) = \frac{1}{\sqrt{2}^n} \bigotimes_{k=1}^n \left(|0\rangle + \exp\left(2\pi i 0 \cdot j_{n-k-1} \dots j_n\right)|1\rangle\right) \\ &= \frac{1}{\sqrt{2}^n} \left(|0\rangle + \exp\left(2\pi i 0 \cdot j_n\right)|1\rangle\right) \left(|0\rangle + \exp\left(2\pi i 0 \cdot j_{n-1} j_{n-2}\right)|1\rangle\right) \\ &\dots \left(|0\rangle + \exp\left(2\pi i 0 \cdot j_1 j_2 \dots j_n\right)|1\rangle\right) \end{split}$$

### Quantum Circuit for QFT

•  $|j_{\ell}\rangle$  transforms into  $\frac{1}{\sqrt{2}}\left[|0\rangle + \exp\left(2\pi i 0.j_{\ell}\cdots j_{n}\right)|1\rangle\right]$ 

$$= \frac{1}{\sqrt{2}} \left[ |0\rangle + e^{2\pi i 0.j_{\ell}} e^{2\pi i 0.j_{\ell+1\cdots j_n}/2} |1\rangle \right]$$
$$\exp\left(2\pi i \frac{j_{\ell}}{2}\right) = \exp\left(\pi i j_{\ell}\right) = (-1)^{j_{\ell}} \qquad \text{use } R_k = \begin{pmatrix} 1 & 0\\ 0 & e^{2\pi i/2^k} \end{pmatrix}$$

Controlled by the value of 
$$j_k$$
th qubit.

$$\text{if } \begin{cases} j_k = 0 \,, \quad R_k = 1 \\ j_k = 1 \,, \quad R_k \end{cases}$$

 $\begin{array}{l} 1 \text{st qubit:} \quad |0\rangle + \exp\left(2\pi i \, 0.\, j_{\ell} \cdots j_{n}\right) |1\rangle \\ \text{Start with} \quad |j\rangle = |j_{2}\rangle |j_{2}j_{3} \cdots j_{n}\rangle \xrightarrow{H_{1}} \frac{1}{\sqrt{2}} \left(|0\rangle + (-1)^{j_{1}}|1\rangle\right) |j_{2}j_{3} \cdots j_{n}\rangle \\ \quad = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \, 0.j_{1}}|1\rangle\right) |j_{2}j_{3} \cdots j_{n}\rangle \\ \frac{\text{R}_{2} \text{ on } q_{1} \text{ with } q_{2} \text{ control}}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \, 0.j_{1}}e^{2\pi i j_{2}/2^{2}}|1\rangle\right) |j_{2}j_{3} \cdots j_{n}\rangle \\ = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \, 0.j_{1}}j_{2}|1\rangle\right) |j_{2}j_{3} \cdots j_{n}\rangle \end{array}$ 

### Quantum Circuit for QFT



The entire procedure is repeated for all other qubits,  $j_2, j_3, \cdots , j_n$ 

$$\frac{1}{\sqrt{2}^{n}} \left[ |0\rangle + e^{2\pi i 0.j_{1}\cdots j_{n}} |1\rangle \right] \left[ |0\rangle + e^{2\pi i 0.j_{2}\cdots j_{n}} |1\rangle \right] \cdots \left[ |0\rangle + e^{2\pi i 0.j_{n}} |1\rangle \right]$$

Use SWAP gate or relabel to obtain:  $F|j\rangle = \frac{1}{\sqrt{2}^{n}} \bigotimes_{k=1}^{n} \left( |0\rangle + \exp\left(\frac{2\pi i j}{2^{k}}\right) |1\rangle \right)$  $\frac{1}{\sqrt{2}^{n}} \left[ |0\rangle + e^{2\pi i 0.j_{n}} |1\rangle \right] \left[ |0\rangle + e^{2\pi i 0.j_{2}\cdots j_{n}} |1\rangle \right] \cdots \left[ |0\rangle + e^{2\pi i 0.j_{1}\cdots j_{n}} |1\rangle \right]$ 

### Quantum Circuit for QFT



- Classical Fourier Transform scales as  $\mathcal{O}(N^2) = \mathcal{O}((2^n)^2)$
- FFT:  $\mathcal{O}(Nln(N))$  for  $N = 2^n$
# Quantum Phase Estimation and Finding Eigenvalues

- Good example of phase kickback and use of QFT
- Unitary operator  $U: U|u\rangle = e^{i\phi}|u\rangle, \quad 0 \le \phi < 2\pi$
- How to find eigenvalue? = How to measure the phase?
- How to find  $\phi$  to a given level of precision?
- Find the best n-bit estimate of the phase  $\phi$

$$U^{2j} | u \rangle = \left( e^{i\phi} \right)^{2^{j}} | u \rangle = e^{i\phi 2^{j}} | u \rangle$$



QPE = H + controlled –  $U^{2^{j}}$  + QFT<sup>†</sup>



$$|\psi_1\rangle = \left(H|0\rangle\right)^{\otimes n} \otimes |u\rangle = \frac{1}{\sqrt{2}^n} \left(|0\rangle + |1\rangle\right)^{\otimes n} \otimes |u\rangle$$

$$|\psi_2\rangle = \prod_{j=0}^{n-1} \operatorname{CU}^{2^j} \frac{1}{\sqrt{2}^n} \Big(|0\rangle + |1\rangle\Big)^{\otimes n} \otimes |u\rangle$$



$$|\psi_{2}\rangle = \frac{1}{\sqrt{2}^{n}} \Big(|0\rangle + e^{i\phi 2^{n-1}}|1\rangle\Big) \Big(|0\rangle + e^{i\phi 2^{n-2}}|1\rangle\Big) \cdots \Big(|0\rangle + e^{i2\phi}|1\rangle\Big) \Big(|0\rangle + e^{i\phi}|1\rangle\Big) \otimes |u\rangle$$

 $=\frac{1}{\sqrt{2}^{n}}\sum_{y=0}^{2^{n}-1}e^{i\phi y}|y\rangle\otimes|u\rangle$ Phase kick-back: phase factor  $e^{i\phi y}$  has been propagated back from the second eigenstate register to the first control register

$$\operatorname{QFT}|a\rangle = \frac{1}{\sqrt{2}^n} \sum_{k=0}^{2^n-1} e^{2\pi i a/2^n} |k\rangle \longrightarrow \frac{2\pi i a}{2^n} = i\phi \longrightarrow \phi = 2\pi \left(\frac{a}{2^n} + \delta\right)$$

 $a = a_{n-1}a_{n-2}\cdots a_0$ 

- $\frac{2\pi a}{2^n}$  is the best n-bit binary approximation of  $\phi$ .  $0 \le |\delta| \le \frac{1}{2^{n+1}}$  is the associated error.

$$QFT^{-1} | y \rangle = \frac{1}{\sqrt{2}^{n}} \sum_{x=0}^{2^{n}-1} e^{-2\pi i x y)/2^{n}} | x \rangle$$
$$| \psi_{3} \rangle = QFT^{-1} | \psi_{2} \rangle = \frac{1}{2^{n}} \sum_{x=0}^{2^{n}-1} \sum_{y=0}^{2^{n}-1} e^{2\pi i (a-x)y/2^{n}} e^{2\pi i \delta y} | x \rangle \otimes | u \rangle$$
$$Operate only n control register.$$

$$|\psi_{3}\rangle = QFT^{-1} |\psi_{2}\rangle = \frac{1}{2^{n}} \sum_{x=0}^{2^{n}-1} \sum_{y=0}^{2^{n}-1} e^{2\pi i (a-x)y/2^{n}} e^{2\pi i \delta y} |x\rangle \otimes |u\rangle$$
  
Operate only n control register.  
(1) If  $\delta = 0$ ,  $\frac{1}{2^{n}} \sum_{y=0}^{2^{n}-1} \exp\left(\frac{2\pi i (a-x)y}{2^{n}}\right) = \delta_{ax} \longrightarrow |\psi_{3}\rangle = |a\rangle \otimes |u\rangle \longrightarrow \phi = \frac{2\pi a}{2^{n}}$ 

(2) If  $\delta \neq 0$ , Measuring 1st register and getting the state  $|x\rangle = |a\rangle$  is the best n-bit estimate of  $\phi$ . The corresponding probability is  $P_a = |C_a|^2 \ge \frac{4}{\pi^2} \approx 0.405$ 





- We will get the correct answer with probability greater than a constant.
- Probability of getting incorrect outcome can be calculated using  $|\delta| > \frac{1}{2^{n+1}}$



- N-bit estimate of phase  $\phi$  is obtained with a high probability.
- Need to repeat the calculation multiple times.
- Increasing n will increase the probability of success (not obvious but true).
- Increasing n (# of qubits) will improve the precision of the phase estimate.