
Day 2 Recap
• Two qubit gates

– CNOT, SWAP
• No cloning
• Superdense coding
• Three qubit gates

– Controlled CNOT, Controlled SWAP
• Teleportation
• A simple QA with two qubits: Deutsch Algorithm

• Deutsch-Jozsa algorithm
• A very short comment on Bernstein-Vazirani Algorithm

• Skipped: Simon’s algorithm, Quantum Fourier Transformation,
Shor’s algorithm and Grover’s algorithm

Day 3 Plan
• Day 3:

– Distance-based classifier
– Quantum optimization and adiabatic theorem
– QAOA and ADAPT-QAOA

• Day 4: 2pm - 4pm
• Day 5: 1pm - 3:30pm

– Feedback-based ALgorithm Quantum Optimization (FALQON)
– Data re-uploading for a universal quantum classifier
– Error correction

– Bernstein-Vazirani Algorithm and Simon’s algorithm
– Quantum Fourier Transformation and Phase estimation
– Shor’s algorithm, Grover’s algorithm

Quantum Machine Learning
• Artificial Intelligence: Statistical prediction
• Machine Learning: Learn from data
• Quantum Machine Learning: Learn from data with quantum algorithms

– Subdiscipline of quantum computing and quantum information
science 6 1 Introduction

Fig. 1.1 Four approaches to
combine quantum computing
and machine learning

data processing device

da
ta

ge
ne

ra
ti
ng

sy
st
em

QC QQ

CC CQ

C - classical, Q - quantum

and many others, and even slowly attracts the attention of selected machine learning
communities.

1.1.3 Four Intersections

As mentioned above, there are several definitions of the term quantum machine
learning, and we want to further specify its use in the context of this book. For this,
we slightly adapt a typology introduced by Aimeur, Brassard and Gambs [13]. It
distinguishes four approaches of how to combine quantum computing and machine
learning, depending on whether one assumes the data to be generated by a quantum
(Q) or classical (C) system, and if the information processing device is quantum (Q)
or classical (C) (see Fig. 1.1).

The CC flavour refers to classical data being processed classically. This is of
course the conventional approach to machine learning, but in this context it relates to
machine learning based on methods borrowed from quantum information research.
An example is the application of tensor networks, which have been developed for
quantum many-body systems, to neural network training [14, 15]. There are also
numerous “quantum-inspired” machine learning models. While for a long time,
this term described a body of literature with varying degrees of quantum mechan-
ical rigour, it is increasingly used to refer to so-called “dequantised” algorithms—
quantum algorithms for which a classical equivalent with similar speed guarantees
has been discovered [16, 17] (see also Sect. 7.1).

The QC intersection investigates how machine learning can help with quantum
computing. For example, one can use neural networks to describe quantum states
in a compact manner [18–20]. Another idea is to learn phase transitions in many-
body quantum systems, a fundamental physics problem with applications in the
development of quantum computers [21]. Machine learning has also been found

• CC: classical data being processed
classically

• QC: how machine learning can help with
quantum computing

• CQ: classical data fed into quantum
computer for analysis (quantum machine
learning)

• QQ: quantum data being processed by
quantum computer (ex: Quantum
simulation)

Distance-based classifier
• A distance-based classifier with a quantum interference

circuit: arXiv:1703:10793 (supervised binary classification)

⋆⋆⋆⋆

⋆⋆⋆⋆
⋆⋆⋆⋆

∙∙∙
∙∙∙∙
∙∙∙∙

*
Class 1

Class 2

Unlabelled data

feature 1

feature 2

(⃗x1)0

(⃗x1)1
training data set

D = {(⃗x1, y1), (⃗x2, y2), ⋯, (⃗xM, yM)}
⃗xm ∈ ℝN ym ∈ {−1, + 1}

m = 1, 2, ⋯, M
M = the number of data
N = the number of features

⃗x̃m ∈ ℝN : unlabelled data

 Find the label → ỹ ∈ {−1,1}

Classical Kernel Method
• Kernel methods: kNN (k-nearest neighborhood), KDE (kernel density

estimation), SVM (support vector machine), Gaussian processes
– Nearest neighborhood method: a new input data is given the same

label as the data point closest to it k-nearest neighborhood
(kNN)

– Closeness = distance measure
– (ex) Euclidean distance

→

| ⃗x̃ − ⃗xm |2

ỹ = sign [
M

∑
m=1

ym(1 −
1

4M
| ⃗x̃ − ⃗xm |2)]

ỹ = sign [
M

∑
m=1

wm ym κ(⃗x̃, ⃗xm)]

• include all data but weigh influence
of each data toward the decision by
the weight κ(⃗x̃, ⃗xm)

weight Label for ±1 ⃗xm

Kernel

Classical Kernel Method

ψ(⃗x , t) = ∫ K(⃗x, t; ⃗x′ , t′) ψ(⃗x′ , t′) d3 ⃗x′

: kernel, Green’s function, or propagator contains the probability of
particle propagation between and
K(⃗x, t; ⃗x′ , t′)

(⃗x, t) (⃗x′ , t′)

⋆⋆
⋆⋆⋆⋆⋆⋆

⃗x′

t′

⋆⋆
⋆⋆⋆⋆⋆⋆ ⋆⋆

⋆⋆⋆⋆⋆⋆

⋆⋆
⋆⋆⋆⋆⋆⋆

ψ(⃗x′ , t′)

⃗x

t

ψ(⃗x′ , t′)
new distribution

K(⃗x, t; ⃗x′ , t′)

Distance-based classifier
• Choose for all equally important datawm = 1

κ(⃗x̃ , ⃗xm) = 1 −
1

4M
| ⃗x̃ − ⃗xm |2 Close data (small distance) are

weighted more importantly.

(1) Encode input data (features) into the amplitude of a quantum system (amplitude
encoding). For classical vector , () Assume
(normalized to 1)

⃗x ∈ ℝN N = 2n xT x = ⃗x ⋅ ⃗x = 1

|ψX⟩ =
N−1

∑
i=0

xi | i⟩
 : index in the computational basis i

Dimension of Hilbert space ≈ O(log N)

N = 2n : number of features

(2) initial state: |D⟩ =
1

2M

M

∑
m=1

|m⟩ (|0⟩ |ψx̃⟩ + |1⟩ |ψxm
⟩) |ym⟩

data index
 = # of dataM

unlabelled
data labeled

data
label of
class qubit

xm

ancilla qubit is entangled
with third register

Distance-based classifier

(2) initial state: |D⟩ =
1

2M

M

∑
m=1

|m⟩ (|0⟩ |ψx̃⟩ + |1⟩ |ψxm
⟩) |ym⟩

data index
 = # of dataM

unlabelled
data

labeled
data

label of
class qubit

xm

ancilla qubit is entangled
with third register

|ψxm
⟩ =

N−1

∑
i=0

xi
m | i⟩

|ψx̃⟩ =
N−1

∑
i=0

x̃i | i⟩

encoding of m-th training data (labeled)

encoding of new data (unlabeled)

|ym⟩ = { |0⟩ , if ym = − 1
|1⟩ , if ym = + 1

 contains all training data as well as copies of new inputs.|D⟩ M

Distance-based classifier
(3) Apply Hadamard gate on the ancilla (second) qubit. |0⟩ →

1

2 (|0⟩ + |1⟩)
|1⟩ →

1

2 (|0⟩ − |1⟩)|D⟩ =
1

2M

M

∑
m=1

|m⟩ (|0⟩ |ψx̃⟩ + |1⟩ |ψxm
⟩) |ym⟩

|D′ ⟩ =
1

2 M

M

∑
m=1

|m⟩ (|0⟩ |ψx̃+xm
⟩ + |1⟩ |ψx̃−xm

⟩) |ym⟩

|ψx̃±xm
⟩ = |ψx̃⟩ ± |ψxm

⟩ =
M−1

∑
i=0

(x̃i ± xi
m) | i⟩

(4) Conditional measurement selecting the branch with ancilla state .
 Likely to succeed if the collective Euclidean distance b/w and training data
 set is small. For standard data, .

|0⟩
x̃

p ≥ 0.5

Probability is p =
1

4M ∑
m

| ⃗x̃ + ⃗xm |2

|D′ ′ ⟩ =
1

2 M p

M

∑
m=1

N−1

∑
i=0

|m⟩ (x̃i + xi
m) | i⟩ |ym⟩

Distance-based classifier

|D′ ′ ⟩ =
1

2 M p

M

∑
m=1

N−1

∑
i=0

|m⟩ (x̃i + xi
m) | i⟩ |ym⟩

(5) Probability of measuring the class qubit |ym⟩ = |0⟩

P(ỹ = 0) =
1

4M p

M

∑
ym=0, m=1

| ⃗x̃ + ⃗xm |2 = 1 −
1

4M p

M

∑
ym=0, m=1

| ⃗x̃ − ⃗xm |2

using normalization condition

 choosing the class with the higher probability gives result of kernel method.
 The # of measurement needed to estimate to error with a reasonably
 high confidence interval grows with .

→
P(ỹ = 0) ϵ

O(ϵ−1)

Class 1

3

0 2 4 6

0

2

4

raw data

class 1
class 1

2 1 0 1 2

2

0

2

standarisation

1 0 1

x''

1

0

1

normalisation

feature 1

fe
at

ur
e

2

x'
x1

x0

FIG. 2. Data processing illustrated with the example of the
first two classes (here called �1 and 1) of the first two fea-
tures of the Iris dataset. The raw data (left) gets standarised
to zero mean and unit variance (center), after which each fea-
ture vector is normalised to unit length (right). The training
points used in the experiment are marked in black, while the
arrows point to the new feature vectors to classify.

measurement is successful, the result is given by

1

2
p
Mpacc

MX

m=1

NX

i=1

|mi (x̃i + x
m
i) |ii|ymi.

The amplitudes weigh the class qubit |y
m
i by the dis-

tance of the mth data point to the new input. In this
state, the probability of measuring the class qubit |y

m
i

in state 0,

p(ỹ = 0) =
1

4Mpacc

X

m|ym=0

|x̃+ xm
|
2
,

reflects the probability of predicting class �1 for the new
input. The choice of normalised feature vectors ensures
that 1

4Mpacc

P
m |x̃+xm

|
2 = 1� 1

4Mpacc

P
m |x̃�xm

|
2, and

choosing the class with the higher probability therefore
implements the classifier from eq. (1). The Supplemen-
tary Material shows that the number of measurements
needed to estimate p(ỹ = 0) to error ✏ with a reasonably
high confidence interval grows with O(✏�1).
As a demonstration we implement the interference circuit
with the IBM Quantum Experience (IBMQE) [17] using
the Iris dataset [24]. Data preprocessing consists of two
steps (see fig. 2): We first standardise the dataset to have
zero mean and unit variance. This is common practice
in machine learning to compensate scaling e↵ects, and in
our case ensures that the data does not only populate a
small subspace of the input space, which in higher dimen-
sions leads to indistinguishably small distances between
data points. Second, we need to normalise each feature
vector to unit length. This strategy is popular in machine
learning - for example with support vector machines - to
only consider the angle between data points. (As an in-
tuition, if we want to classify flowers, some items may
have grown bigger than others due to better local con-
ditions, but it is the proportion of the sepal and petal
length that is important for the class distinction). This
preprocessing strategy allows us to fulfill the conditions
of ‘super-e�cient’ preprocessing in refs. [22, 23] The
IBM Quantum Experience enables public use of a pro-

cessor of five non-error-corrected superconducting qubits
based on Josephson junctions located at the IBM Quan-
tum Lab at the Thomas J Watson Research Center in
Yorktown Heights, New York. The current processor has
limited connectivity between the five qubits and allows
the implementation of 80 gates from a set of 12 single-
qubit quantum logic gates as well as a CNOT gate (see
Supplementary Material for details). Due to these lim-
itations, we will only use the first two features of two
samples from the Iris dataset for the experimental imple-
mentation of the quantum algorithm. Consider the pre-
processed training dataset D1 = {(x0

, y
0), (x1

, y
1)} with

the two training vectors x0 = (0, 1), y0 = �1 (Iris sample
33) and x1 = (0.789, 0.615), y1 = 1 (Iris sample 85). In
two separate experiments we will consider the classifica-
tion of two new input vectors of class �1 but with vary-
ing distances to the training points, x̃0 = (�0.549, 0.836)
(Iris sample 28) and x̃00 = (0.053, 0.999) (Iris sample 36)
(see fig. 2).

Implementing this particular classification problem re-
quires four qubits; one qubit for the index register |mi

to represent two training vectors, one ancilla qubit, one
qubit storing the class of each training instance and one
qubit for the data register |ii to represent the two entries
of each training and input vector as

| x̃0i = �0.549 |0i+ 0.836 |1i, (3)

| x̃00i = 0.053 |0i+ 0.999 |1i,

| x0i = |1i,

| x1i = 0.789 |0i+ 0.615 |1i.

In this small-scale example e�cient state preparation
does not require sophisticated routines as discussed
above, but can be designed by hand (see fig. 6). The
main idea is to use controlled rotation gates such that
the input and training vectors become entangled with
the corresponding states of the ancilla and index qubits.
Two aspects have to be considered in the quantum circuit
design. Firstly, the single and double controlled rotation
gates (step B and D in fig. 6) as well as the To↵oli
gate (see step C in fig. 6) required for the entangle-
ment of the ancilla and index qubit with the training
vectors x0 and x1 are not part of IBM’s universal gate
set. Therefore, the state preparation routine needs to be
mapped to the available hardware by decomposing the
controlled rotation, To↵oli and SWAP gates (see Supple-
mentary Material). Secondly, state preparation for this
classification problem requires at least one CNOT opera-
tion between qubits that are not directly connected in the
hardware. This problem can be solved by exchanging ad-
jacent qubits with a SWAP gate such that the CNOT op-
eration between previously unconnected qubits becomes
feasible (see step E in fig. 6).
Using the IBMQE, the resulting quantum circuits were
first simulated in an error-free environment and then ex-
ecuted on the non error-corrected hardware for the max-
imum number of 8192 runs, and the results are sum-
marised in Table I. As expected the quantum circuits

• arXiv:1703:10793
used Iris data

https://arxiv.org/pdf/1703.10793.pdf
https://arxiv.org/pdf/1703.10793.pdf

Distance-based classifier

Example: square distance classifier
Kaggle Titanic dataset

Quantum Optimization
• Optimization problems are everywhere: math, science, business, finance etc

– In general, time-consuming.
– In many cases, can not be solved in polynomial time.
– Need approximation algorithms: find approximation of the best solution rather

than the best solution (time complexity is reduced).
• Two classes

– Continuous optimization
– Discrete optimization: combinatorial optimization

• Quadratic Unconstrained Binary Optimization (QUBO)
• Apply quantum algorithms to solve optimization problem

– (1) Gate model: use universal gates (Pauli’s), problem-independent.
– (2) Non-gate model (quantum annealer): relies on adiabatic theorem to find

a minimum energy of Hamiltonian corresponding to the minimum value of
some cost function.

Quadratic Unconstrained Binary
Optimization (QUBO)

• QUBO: combinatorial optimization problem with a wide
range of applications from finance to ML (partitioning, graph
coloring, task allocation, max-sat, max-cut etc)

• Find a binary vector which minimizes

• In matrix notation, where

x* f

f(x) = xTQx, Q ∈ ℝn×n

f : ℤn
2 ⟶ ℝ

f(x) =
n

∑
i=1

i

∑
j=1

qij xi xj +
n

∑
i=1

hi xi

xi ∈ ℤ2 = {0,1}, hi, qij ∈ ℝ

Quadratic polynomial over binary variable

x* = argmin
x ∈ ℤn

2

f(x)

x = xnxn−1⋯x2x1
(binary strings of n-bits)

• In matrix notation, where

• QUBO:
– NP hard problem
– Quadratic function might have several local minima
– Close connection to Ising model

f(x) = xTQx, Q ∈ ℝn×n

f(x) = − 2x1 − 3x2 + 8x3 + 4x4 + 4x1x2 + 5x1x3 + 6x2x3 + 10x3x4

= (x1 x2 x3 x4)

−2 2 5/2 0
2 −3 3 0

5/2 3 8 5
0 0 5 4

x1
x2
x3
x4

= xT Q x
xi = x2

i

Quadratic Unconstrained Binary
Optimization (QUBO)

xi ∈ Z2 = {0, 1}

P vs NP
• In Theoretical Computer Science, the two most basic classes of problems are P

and NP.
• P includes all problems that can be solved efficiently.

– For example: add two numbers. The formal definition of "efficiently" is in time that's
polynomial in the input's size.

• NP (nondeterministic polynomial (time)) includes all problems that given a
solution, one can efficient verify that the solution is correct.

– An example is the following problem: given a bunch of numbers, can they be split into
two groups such that the sum of one group is the same as the other. Clearly, if one is
given a solution (two groups of numbers), it's simple to verify that the sum is the same.
(This is a partitioning problem).

• What's unknown is whether problems such as the one above have an efficient
algorithm for finding the solution. This is the (in)famous (unsolved) P = NP
problem, and the common conjecture is that no such algorithm exists.

• Now, NP hard problems are such problems that were shown that if they can be
efficiently solved (which, as mentioned, is believed to not be the case), then each
and every problem in NP (each and every problem whose results can be
efficiently verified) can be efficiently solved. In other words, if you're up to showing
that P=NP, you might want to take a stand at any of those NP-hard problems since
they are "equivalent" in some way to all others.

Ising Model
• Mathematical model for ferromagnetism in statistical

mechanics.
• The energy of spin configuration for a given lattice is

given by the following classical Hamiltonian

• is called an interaction, spin-spin coupling, and is an external
magnetic field, interacting with spin .

• The configuration probability is given by the Boltzmann distribution

• Quantum Ising model:

Jij hi

si

E(s) = − ∑
i,j

Jij si sj − ∑
i

hi si s = {si}, si ∈ {−1,1}

P(s) =
e−βH(s)

∑s e−βH(s)
, β =

1
kBT

H = − ∑
i,j

Jij σz
i σz

j − ∑
i

hi σz
i

r m, e

⃗v

p

Current loop produced by an electron in circular orbit

v =
2πr
T

I =
e
T

= e
v

2πr

μ = IA =
ev

2πr
πr2 =

1
2

evr ⟶
μ
L

=
e

2m

⃗L = ⃗r × ⃗p ⟶ L = mvr

p

⃗B
H = − ⃗μ e ⋅ ⃗B p ∼ ⃗Se ⋅ ⃗L p

| ⃗μ |

| ⃗L |
= g =

e
2m

= gyro magnetic ratio ⃗μ =
e

2m (⃗L + g ⃗S)

H ∼ − ⃗Se ⋅ ⃗Sp (spin − spin coupling)

(spin − orbital momentum coupling)

Spin-Spin Interaction

 magnetic moment
 angular momentum
 momentum
 mass

 velocity
 current
 period

μ :
L :
p :
m :
v :
I :
T :

Hydrogen Hyperfine Structure

MRI,
solar magnetic field,
Bird migration,
Zeeman effect,
Nuclear and particle
models 21 cm

MRI,
solar magnetic field,
Bird migration,
Zeeman effect,
Nuclear and particle models

Hydrogen Hyperfine Structure

Spectrum

QUBO example: Max-cut Problem
• Max-Cut is the NP-hard problem of finding a partition of the

graph's vertices into an two distinct sets that maximizes
the number of edges between the two sets.

• Undirected Graph: G = (V, E)
– V: set of nodes, and E: set of edges

• Partition vertices into two complementary sets such that
the number of edges between the two sets is as large as
possible.

• As the Max-Cut Problem is NP-hard,
no polynomial-time algorithms for
Max-Cut in general graphs are
known.

• The cost function to be maximized:

• Introducing , the cost function can be rewritten

C(x) = ∑
(i,j)∈E

(xi + xj − 2xixj) where xi ∈ {0,1}

C(s) =
1
2 ∑

(i,j)∈E
(1 − sisj) ⟶ C(s) =

1
2 ∑

(i,j)∈E
(1 − σz

i σz
j)

xi =
si + 1

2

xi + xj − 2xixj = 1, if xi and xj belong in different sets .

xi + xj − 2xixj = 0, if xi and xj belong in the same set .

(i, j) : the edge index
i : vertex index

σz = (1 0
0 −1) σz

i : Pauli′ s Z matrix actingon the ith vertex
σz

j : Pauli′ s Z matrix actingon the jth vertex
σz |0⟩ = + 1 |0⟩
σz |1⟩ = − 1 |1⟩

|0⟩ = (1
0) |1⟩ = (0

1)

QUBO example: Max-cut Problem

si ∈ Z2 = {−1,1}

Matrices = linear operators = observables

Eigenvalues = what are actually measured in experiments

Adiabatic Theorem
• Adiabatic theorem: A physical system remains in its instantaneous

eigenstate, if a given perturbation is acting on it slowly enough and if there
is a gap between the eigenvalue and the rest of the Hamiltonian’s
spectrum. (Max Born and Vladimir Folk 1928)

• Under a slowly changing Hamiltonian H(t) with instantaneous eigenstate
 and the corresponding energy , a quantum system evolves from

initial state to final state where

 with the dynamical phase and

geometrical phase

• Adiabatic approximation: the rate of change of Hamiltonian is small
and there is finite gap

• so if the system begins in an eigenstate of H(0), it remains
in an eigenstate of H(t) during the evolution with a change of phase only.

|n(t)⟩ E(t)
|ψ(0)⟩ = ∑

n

cn(0) |n(0)⟩ |ψ(t)⟩ = ∑
n

cn(t) |n(t)⟩

cn(t) = cn(0) eiθn(t) eiγn(t) θn(t) = −
1
ℏ ∫

t

0
En(t′) dt′

γ(t) = i∫
t

0
⟨n(t′) | ·n(t′)⟩ dt′

·H(t)
Em(t) − En(t) ≠ 0 between energies for m ≠ n →

⟨n(t′) | ·n(t′)⟩ = −
⟨m(t) | ·H(t) |n(t)⟩

Em(t) − En(t)
→ 0

|cn(t) |2 = |cn(0) |2

Adiabatic Theorem
H(t) |n(t)⟩ = En(t) |n(t)⟩

|ψ(t)⟩ = ∑
n

cn(t) |n(t)⟩ iℏ
∂
∂t

|ψ(t)⟩ = H(t) |ψ(t)⟩

|n(t)⟩ : is eigenstates of Hamiltonian, basis

satisfies time-dependent
Schrödinger equation

d
dt

: ·H(t) |n(t)⟩ + H(t) | ·n(t)⟩ = ·En(t) |n(t)⟩ + En(t) | ·n(t)⟩

Assume and perform inner product with :m ≠ n |m(t)⟩

⟨m(t) | ·H(t) |n(t)⟩ + ⟨m(t) |H(t) | ·n(t)⟩ = ·En(t) ⟨m(t) |n(t)⟩ + En(t) ⟨m(t) | ·n(t)⟩

H(t) |m(t)⟩ = Em(t) |m(t)⟩

⟨m(t) | ·H(t) |n(t)⟩ + Em(t) ⟨m(t) | ·n(t)⟩ = En(t) ⟨m(t) | ·n(t)⟩ → ⟨m(t) | ·n(t)⟩ = −
⟨m(t) | ·H(t) |n(t)⟩

Em(t) − En(t)

,⟨m(t) |n(t)⟩ = δmn

Adiabatic approximation: the rate of change in Hamiltonian is small and there is
 finite gap between energies .

·H(t)
Em(t) − En(t) ≠ 0 → ⟨m(t) | ·n(t)⟩ ≈ 0

Adiabatic Theorem
→ iℏ∑

n

·cn(t) |n(t)⟩ + cn(t) | ·n(t)⟩ = ∑
n

En(t) cn(t) |n(t)⟩

Inner product with :|m(t)⟩ ⟨m(t) |[iℏ∑
n

·cn(t) |n(t)⟩ + cn(t) | ·n(t)⟩ = ∑
n

En(t) cn(t) |n(t)⟩]
Using , we obtain⟨m(t) |n(t)⟩ = δmn

iℏ ·cm(t) + iℏ∑
n

cn(t) ⟨m(t) | ·n(t)⟩ = cm(t) Em(t)

iℏ
∂
∂t

|ψ(t)⟩ = H(t) |ψ(t)⟩

|ψ(t)⟩ = ∑
n

cn(t) |n(t)⟩

⟨m(t) | ·n(t)⟩ ≈ 0 for m ≠ n
In the adiabatic limit, iℏ ·cm(t) + iℏcm(t) ⟨m(t) | ·m(t)⟩ = cm(t) Em(t)

i ·cm(t) = (Em(t)
ℏ

− i ⟨m(t) | ·m(t)⟩) cm(t) → ·cm(t) = i (−
Em(t)

ℏ
+ i ⟨m(t) | ·m(t)⟩) cm(t)

d
dt

ln cm(t) =
1

cm(t)
dcm(t)

dt
=

·cm(t)
cm(t)

= −
i
ℏ

Em(t) + i i⟨m(t) | ·m(t)⟩

cm(t) = cm(0)eiθm(t)eiγm(t) θm(t) = −
1
ℏ ∫

t

0
Em(t′) dt′ γ(t) = i ∫

t

0
⟨m(t′) | ·m(t′)⟩ dt′

dynamical phase,
real, function of E

geometrical phase,
pure imaginary

Adiabatic Theorem
cm(t) = cm(0)eiθm(t)eiγm(t) θm(t) = −

1
ℏ ∫

t

0
Em(t′) dt′ γ(t) = i ∫

t

0
⟨m(t′) | ·m(t′)⟩ dt′

dynamical phase,
real, function of E

geometrical phase,
pure imaginary,

Has something to do with
direction in the Hilbert space

0 =
d
dt

⟨m(t) |m(t)⟩ = ⟨ ·m(t) |m(t)⟩ + ⟨m(t) | ·m(t)⟩

= ⟨m(t) | ·m(t)⟩* + ⟨m(t) | ·m(t)⟩

= 2 Re ⟨m(t) | ·m(t)⟩ → γm(t) : pure imaginary

Adiabatic Theorem
• Schrodinger equation:

• Instantaneous eigenstate:
• Initial condition:
• If evolution is slow enough,

iℏ
dψ(t)

dt
= H(t) ψ(t)

H(t) ψn(t) = En(t) ψn(t)
ψ(t = 0) = ψ0

ψ(t) ≈ eiθ(t) ψ0

Born and Folk 1928

3

operator in the interaction picture is given by UI(t) = T exp[�i
R
t

0 HI(t)dt] — a shorthand for the Dyson
series

UI(t) = 1 +
1X

q=1

(�i)q

q!

Z
t

0
dt1 · · ·

Z
t

0
dtqT [HI(tq) · · ·H(t1)] , (7)

where T denotes time-ordering [15] and HI(t) = e
iH0tV (t)e�iH0t. The Dyson series can also be re-written

as

UI(t) = 1 +
1X

q=1

(�i)q
Z

t

0
dt1HI(t1) · · ·

Z
tq�1

0
dtqHI(tq) (8)

and by relabeling the integration variables, the above equation takes the form:

UI(t) =
1X

q=0

(�i)q
Z

t

0
dtq · · ·

Z
t2

0
dt1HI(tq) · · ·HI(t1) , (9)

where hereafter we will use the q = 0 term to symbolize the identity operator.
The operator UI(t) evolves the interaction-picture wave-function | I(t)i which is related to the Schrödinger-

picture wave-function via | I(t)i = e
iH0t| (t)i (in our units, ~ = 1). Similarly, the Schrödinger-picture

time-evolution operator U(t) is related to the interaction-picture operator via U(t) = e
�iH0tUI(t). In the

next section we present an equivalent form for the Dyson series, Eq. (9), by systematically evaluating the
integrals in the sum, writing V (t) as a sum of exponentials in t.

A. Generalized permutation operator representation of the perturbation Hamiltonian

We begin by denoting the eigenstates and eigenenergies of the free Hamiltonian H0 by B = {|zi} and E =
{Ez}, respectively, such that H0|zi = Ez|zi. (For simplicity we assume a discrete countable set of eigenstates
and eigenenergies). We will refer to B as the ‘computational basis’. Next, we write the perturbation
Hamiltonian V (t) as a sum of generalized permutation operators ⇧i [16]:

V (t) =
MX

i=0

⇧i(t) =
MX

i=0

Di(t)Pi , (10)

where every generalized permutation operator is further expressed as a product of a (time dependent)
diagonal (in the computational basis) operator Di and a bona-fide permutation operator Pi. Specifically, the
action of Di and Pi on a computational basis states is given by Di|zi = di(z)|zi, where di(z) is in general a
complex number, and Pi|zi = |z0i for some |z0i 2 B depending on i and z. The i = 0 permutation operator
will be reserved to the identity operator, that is, P0 = 1. Armed with these notations, the action of a
generalized permutation operator ⇧i on a basis state |zi is given by DiPi|zi = di(z0)|z0i, where z

0 depends
on both the state z and the operator index i. We note that any Hamiltonian can be readily cast in the above
form [11]. This representation, in terms of generalized permutation operators, was recently introduced in
the context of quantum Monte Carlo simulations [9–11].

At this point, we write each diagonal operator, Di(t), in Eq. (10) as an exponential sum in t, that is,

Di(t) =
KiX

k=1

e
i⇤(k)

i t
D

(k)
i

, (11)

where both ⇤(k)
i

and D
(k)
i

are (generally complex-valued) diagonal matrices and Ki denotes the number of
terms in the decomposition of Di. (For more details as to how to carry out this decomposition e�ciently,
see Refs. [17–19].) Thus, V (t) can be written as

V (t) =
MX

i=1

KX

k=1

e
i⇤(k)

i t
D

(k)
i

Pi (12)

(for simplicity, hereafter we fix Ki = K 8i, though this assumption can be easily removed).

ψ(t) = U(t) ψ(0)

Quantum Annealing
• is the problem Hamiltonian whose ground state encodes the solution

to the optimization problem
• is the initial Hamiltonian whose ground state is easy to prepare.
• Prepare a quantum system to be in the ground state of and evolve the

system using the following time-dependent Hamiltonian,

• The system will remain to its ground state at all times, which means for
t=T, the system will be in the ground state of , our problem Hamiltonian.

• D-wave has built Quantum Annealing that solves optimization problem by
transferring the original optimization to a hardware, that allows nearest
neighbor interaction of qubits.

• If the energy gap b/w the ground state and 1st excited state is small, T
must be very large computationally difficult.

Hp

H0

H0

Hp

→

H(t) = (1 −
t
T) H0 +

t
T

Hp

Apolloni, Bianchi, De Falco 1988

Limitation of Quantum Annealing
• Performance of quantum annealing are governed by the size

of the gap.

• Performance is poor, when eigenvalues are degenerate.

Limitation of quantum annealing:
quantum-phase transitions

https://arxiv.org/pdf/1903.06559.pdf

Adiabatic condition for a quantum Annealer:

Instantaneous ‘gap’

→ Performance of quantum annealing are governed by the size of the gap’

H(0) = H0 H(t = T) = Hp

Δt ≫ max
0≤≤1

⟨1(s) | dH(s)
ds

|0(s)⟩

Δ(s)2

T = Δs , 0 ≤ s ≤ 1

Variational Quantum Algorithms
• Hybrid quantum-classical model is suggested to circumvent the issue of

going slow with quantum annealer as well as implementing Hamiltonian
in the available hardware.

• Quantum: parameterize wave function
• Classical: minimize/maximize the expectation value of H in the problem.

E(⃗θ) = ⟨ ψ(⃗θ) | H |ψ(⃗θ) ⟩

Variational Quantum Algorithms

Variational Quantum Algorithms
• 2016: first cloud-based quantum computer became available.
• Current state-of-the-art device size ranges from 50 to 100 qubits which allows one

to achieve ‘quantum supremacy’: outperforming the best classical supercomputer,
for certain contrived mathematical tasks.
– Sycamore (53 qubits, corresponding to a computational state-space of

dimension): 200 seconds vs 10,000 years for sampling the output of a
pseudo-random quantum circuit.

• Variational Quantum Algorithms (VQAs) have emerged as the leading strategy to
obtain quantum advantage on NISQ (Noisy Intermediate-Scale Quantum) devices.
Accounting for all of the constraints imposed by NISQ computers with a single
strategy requires an optimization-based or learning- based approach, precisely
what VQAs use.

• VQAs are arguably the quantum analog of highly successful machine-learning
methods, such as neural networks.

• VQAs leverage the toolbox of classical optimization, since VQAs use parametrized
quantum circuits to be run on the quantum computer, and then outsource the
parameter optimization to a classical optimizer. This approach has the added
advantage of keeping the quantum circuit depth shallow and hence mitigating
noise, in contrast to quantum algorithms developed for the fault-tolerant era.

253 ≈ 1016

Quantum Approximate Optimization
Algorithm (QAOA)

1411.4028 E. Farhi, J. Goldstone, S. Gutmann

• Abstract: We introduce a quantum algorithm that produces
approximate solutions for combinatorial optimization problems. The
algorithm depends on a positive integer p and the quality of the
approximation improves as p is increased. The quantum circuit that
implements the algorithm consists of unitary gates whose locality is
at most the locality of the objective function whose optimum is
sought. The depth of the circuit grows linearly with p times (at
worst) the number of constraints. If p is fixed, that is, independent of
the input size, the algorithm makes use of efficient classical
preprocessing. If p grows with the input size a different strategy is
proposed. We study the algorithm as applied to MaxCut on regular
graphs and analyze its performance on 2-regular and 3-regular
graphs for fixed p. For p = 1, on 3-regular graphs the quantum
algorithm always finds a cut that is at least 0.6924 times the size of
the optimal cut.

Quantum Approximate Optimization
Algorithm (QAOA)

• Hybrid quantum algorithm: contains a parameterized quantum circuit which
depends on variational parameters.

• Use classical computer to optimize the output of the quantum circuit.
• Consider the Ising model for illustration.

Farhi et al 2014

Quantum Approximate Optimization
Algorithm (QAOA)

HP = C(s) =
1
2 ∑

(i, j)∈E
(1 − σz

i σz
j) : Problem Hamiltonian (i, j) : the edge index

i : vertex index

Farhi et al 2014

Quantum Approximation Optimization Algorithm (QAOA)

According to the adiabatic theorem, if a Hamiltonian is slowly varying and starts in an eigenstate
of the initial Hamiltonian, then it will end in the corresponding eigenstate of the final Hamiltonian.
If our Hamiltonian is

H(t) =

✓
1� t

T

◆
HM +

t

T
HP

and starts in an eigenstate of H(0) = HM (which we call the mixer Hamiltonian), then at t = T

it will be in the corresponding eigenstate of H(T) = HP (called the problem Hamiltonian) granted
T is large. So, if we know the ground state eigenvalue of HM , then we can find the ground state
eigenvalue of HP with this Hamiltonian H.

If our initial state is | 0i, then it evolves as

| i = exp

�i

Z
t

0
H(t0) dt0

�
| 0i

Discretizing the integral:

= exp

2

4�i

pX

j=1

H(j�t)�t

3

5 | 0i

We can’t exactly split up this exponential into a product of p exponents. But we can approximate
it by ignoring second-order and higher terms in p�t.

⇡
pY

j=1

exp

�i�t

✓
1� j�t

T

◆
HM +

j�t

T
HP

��
| 0i

Once again, if �t is small and T is large, then

⇡
pY

j=1

exp

�i�t

✓
1� j�t

T

◆
HM

�
exp

�i�t

j�t

T
HP

�
| 0i

Reparameterize:

=
pY

j=1

exp

� i�jHM

�

| {z }
U(HM ,�j)

exp

� i�jHP

�

| {z }
U(HP ,�j)

| 0i

So we can approximate the evolution of a state under this Hamiltonian as a product of 2p param-
eterized unitaries where it is more accurate for larger p. So if we start in the lowest (or highest)
state of HM , we will end up in the lowest (or highest) state of HP .

The eigenvalues of the Pauli matrix �x are ±1 with eigenvectors |±i = (|0i± |1i) /
p
2. So if

our initial state is |+i then we will begin in the highest energy state for �x. Then for n qubits, our
known Hamiltonian can be

HM =
nX

i=1

�
z

i .

1

HM = B = ∑
j

σX
j : Mixer Hamiltonian

Undirected Graph: G = (V, E)
V: set of nodes
E: set of edges

Full Hamiltonian:

Quantum Approximation Optimization Algorithm (QAOA)

According to the adiabatic theorem, if a Hamiltonian is slowly varying and starts in an eigenstate
of the initial Hamiltonian, then it will end in the corresponding eigenstate of the final Hamiltonian.
If our Hamiltonian is

H(t) =

✓
1� t

T

◆
HM +

t

T
HP

and starts in an eigenstate of H(0) = HM (which we call the mixer Hamiltonian), then at t = T

it will be in the corresponding eigenstate of H(T) = HP (called the problem Hamiltonian) granted
T is large. So, if we know the ground state eigenvalue of HM , then we can find the ground state
eigenvalue of HP with this Hamiltonian H.

If our initial state is | 0i, then it evolves as

| i = exp

�i

Z
t

0
H(t0) dt0

�
| 0i

Discretizing the integral:

= exp

2

4�i

pX

j=1

H(j�t)�t

3

5 | 0i

We can’t exactly split up this exponential into a product of p exponents. But we can approximate
it by ignoring second-order and higher terms in p�t.

⇡
pY

j=1

exp

�i�t

✓
1� j�t

T

◆
HM +

j�t

T
HP

��
| 0i

Once again, if �t is small and T is large, then

⇡
pY

j=1

exp

�i�t

✓
1� j�t

T

◆
HM

�
exp

�i�t

j�t

T
HP

�
| 0i

Reparameterize:

=
pY

j=1

exp

� i�jHM

�

| {z }
U(HM ,�j)

exp

� i�jHP

�

| {z }
U(HP ,�j)

| 0i

So we can approximate the evolution of a state under this Hamiltonian as a product of 2p param-
eterized unitaries where it is more accurate for larger p. So if we start in the lowest (or highest)
state of HM , we will end up in the lowest (or highest) state of HP .

The eigenvalues of the Pauli matrix �x are ±1 with eigenvectors |±i = (|0i± |1i) /
p
2. So if

our initial state is |+i then we will begin in the highest energy state for �x. Then for n qubits, our
known Hamiltonian can be

HM =
nX

i=1

�
z

i .

1

Quantum Approximation Optimization Algorithm (QAOA)

According to the adiabatic theorem, if a Hamiltonian is slowly varying and starts in an eigenstate
of the initial Hamiltonian, then it will end in the corresponding eigenstate of the final Hamiltonian.
If our Hamiltonian is

H(t) =

✓
1� t

T

◆
HM +

t

T
HP

and starts in an eigenstate of H(0) = HM (which we call the mixer Hamiltonian), then at t = T

it will be in the corresponding eigenstate of H(T) = HP (called the problem Hamiltonian) granted
T is large. So, if we know the ground state eigenvalue of HM , then we can find the ground state
eigenvalue of HP with this Hamiltonian H.

If our initial state is | 0i, then it evolves as

| i = exp

�i

Z
t

0
H(t0) dt0

�
| 0i

Discretizing the integral:

= exp

2

4�i

pX

j=1

H(j�t)�t

3

5 | 0i

We can’t exactly split up this exponential into a product of p exponents. But we can approximate
it by ignoring second-order and higher terms in p�t.

⇡
pY

j=1

exp

�i�t

✓
1� j�t

T

◆
HM +

j�t

T
HP

��
| 0i

Once again, if �t is small and T is large, then

⇡
pY

j=1

exp

�i�t

✓
1� j�t

T

◆
HM

�
exp

�i�t

j�t

T
HP

�
| 0i

Reparameterize:

=
pY

j=1

exp

� i�jHM

�

| {z }
U(HM ,�j)

exp

� i�jHP

�

| {z }
U(HP ,�j)

| 0i

So we can approximate the evolution of a state under this Hamiltonian as a product of 2p param-
eterized unitaries where it is more accurate for larger p. So if we start in the lowest (or highest)
state of HM , we will end up in the lowest (or highest) state of HP .

The eigenvalues of the Pauli matrix �x are ±1 with eigenvectors |±i = (|0i± |1i) /
p
2. So if

our initial state is |+i then we will begin in the highest energy state for �x. Then for n qubits, our
known Hamiltonian can be

HM =
nX

i=1

�
z

i .

1

Quantum Approximation Optimization Algorithm (QAOA)

According to the adiabatic theorem, if a Hamiltonian is slowly varying and starts in an eigenstate
of the initial Hamiltonian, then it will end in the corresponding eigenstate of the final Hamiltonian.
If our Hamiltonian is

H(t) =

✓
1� t

T

◆
HM +

t

T
HP

and starts in an eigenstate of H(0) = HM (which we call the mixer Hamiltonian), then at t = T

it will be in the corresponding eigenstate of H(T) = HP (called the problem Hamiltonian) granted
T is large. So, if we know the ground state eigenvalue of HM , then we can find the ground state
eigenvalue of HP with this Hamiltonian H.

If our initial state is | 0i, then it evolves as

| i = exp

�i

Z
t

0
H(t0) dt0

�
| 0i

Discretizing the integral:

= exp

2

4�i

pX

j=1

H(j�t)�t

3

5 | 0i

We can’t exactly split up this exponential into a product of p exponents. But we can approximate
it by ignoring second-order and higher terms in p�t.

⇡
pY

j=1

exp

�i�t

✓
1� j�t

T

◆
HM +

j�t

T
HP

��
| 0i

Once again, if �t is small and T is large, then

⇡
pY

j=1

exp

�i�t

✓
1� j�t

T

◆
HM

�
exp

�i�t

j�t

T
HP

�
| 0i

Reparameterize:

=
pY

j=1

exp

� i�jHM

�

| {z }
U(HM ,�j)

exp

� i�jHP

�

| {z }
U(HP ,�j)

| 0i

So we can approximate the evolution of a state under this Hamiltonian as a product of 2p param-
eterized unitaries where it is more accurate for larger p. So if we start in the lowest (or highest)
state of HM , we will end up in the lowest (or highest) state of HP .

The eigenvalues of the Pauli matrix �x are ±1 with eigenvectors |±i = (|0i± |1i) /
p
2. So if

our initial state is |+i then we will begin in the highest energy state for �x. Then for n qubits, our
known Hamiltonian can be

HM =
nX

i=1

�
z

i .

1

Quantum Approximation Optimization Algorithm (QAOA)

According to the adiabatic theorem, if a Hamiltonian is slowly varying and starts in an eigenstate
of the initial Hamiltonian, then it will end in the corresponding eigenstate of the final Hamiltonian.
If our Hamiltonian is

H(t) =

✓
1� t

T

◆
HM +

t

T
HP

and starts in an eigenstate of H(0) = HM (which we call the mixer Hamiltonian), then at t = T

it will be in the corresponding eigenstate of H(T) = HP (called the problem Hamiltonian) granted
T is large. So, if we know the ground state eigenvalue of HM , then we can find the ground state
eigenvalue of HP with this Hamiltonian H.

If our initial state is | 0i, then it evolves as

| i = exp

�i

Z
t

0
H(t0) dt0

�
| 0i

Discretizing the integral:

= exp

2

4�i

pX

j=1

H(j�t)�t

3

5 | 0i

We can’t exactly split up this exponential into a product of p exponents. But we can approximate
it by ignoring second-order and higher terms in p�t.

⇡
pY

j=1

exp

�i�t

✓
1� j�t

T

◆
HM +

j�t

T
HP

��
| 0i

Once again, if �t is small and T is large, then

⇡
pY

j=1

exp

�i�t

✓
1� j�t

T

◆
HM

�
exp

�i�t

j�t

T
HP

�
| 0i

Reparameterize:

=
pY

j=1

exp

� i�jHM

�

| {z }
U(HM ,�j)

exp

� i�jHP

�

| {z }
U(HP ,�j)

| 0i

So we can approximate the evolution of a state under this Hamiltonian as a product of 2p param-
eterized unitaries where it is more accurate for larger p. So if we start in the lowest (or highest)
state of HM , we will end up in the lowest (or highest) state of HP .

The eigenvalues of the Pauli matrix �x are ±1 with eigenvectors |±i = (|0i± |1i) /
p
2. So if

our initial state is |+i then we will begin in the highest energy state for �x. Then for n qubits, our
known Hamiltonian can be

HM =
nX

i=1

�
z

i .

1

Quantum Approximation Optimization Algorithm (QAOA)

According to the adiabatic theorem, if a Hamiltonian is slowly varying and starts in an eigenstate
of the initial Hamiltonian, then it will end in the corresponding eigenstate of the final Hamiltonian.
If our Hamiltonian is

H(t) =

✓
1� t

T

◆
HM +

t

T
HP

and starts in an eigenstate of H(0) = HM (which we call the mixer Hamiltonian), then at t = T

it will be in the corresponding eigenstate of H(T) = HP (called the problem Hamiltonian) granted
T is large. So, if we know the ground state eigenvalue of HM , then we can find the ground state
eigenvalue of HP with this Hamiltonian H.

If our initial state is | 0i, then it evolves as

| i = exp

�i

Z
t

0
H(t0) dt0

�
| 0i

Discretizing the integral:

= exp

2

4�i

pX

j=1

H(j�t)�t

3

5 | 0i

We can’t exactly split up this exponential into a product of p exponents. But we can approximate
it by ignoring second-order and higher terms in p�t.

⇡
pY

j=1

exp

�i�t

✓
1� j�t

T

◆
HM +

j�t

T
HP

��
| 0i

Once again, if �t is small and T is large, then

⇡
pY

j=1

exp

�i�t

✓
1� j�t

T

◆
HM

�
exp

�i�t

j�t

T
HP

�
| 0i

Reparameterize:

=
pY

j=1

exp

� i�jHM

�

| {z }
U(HM ,�j)

exp

� i�jHP

�

| {z }
U(HP ,�j)

| 0i

So we can approximate the evolution of a state under this Hamiltonian as a product of 2p param-
eterized unitaries where it is more accurate for larger p. So if we start in the lowest (or highest)
state of HM , we will end up in the lowest (or highest) state of HP .

The eigenvalues of the Pauli matrix �x are ±1 with eigenvectors |±i = (|0i± |1i) /
p
2. So if

our initial state is |+i then we will begin in the highest energy state for �x. Then for n qubits, our
known Hamiltonian can be

HM =
nX

i=1

�
z

i .

1

And this state is simple to prepare: it is just |+i = H |0i. Thus we have everything we need to
evolve the state:

|�,�i =
pY

j=1

U(HM ,�j)U(HP , �j) |+i⌦n

where |�,�i ⌘ | i. This prepared state will be an approximation of the highest energy state of
HP . Thus if we can write a cost function as a Hamiltonian, then we can classically optimize the 2p
parameters (�,�) such that

Fp(�,�) = h�,�|HP |�,�i

is maximized.

Max Cut

In the max cut problem, we have a graph G = (V,E) with vertices V = {Vi} and edges E = {Ejk}.
We want to cut the graph wherein we split the graph into two subgraphs such that these two
subgraphs share a maximal number of edges. So our cost function will be

C =
1

2

X

j,k2E
1� (�1)j(�1)k| {z }

Cjk

.

where vertices of one subgraph have a value of 1 and vertices of the other have a value of 0. Thus
if vertices j and k are not of the same subgraph, then j + k = 1 and so Cjk = 1 otherwse Cjk = 0.
So this cost function returns the number of cuts. Thus we want to maximize C. So to write this as
a Hamiltonian, note that the eigenvalues of the Pauli matrix �z are ±1 with eigenvectors |0i and
|1i. Thus, for a single edge,

1

2

�
1� �

z

j�
z

k

�
|jki = Cjk |jki

and, more generally,

1

2

X

j,k2E

�
1� �

z

j�
z

k

�
| i = C | i .

and thus we have our problem Hamiltonian and therefore our unitary:

U(HP , �i) = exp

2

4�i�i

X

j,k2E
�
z

j�
z

k

3

5

where the first term (the 1) is the identity and so will not a↵ect the expectation value and the
�1/2 is absorbed into the constant �i.

So how is this realized as a circuit? For the mixer Hamiltonian,

U(HM ,�j) = exp

"
�i�j

nX

i=1

�
z

i

#

=
nY

i=1

e
�i�j�

z
i

2

Works in the adiabatic limit or p → ∞

Quantum Approximation Optimization Algorithm (QAOA)

According to the adiabatic theorem, if a Hamiltonian is slowly varying and starts in an eigenstate
of the initial Hamiltonian, then it will end in the corresponding eigenstate of the final Hamiltonian.
If our Hamiltonian is

H(t) =

✓
1� t

T

◆
HM +

t

T
HP

and starts in an eigenstate of H(0) = HM (which we call the mixer Hamiltonian), then at t = T

it will be in the corresponding eigenstate of H(T) = HP (called the problem Hamiltonian) granted
T is large. So, if we know the ground state eigenvalue of HM , then we can find the ground state
eigenvalue of HP with this Hamiltonian H.

If our initial state is | 0i, then it evolves as

| i = exp

�i

Z
t

0
H(t0) dt0

�
| 0i

Discretizing the integral:

= exp

2

4�i

pX

j=1

H(j�t)�t

3

5 | 0i

We can’t exactly split up this exponential into a product of p exponents. But we can approximate
it by ignoring second-order and higher terms in p�t.

⇡
pY

j=1

exp

�i�t

✓
1� j�t

T

◆
HM +

j�t

T
HP

��
| 0i

Once again, if �t is small and T is large, then

⇡
pY

j=1

exp

�i�t

✓
1� j�t

T

◆
HM

�
exp

�i�t

j�t

T
HP

�
| 0i

Reparameterize:

=
pY

j=1

exp

� i�jHM

�

| {z }
U(HM ,�j)

exp

� i�jHP

�

| {z }
U(HP ,�j)

| 0i

So we can approximate the evolution of a state under this Hamiltonian as a product of 2p param-
eterized unitaries where it is more accurate for larger p. So if we start in the lowest (or highest)
state of HM , we will end up in the lowest (or highest) state of HP .

The eigenvalues of the Pauli matrix �x are ±1 with eigenvectors |±i = (|0i± |1i) /
p
2. So if

our initial state is |+i then we will begin in the highest energy state for �x. Then for n qubits, our
known Hamiltonian can be

HM =
nX

i=1

�
z

i .

1

And this state is simple to prepare: it is just |+i = H |0i. Thus we have everything we need to
evolve the state:

|�,�i =
pY

j=1

U(HM ,�j)U(HP , �j) |+i⌦n

where |�,�i ⌘ | i. This prepared state will be an approximation of the highest energy state of
HP . Thus if we can write a cost function as a Hamiltonian, then we can classically optimize the 2p
parameters (�,�) such that

Fp(�,�) = h�,�|HP |�,�i

is maximized.

Max Cut

In the max cut problem, we have a graph G = (V,E) with vertices V = {Vi} and edges E = {Ejk}.
We want to cut the graph wherein we split the graph into two subgraphs such that these two
subgraphs share a maximal number of edges. So our cost function will be

C =
1

2

X

j,k2E
1� (�1)j(�1)k| {z }

Cjk

.

where vertices of one subgraph have a value of 1 and vertices of the other have a value of 0. Thus
if vertices j and k are not of the same subgraph, then j + k = 1 and so Cjk = 1 otherwse Cjk = 0.
So this cost function returns the number of cuts. Thus we want to maximize C. So to write this as
a Hamiltonian, note that the eigenvalues of the Pauli matrix �z are ±1 with eigenvectors |0i and
|1i. Thus, for a single edge,

1

2

�
1� �

z

j�
z

k

�
|jki = Cjk |jki

and, more generally,

1

2

X

j,k2E

�
1� �

z

j�
z

k

�
| i = C | i .

and thus we have our problem Hamiltonian and therefore our unitary:

U(HP , �i) = exp

2

4�i�i

X

j,k2E
�
z

j�
z

k

3

5

where the first term (the 1) is the identity and so will not a↵ect the expectation value and the
�1/2 is absorbed into the constant �i.

So how is this realized as a circuit? For the mixer Hamiltonian,

U(HM ,�j) = exp

"
�i�j

nX

i=1

�
z

i

#

=
nY

i=1

e
�i�j�

z
i

2

And this state is simple to prepare: it is just |+i = H |0i. Thus we have everything we need to
evolve the state:

|�,�i =
pY

j=1

U(HM ,�j)U(HP , �j) |+i⌦n

where |�,�i ⌘ | i. This prepared state will be an approximation of the highest energy state of
HP . Thus if we can write a cost function as a Hamiltonian, then we can classically optimize the 2p
parameters (�,�) such that

Fp(�,�) = h�,�|HP |�,�i

is maximized.

Max Cut

In the max cut problem, we have a graph G = (V,E) with vertices V = {Vi} and edges E = {Ejk}.
We want to cut the graph wherein we split the graph into two subgraphs such that these two
subgraphs share a maximal number of edges. So our cost function will be

C =
1

2

X

j,k2E
1� (�1)j(�1)k| {z }

Cjk

.

where vertices of one subgraph have a value of 1 and vertices of the other have a value of 0. Thus
if vertices j and k are not of the same subgraph, then j + k = 1 and so Cjk = 1 otherwse Cjk = 0.
So this cost function returns the number of cuts. Thus we want to maximize C. So to write this as
a Hamiltonian, note that the eigenvalues of the Pauli matrix �z are ±1 with eigenvectors |0i and
|1i. Thus, for a single edge,

1

2

�
1� �

z

j�
z

k

�
|jki = Cjk |jki

and, more generally,

1

2

X

j,k2E

�
1� �

z

j�
z

k

�
| i = C | i .

and thus we have our problem Hamiltonian and therefore our unitary:

U(HP , �i) = exp

2

4�i�i

X

j,k2E
�
z

j�
z

k

3

5

where the first term (the 1) is the identity and so will not a↵ect the expectation value and the
�1/2 is absorbed into the constant �i.

So how is this realized as a circuit? For the mixer Hamiltonian,

U(HM ,�j) = exp

"
�i�j

nX

i=1

�
z

i

#

=
nY

i=1

e
�i�j�

z
i

2

And this state is simple to prepare: it is just |+i = H |0i. Thus we have everything we need to
evolve the state:

|�,�i =
pY

j=1

U(HM ,�j)U(HP , �j) |+i⌦n

where |�,�i ⌘ | i. This prepared state will be an approximation of the highest energy state of
HP . Thus if we can write a cost function as a Hamiltonian, then we can classically optimize the 2p
parameters (�,�) such that

Fp(�,�) = h�,�|HP |�,�i

is maximized.

Max Cut

In the max cut problem, we have a graph G = (V,E) with vertices V = {Vi} and edges E = {Ejk}.
We want to cut the graph wherein we split the graph into two subgraphs such that these two
subgraphs share a maximal number of edges. So our cost function will be

C =
1

2

X

j,k2E
1� (�1)j(�1)k| {z }

Cjk

.

where vertices of one subgraph have a value of 1 and vertices of the other have a value of 0. Thus
if vertices j and k are not of the same subgraph, then j + k = 1 and so Cjk = 1 otherwse Cjk = 0.
So this cost function returns the number of cuts. Thus we want to maximize C. So to write this as
a Hamiltonian, note that the eigenvalues of the Pauli matrix �z are ±1 with eigenvectors |0i and
|1i. Thus, for a single edge,

1

2

�
1� �

z

j�
z

k

�
|jki = Cjk |jki

and, more generally,

1

2

X

j,k2E

�
1� �

z

j�
z

k

�
| i = C | i .

and thus we have our problem Hamiltonian and therefore our unitary:

U(HP , �i) = exp

2

4�i�i

X

j,k2E
�
z

j�
z

k

3

5

where the first term (the 1) is the identity and so will not a↵ect the expectation value and the
�1/2 is absorbed into the constant �i.

So how is this realized as a circuit? For the mixer Hamiltonian,

U(HM ,�j) = exp

"
�i�j

nX

i=1

�
z

i

#

=
nY

i=1

e
�i�j�

z
i

2

because the �
z

i
’s commute since they act on di↵erent qubits. Note that Pauli matrices are just the

generators of rotations. So this unitary is just an Rz(2�j) rotation on every qubit:

=
nY

i=1

R
i

z(2�j)

And for the problem Hamiltonian,

U(HP , �i) = exp

2

4�i�i

X

j,k2E
�
z

j�
z

k

3

5

=
Y

j,k2E
e
�i�i�

z
j �

z
k

This is the Rzz(2�i) gate. For the qubits |ji |ki, this is realized by the following setup:

|ji • •

|ki Rz(2�i)

9=
; exp

� i(�1)j+k

�i

�
|jki

After the first CNOT gate, we have the state |ji |j � ki. The Rz gate applies the rotation to the
second qubit, but the second CNOT gate returns our state to |ji |ki but with the rotation. Thus,
the gate setup is

=
Y

j,k2E
CNOTj,kR

k

z(2�i)CNOTj,k

So with our choice of graph and of p, we can build a quantum circuit for the max cut problem.
After choosing initial values for (�,�) and building |�,�i, we take measurements and choose our
favorite optimizer to maximize the expectation value of HP , i.e. if xi 2 {0, 1}⌦n, then

hHM i = 1

stot

2n�1X

i=0

siC(xi)

where si are the total number of times bit string xi was measured and stot is the total number of
measurements. In other words, it’s just a weight average.

3

because the �
z

i
’s commute since they act on di↵erent qubits. Note that Pauli matrices are just the

generators of rotations. So this unitary is just an Rz(2�j) rotation on every qubit:

=
nY

i=1

R
i

z(2�j)

And for the problem Hamiltonian,

U(HP , �i) = exp

2

4�i�i

X

j,k2E
�
z

j�
z

k

3

5

=
Y

j,k2E
e
�i�i�

z
j �

z
k

This is the Rzz(2�i) gate. For the qubits |ji |ki, this is realized by the following setup:

|ji • •

|ki Rz(2�i)

9=
; exp

� i(�1)j+k

�i

�
|jki

After the first CNOT gate, we have the state |ji |j � ki. The Rz gate applies the rotation to the
second qubit, but the second CNOT gate returns our state to |ji |ki but with the rotation. Thus,
the gate setup is

=
Y

j,k2E
CNOTj,kR

k

z(2�i)CNOTj,k

So with our choice of graph and of p, we can build a quantum circuit for the max cut problem.
After choosing initial values for (�,�) and building |�,�i, we take measurements and choose our
favorite optimizer to maximize the expectation value of HP , i.e. if xi 2 {0, 1}⌦n, then

hHM i = 1

stot

2n�1X

i=0

siC(xi)

where si are the total number of times bit string xi was measured and stot is the total number of
measurements. In other words, it’s just a weight average.

3

HM = B : mixer Hamiltonian

HP = C : problem Hamiltonian

Quantum Approximate Optimization Algorithm (QAOA)

U(HM, βj) = exp [−iβj

n

∑
i=1

σX
i]

=
n

∏
i=1

e−iβjσ X
i

=
n

∏
i=1

Ri
x(2βj)

Quantum Approximate Optimization
Algorithm (QAOA)

C(s) =
1
2 ∑

(i, j)∈E
(1 − σz

i σz
j) , B = ∑

j

σX
j

(i, j) : the edge index
i : vertex index

σz = (1 0
0 −1)

σz
i : Pauli′ s Z matrix actingon the ith vertex

σz
j : Pauli′ s Z matrix actingon the jth vertex

σz |0⟩ = + 1 |0⟩ σz |1⟩ = − 1 |1⟩ |0⟩ = (1
0) |1⟩ = (0

1)
U(C, γ) = e−i γ C = ∏

(i, j)∈E

e−i γ Cij , U(B, β) = e−i β B =
n

∏
j=1

e−i β Bj

|ψ(⃗γ , ⃗β)⟩ = [
p

∏
i=1

U(B , βi)U(C , γi)]H⊗n |0⟩

Farhi et al 2014

e−iβσX
j = cos β − iσX

j sin β

= U(B, βp) U(C, γp) ⋯ U(B, β1) U(C, γ1)
1

2
n

2n−1

∑
i=1

| i⟩

⃗γ = (γ1, γ2, ⋯, γp), and ⃗β = (β1, β2, ⋯, βp)2p angles (parameters):

Goal is to find minimum/maximum over angles: Mp = max
⃗γ , ⃗β

⟨ψ(⃗γ , ⃗β) | C | ψ(⃗γ , ⃗β)⟩

Quantum Approximate Optimization Algorithm (QAOA)
• How do and operate on ?U(C, γ) U(B, β) |ψ⟩

U(C, γ) H⊗n |0 ⋯ 0⟩ = e−iγC H⊗n |0 ⋯ 0⟩ = exp[− iγ
1
2 ∑

(i, j)∈E
(1 − σZ

i σZ
j)]H⊗n |0 ⋯ 0⟩

= ∏
(i, j)∈E

exp[− iγ
1
2 (1 − σZ

i σZ
j)]H⊗n |0 ⋯ 0⟩

exp[− iγ
1
2 (1 − σZ

i σZ
j)]H⊗n |0 ⋯ 0⟩ = exp(− i

γ
2)exp(+ i

γ
2

σZ
i σZ

j)H⊗n |0 ⋯ 0⟩

exp(+ i
γ
2

σZ
i σZ

j) |⋯0⋯0⋯⟩ = exp(+ i
γ
2

1 ⋅ 1) |⋯0⋯0⋯⟩

exp(+ i
γ
2

σZ
i σZ

j) |⋯0⋯1⋯⟩ = exp(− i
γ
2

1 ⋅ 1) |⋯0⋯1⋯⟩

exp(+ i
γ
2

σZ
i σZ

j) |⋯1⋯0⋯⟩ = exp(− i
γ
2

1 ⋅ 1) |⋯1⋯0⋯⟩

exp(+ i
γ
2

σZ
i σZ

j) |⋯1⋯1⋯⟩ = exp(+ i
γ
2

1 ⋅ 1) |⋯1⋯1⋯⟩

Four different
possibilities:

i j

Quantum Approximate Optimization Algorithm (QAOA)
• If bits and are the same, i j exp[− iγ

1
2 (1 − σZ

i σZ
j)] | ⋯ ⟩ = + 1 | ⋯ ⟩

exp[− iγ
1
2 (1 − σZ

i σZ
j)] | ⋯ ⟩ = e−iγ | ⋯ ⟩• If bits and are different, i j

• If bits and are different, rotate the output state around axis by an angle .i j z γ

σZ |a⟩ = (−1)a |a⟩ RZ(θ) = exp(− i
θ
2

σZ) = (e−iθ/2 0
0 e+iθ/2)

In circuit: CNOT |x y⟩ | = |x x ⊕ y⟩

I ⊗ Rz(2γ) |x x ⊕ y⟩ = exp(− iγ(−1)x⊕y) |x x ⊕ y⟩

because the �
z

i
’s commute since they act on di↵erent qubits. Note that Pauli matrices are just the

generators of rotations. So this unitary is just an Rz(2�j) rotation on every qubit:

=
nY

i=1

R
i

z(2�j)

And for the problem Hamiltonian,

U(HP , �i) = exp

2

4�i�i

X

j,k2E
�
z

j�
z

k

3

5

=
Y

j,k2E
e
�i�i�

z
j �

z
k

This is the Rzz(2�i) gate. For the qubits |ji |ki, this is realized by the following setup:

|ji • •

|ki Rz(2�i)

9=
; exp

� i(�1)j+k

�i

�
|jki

After the first CNOT gate, we have the state |ji |j � ki. The Rz gate applies the rotation to the
second qubit, but the second CNOT gate returns our state to |ji |ki but with the rotation. Thus,
the gate setup is

=
Y

j,k2E
CNOTj,kR

k

z(2�i)CNOTj,k

So with our choice of graph and of p, we can build a quantum circuit for the max cut problem.
After choosing initial values for (�,�) and building |�,�i, we take measurements and choose our
favorite optimizer to maximize the expectation value of HP , i.e. if xi 2 {0, 1}⌦n, then

hHM i = 1

stot

2n�1X

i=0

siC(xi)

where si are the total number of times bit string xi was measured and stot is the total number of
measurements. In other words, it’s just a weight average.

3

|x⟩

|y⟩For U(B, β) = e−i β B =
n

∏
j=1

e−i β σ X
j =

n

∏
j=1

Rj
x(2β)

• Rotation of all n-qubits about x-axis with angle 2β

7

ei�1HC

�1

ei�2HC

�2

ei�1X

ei�pHC

�p

�

ei�1HC

�1

ei�2HC

�2

ei�1S

�1
ei�pHC

�p

�

ei�1S

ei�1S

�1

ei�pS

�1

ei�1X

ei�1X

ei�1X

ei�1X

�1

ei�2X

ei�2X

ei�2X

ei�2X

ei�2X

�2

|0��d

|0��d

|0��d

ei�2S

�1ei�2S

ei�2S

�2

|�1� :

|�2� :

|�k� :

|0�
|0�
|0�

|0�
|0�

|z1� :
|z2� :

|zk� :

C(z1, z2, . . . zk)

C(�1, �2, . . . �k)

ei�pX

ei�pS

ei�pS

�p

H�n

H�kd

|zk�1� :

|z2� :

�� � � �

� � � � �

ei�pX

ei�pX

ei�pX

ei�pX

FIG. 5. Quantum circuit schematic of the operations in the original QAOA. The state is initialized by apply-
ing Hadamard gates on each qubit, represented as H¢n. This results in the equal superposition state of all
possible solutions. QAOA consists of alternating time evolution under the two Hamiltonians HC and HM for p
rounds, where the duration in round j is specified by the parameters “j and —j , respectively. In the original
QAOA, the mixing Hamiltonian HM is chosen as to be HM =

qn

j=1
Xj , After all p rounds, the state becomes

|�,�Í = e≠i—pHM e≠i“pHC . . . e≠i—2HM e≠i“2HC e≠i—1HM e≠i“1HC |sÍ .

address the issues with the standard QAOA ansatz. However, identifying such an alternative is a highly
non-trivial problem given the vast space of possible ansatzes. Farhi et al. [47] allowed the mixer to rotate
each qubit by a di�erent angle about the x-axis and modified the cost Hamiltonian based on hardware
connectivity. This modification was made primarily out of hardware capability concerns with the hope that
superior-than-classical performance can be experimentally verified.

LH-QAOA. In Ref. [48] Hadfield et al. considered alternative mixers including entangling ones on two
qubits. The selection of mixers is based on the criteria of preserving the relevant subspace for the given
combinatorial problem, for which they entitled it Local Hamiltonian-QAOA (LH-QAOA). Here we depict
the quantum circuit schematic of LH-QAOA in Fig. 6.

ei�1HC

�1

ei�2HC

�2

ei�1HM,1

�1

�p

ei�pHC�ei�1HM,2

�1ei�1HM,k

�1

ei�1HM,k+1

�1ei�1HM,k+2

|0�
|0�
|0�

|0�
|0�

|z1� :
|z2� :

|zi� :

ei�2HM,1

�1ei�2HM,2

�1ei�2HM,k

�2

ei�2HM,k+1

�1ei�2HM,k+2

ei�pHM,1

�1ei�pHM,2

�1ei�pHM,k

�p

ei�pHM,k+1

�1ei�pHM,k+2

H�n�

�

FIG. 6. Quantum circuit schematic of the operations in LH-QAOA. The overall process of LH-QAOA is similar to
that of the original QAOA in Fig. 5, where the di�erence is that the mixer of LH-QAOA contains entangling an mixer
Hamiltonian on two qubits. These are represented by the HM,i blocks with various colors in the figure. Note that in
order to avoid an excessive amount of hyper-parameters, Hadfield et al. [48] choose the —j for each HM,i to be the
same in every layer.

QDD. In Refs. [25, 49] Verdon et al. adjusted the mixers for continuous optimization problem in which
the parameters to be optimized are continuous variables. In the original QAOA ansatz, the mixer is chosen
to be single-qubit X rotations applied on all qubits. These constitute an uncoupled sum of generators of
shifts in the computational basis. Similarly, the appropriate mixers in the continuous case should shift the
value for each digitized continuous variables stored in independent registers. They entitled it Quantum
Dynamical Descent (QDD). Here we depict the quantum circuit schematic of QDD in Fig. 7.

ADAPT-QAOA. LH-QAOA and QDD showcase the potential of problem-tailored mixers, but do not
provide a general strategy for choosing mixers for di�erent optimization problems. In Ref. [27] Zhu et al.

|ψ(⃗γ , ⃗β)⟩ = [
p

∏
i=1

U(B , βi)U(C , γi)]H⊗n |0⟩

C(s) =
1
2 ∑

(i, j)∈E
(1 − σz

i σz
j) , B = ∑

j

σX
j

⊕ ⊕Rz(2γ)

| i⟩

| j⟩

e−i β σX
j = cos β − i sin β σx

j = Rj
x(2β)

Rotate qubit j around x-axis by 2β

Quantum Approximate Optimization Algorithm (QAOA)

|ψ(⃗γ, ⃗β)⟩ = U(B, βp) U(C, γp) ⋯ U(B, β1) U(C, γ1)
1

2
n

2n−1

∑
i=1

| i⟩

Quantum Approximate Optimization Algorithm (QAOA)

|ψ(⃗γ, ⃗β)⟩ = U(B, βp) U(C, γp) ⋯ U(B, β1) U(C, γ1)
1

2
n

2n−1

∑
i=1

| i⟩

For and n = 2 p = 1, |ψ(⃗γ, ⃗β)⟩ = δ0(γ, β) |00⟩ + δ1(γ, β) |01⟩ + δ2(γ, β) |10⟩ + δ3(γ, β) |11⟩

|⟨x |ψ(γ, β)⟩ |2

|x⟩
|00⟩ |10⟩|01⟩ |11⟩

0.3

0.1

Fp(γ, β) = max
γ,β

⟨ψ(γ , β) | C | ψ(γ , β)⟩ = ∑
x∈{0,1}⊗n

C(x) ⟨x |ψ(γ, β)⟩
2

C =
1
2 ∑

(i, j)∈E
(1 − σz

i σz
j)

C = ∑
x∈{0,1}⊗n

C(x) |x⟩⟨x |

|x⟩ =
1

2
n

2n−1

∑
i=1

| i⟩

• Measure of how good the approximation
is to actual best value of the cost function

α =
Fp(⃗γ, ⃗β)

Cmax

6

∑
�

|��

∑
�

ei�1C(�) |��

∑
�

�C(�) |��

ei�1HC

ei�1HM

ei�2HC

ei�2HM

∑
�

ei�2C(�)�C(�) |��

ei�pHM

ei�pHC

…

…
…

…

C(�)

�

QAOA

FIG. 4. Interference process of QAOA. QAOA is an interference-based algorithm such that non-target states interfere
destructively while the target states interfere constructively. Here we illustrate this interference process by presenting
the evolution of the quantum state of the parameters (black bar graphs on the yellow plane) alongside with the
QAOA operations (blue and pink boxes on circuit lines, representing the Phase encoding and Mixers respectively).
The starting state

q
◊

|◊Í (omitting the normalization factor) is the even superposition state of all possible parameter
configurations. After the first Phase encoding operation, the state becomes

q
◊

e≠i“1C(◊)|◊Í for which we use opacity
of the bars indicate the value of the phase, the magnitudes of the amplitudes in the state remains unchanged. After
the first Mixer, the state becomes

q
◊

�C(◊)|◊Í in which the magnitudes of the amplitudes in the state has changed.
Similar process happens to the following operations, until the amplitudes of the optimal parameter configurations
are amplified significantly (the furthest bar graph). The grey bar graph in the right corner is the cost function being
optimized by QAOA.

The alternating operations can be illustrated as in Fig. 5. Finally a measurement in the computational basis
is performed on the state. Repeating the above state preparation and measurement, the expected value of
the cost function,

ÈCÍ = È�,�| HC |�,�Í ,

can be estimated from the samples produced from the measurements.

The above steps are then repeated altogether, with updated sets of time parameters “1, . . . , “p, —1, . . . , —p.
Typically a classical optimization loop (such as gradient descent) is used to find the optimal parameters
that maximize(or minimize) the the expected value of the cost function ÈCÍ. Then measuring the resulting
state of the optimal parameters provide an approximate solution to the optimization problem.

There has been a lot of progress on QAOA recently on both the experimental and theoretical fronts. There
is evidence suggesting that QAOA may provide a significant quantum advantage over classical algorithms
[42, 43], and that it is computationally universal [44, 45]. Despite these advances, there are limitations
of QAOA. The performance improves with circuit depth, but circuit depth is still limited in near-term
quantum processors. Moreover, deeper circuits translate into more variational parameters, which introduces
challenges for the classical optimizer in minimizing the objective function. Ref. [46] show that the locality
and symmetry of QAOA can limit its performance. These issues can be attributed to the form of the QAOA
ansatz. A short-depth ansatz that is further tailored to a given combinatorial problem could therefore

QAOA

Example: Max Cut

Maximum Likelihood detection
Traveling salesman problem

Scheduling management
Unstructured search

Graph coloring
Max-cut

https://colab.research.google.com/drive/1pkUutpqZa16GmDZdZtD__tIopdpfxoov

Object identification
Taken from Vecanoi (Youtube Educational channel about AI)

Object identification
Taken from Vecanoi (Youtube Educational channel about AI)

QAOA summary
• One can solve the optimization problems on a quantum

computer by initializing the quantum device in the ground
state of a hamiltonian that is easy to prepare and
adiabatically tuning H into the problem Hamiltonian.

• In a digital quantum computer, this translates into a
Trotterized version of the adiabatic evolution operator. In
the limit of an infinite product, this Trotterized form
becomes exact.

• QAOA is a hybrid quantum-classical variational algorithm
with a finite order version of the evolution operator.

• Many experimental and theoretical studies, suggesting
QAOA may provide a significant quantum advantage
over classical algorithms, and that it is computationally
universal.

Limitations and potential issues
with QAOA

• The performance improves with the number of alternating layers
in the Ansatz, which is limited by coherences times in exiting and
near-term quantum processors.

• More layers implies more variational parameters (challenging for
classical optimizers) [19].

• Short-depth ansatz is not really the digitized version of the
adiabatic problem but rather an adhoc ansatz, which does not
guarantee to perform optimally [20].

• Fixed form of standard QAOA is not optimal but no systematic
approach for finding a better ansatz.

• ADAPT-QAOA converges faster, reducing the required number of
CNOT gates and optimization parameters.

• Connection to concept of shortcuts to adiabaticity.
• Inspired by ADAPT-VQE [28,29] (Refs in 2005.10258).

