Day 2 Recap

Two qubit gates

— CNOT, SWAP

No cloning

Superdense coding

Three qubit gates

— Controlled CNOT, Controlled SWAP
Teleportation

A simple QA with two qubits: Deutsch Algorithm

Deutsch-Jozsa algorithm
A very short comment on Bernstein-Vazirani Algorithm

Skipped: Simon’s algorithm, Quantum Fourier Transformation,
Shor’s algorithm and Grover’s algorithm



Day 3 Plan

* Day 3:
— Distance-based classifier

— Quantum optimization and adiabatic theorem
— QAOA and ADAPT-QAOA

« Day 4: 2pm -4pm

 Day 5: 1pm - 3:30pm
— Feedback-based ALgorithm Quantum Optimization (FALQON)
— Data re-uploading for a universal quantum classifier
— Error correction

— Bernstein-Vazirani Algorithm and Simon’s algorithm
— Quantum Fourier Transformation and Phase estimation
— Shor’s algorithm, Grover’s algorithm



Quantum Machine Learning

 Artificial Intelligence: Statistical prediction

 Machine Learning: Learn from data

* Quantum Machine Learning: Learn from data with quantum algorithms
— Subdiscipline of quantum computing and quantum information

data generating system

science

data processing device

CC|CQ

QC [QQ

C' - classical, ) - quantum

CC: classical data being processed
classically

QC: how machine learning can help with
guantum computing

CQ: classical data fed into quantum
computer for analysis (quantum machine
learning)

QQ: quantum data being processed by
quantum computer (ex: Quantum
simulation)



Distance-based classifier

» A distance-based classifier with a quantum interference
circuit: arXiv:1703:10793 (supervised binary classification)

(3_51)1 Unlabelled data o
A Class* 1 / training data set
** * - - -
* kK F D = {(x;,y), X ¥0)s ==+ Xy
feature 2 * "S' 1) G 32) Gy 3w}
.0 .%. .;C')m & RN )’m = {_19 + 1}
Class 2 m=1,2, - M
. M = the number of data
> (X))o _
N = the number of features

feature 1

%, € RV : unlabelled data

— Find the label y € {—1,1}



Classical Kernel Method

« Kernel methods: KNN (k-nearest neighborhood), KDE (kernel density
estimation), SVM (support vector machine), Gaussian processes

— Nearest neighborhood method: a new input data is given the same
label as the data point closest to it — k-nearest neighborhood
(KNN)

— Closeness = distance measure
— (ex) Euclidean distance |% - X, |
- 1
S o L Fm_z |2  include all data but weigh influence
y = sign Zym 1 | X —X,, | Inciu g

aM of each data toward the decision by
the weight x(x, x,)

| m=1
M
y = sign Z W, ¥, K(X, X,,))

weight Label =1 forx




Classical Kernel Method

WX, 1) = J K&, t; X, )wX ,t)dX

K(x,t; x',t"). kernel, Green’s function, or propagator contains the probability of

particle propagation between (x, 1) and (x', ¢)

R w(x', 1)

.

K, t, X, 1)

[

A

new distribution

p(x', 1)




Distance-based classifier

» Choose w, = 1 for all equally important data

( X)=1- L |x |2 Close data (small distance) are
4M weighted more importantly.

(1) Encode input data (features) into the amplitude of a quantum system (amplitude
encoding). For classical vector ¥ € RY, (N =2") Assume x'x =X -¥ =1

lized to 1
(normalized to 1) N = 2" : number of features

N—1 /8 i - index in the computational basis

lyx) = 2 X; | 7) Dimension of Hilbert space ~ O(log N)

i=0
— = ancilla qubit is entangled

ﬁ with third register

|0>|wx>+|1>|wx )15

[N\

data index unlabelled
M = # of data data

Ma

(2) initial state: | D) =

labeled label of x,,
data class qubit




Distance-based classifier

ancilla qubit is entangled

//—t with third register

|0>|wx>+|1>|wx )15

m=1 / \

Ma

(2) initial state: | D) =

data index unlabelled labeled label of x,
M = # of data data data class qubit
N-1
[y, ) = Z X, | 7) encoding of m-th training data (labeled)
i=0
lye) = Z 7|1 encoding of new data (unlabeled)
10), ify, =—1
| Y? = e
1), ity =+1

| D) contains all training data as well as M copies of new inputs.



Distance-based classifier

1
(3) Apply Hadamard gate on the ancilla (second) qubit. 10) — 72 ( |0) + | 1))
M
1
D — 0 . 1 \ _
D) = FZ my (1) [y + 1) 1w ) ) 1) (1) (10p-11)

L
D) = —— m)(10) |y 1) |y
) == 2 ) (10) 1we) + 11 1y, ) 1)

M-1

W ) = lud 2y ) = ) (¥ £x)) i)

i=0

(4) Conditional measurement selecting the branch with ancilla state |0).
Likely to succeed if the collective Euclidean distance b/w X and training data
set is small. For standard data, p > 0.5.

Probability is P = —— Z X +%,°

i M N-1
| m x+xm|i|m
szpzz 1

D) =




Distance-based classifier

(5) Probability of measuring the class qubit |y,,) = |0)

M N-1
D"y = ZF le ZO my (% +x5) [} ] y)
PG =0) = —— Z Fri, = 1 - f‘, %%,
y/_ ) 4Mp ¥, =0, m=1 B 4Mp ¥, =0, m=1 s

Class 1 using normalization condition

— choosing the class with the higher probability gives result of kernel method.
The # of measurement needed to estimate P(y = 0) to error ¢ with a reasonably
high confidence interval grows with O(e™!).

raw data standarisation normalisation
4 . XO
N * : 1 A arxiv:1703:10/793
D " .
5 ° byt O X' X } used lIris data
E 0 e class -1 Aﬁ‘ oﬁ“‘g
Aclass 1 —o NS “ n‘ -1
0 2 4 6 -2 -1 0 1 2 -1 0 1

feature 1


https://arxiv.org/pdf/1703.10793.pdf
https://arxiv.org/pdf/1703.10793.pdf

Distance-based classifier

Example: square distance classifier
Kaggle Titanic dataset



Quantum Optimization

Optimization problems are everywhere: math, science, business, finance etc
—In general, time-consuming.
—In many cases, can not be solved in polynomial time.

— Need approximation algorithms: find approximation of the best solution rather
than the best solution (time complexity is reduced).

Two classes
— Continuous optimization
— Discrete optimization: combinatorial optimization
« Quadratic Unconstrained Binary Optimization (QUBO)
Apply quantum algorithms to solve optimization problem
— (1) Gate model: use universal gates (Pauli's), problem-independent.

— (2) Non-gate model (quantum annealer): relies on adiabatic theorem to find
a minimum energy of Hamiltonian corresponding to the minimum value of
some cost function.



Quadratic Unconstrained Binary
Optimization (QUBO)

QUBO: combinatorial optimization problem with a wide
range of applications from finance to ML (partitioning, graph
coloring, task allocation, max-sat, max-cut etc)

f:7Z; — R Quadratic polynomial over binary variable

x, € Z,=1{0,1}, h,q;€R

fo =Y Z%%“th X =

=1 j=1 _
(binary strings of n-bits)

Find a binary vector x* which minimizes f
x* = argmin f(x)
xX€E 75

In matrix notation, f(x) = x'Qx, where 0 € R™"



Quadratic Unconstrained Binary
Optimization (QUBO)

In matrix notation, f(x) = x'Qx, where Q € R™"

J(x) = = 2x; — 3x, + 8x3 + 4xy + 4x;x, + Sxx3 + 6x,%5 + 10x3%4

(=22 5/2 0) (% o= 52
2 -3 3 0]]*® - o
— (X1 XA X2 X —
MBI n 3 g 5] n|TF X x;, € Z,={0,1)}
. 0 0 5 4)\M4y

QUBO:

— NP hard problem

— Quadratic function might have several local minima
— Close connection to Ising model



P vs NP

In Theoretical Computer Science, the two most basic classes of problems are P
and NP.

P includes all problems that can be solved efficiently
— For example: add two numbers. The formal definition of "efficiently" is in time that's
polynomial in the input's size.
NP (nondeterministic polynomial (time)) includes all problems that given a
solution, one can efficient verify that the solution is correct.

— An example is the following problem: given a bunch of numbers, can they be split into
two groups such that the sum of one group is the same as the other. Clearly, if one is
given a solution (two groups of numbers), it's simple to verify that the sum is the same.
(This is a partitioning problem).

What's unknown is whether problems such as the one above have an efficient
algorithm for finding the solution. This is the (in)famous (unsolved) P = NP
problem, and the common conjecture is that no such algorithm exists.

Now, NP hard problems are such problems that were shown that if they can be
efficiently solved (which, as mentioned, is believed to not be the case), then each
and every problem in NP (each and every problem whose results can be
efficiently verified) can be efficiently solved. In other words, if you're up to showing
that P=NP, you might want to take a stand at any of those NP-hard problems since
they are "equivalent” in some way to all others.



Ising Model

Mathematical model for ferromagnetism in statistical
mechanics.

The energy of spin configuration for a given lattice is
given by the following classical Hamiltonian

E(S)=—ZJSS—Z]1S s=1s;}, s;€{—11}

ij Vi

J; Is called an interaction, spin- spln coupling, and A, is an external

magnetic field, interacting with spin s..
The configuration probability is given by the Boltzmann distribution

e_ﬂH(S) 1




Spin-Spin Interaction

Y
Current loop produced by an electron in circular orbit
r 14 27T
@ m,e I = - e—— V= ——
2rr

e
T T
ev 1 e
,u=IA=—7zr2:—evr —> ﬁ:—
_ 27y L 2m
u : magnetic moment
L : angular momentum Z» oo 7 —
p : momentum =rXp—L=mr
m : mass _
v . velocity I , , - e [—
T : period

B

H=-W, B,~S,- L,

(spin — orbital momentum coupling)
_/ H~ — S (spln — spin coupling)




Hydrogen Hyperfine Structure

Principal levels Fine levels Hyperfine levels
(Bohr) (Dirac, Lamb)
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Hydrogen Hyperfine Structure

Continuous spectrum
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QUBO example: Max-cut Problem

Max-Cut is the NP-hard problem of finding a partition of the
graph's vertices into an two distinct sets that maximizes
the number of edges between the two sets.

Undirected Graph: G = (V, E)
— V: set of nodes, and E: set of edges

Partition vertices into two complementary sets such that
the number of edges between the two sets is as large as
possible.
,f""~\\
As the Max-Cut Problem is NP-hard, |

no polynomial-time algorithms for
Max-Cut in general graphs are

known.




QUBO example: Max-cut Problem

 The cost function to be maximized:

Clx) = Z <xl- + X — 2xl-xj> where x; € {0,1}
(i.j)EE
x;+x; — 2xx; = 1, 1t x; and x; belong in different sets .

s; €2, ={-1,1} x;+x; — 2xx;, = 0, 1f x; and x; belong in the same set.
. s;+ 1 . .
* Introducing x, = > the cost function can be rewritten
1 1 (i,j) : the edge index
— — .S. —_— — — Ll
Cls) = ) Z (1 %) ) — C(s) ) Z <1 0i0j) [ . vertex index
(i,))EE (i,))EE
. (1 0 ) c°|0) = +1]0) o! : Pauli’s Z matrix actingon the i vertex
~\0 -1 c“|1y=—=1|1) sz : Pauli’s Z matrix actingon the jth vertex
10) = <(1)> |1) = <(1)> Matrices = linear operators = observables

Eigenvalues = what are actually measured in experiments



Adiabatic Theorem

Adiabatic theorem: A physical system remains in its instantaneous
eigenstate, if a given perturbation is acting on it slowly enough and if there
IS a gap between the eigenvalue and the rest of the Hamiltonian’s
spectrum. (Max Born and Vladimir Folk 1928)

Under a slowly changing Hamiltonian H(t) with instantaneous eigenstate
|n(7)) and the corresponding energy E(r), a quantum system evolves from
initial state |y(0)) = Z ¢,(0)|n(0)) to final state |y()) = Z ¢, (D) | n(®)) Where

n n
!

c (1) = ¢, (0) e'%D n® with the dynamical phase 6 (1) = - %[ E(t)dr and
0

geometrical phase y(r) = iJ (n(t') | A(t)) dt’
0

Adiabatic approximation: the rate of change of Hamiltonian H(¢) is small
and there is finite gap E, (1) — E (1) # 0 between energies for m #n —

Ny — _ MO THO n@®)
(n(@) | (1)) = EO—E® 0

lc, () |* = |¢,(0)|* so if the system begins in an eigenstate of H(0), it remains
in an eigenstate of H(t) during the evolution with a change of phase only.



Adiabatic Theorem

H(t) | n(t)) = E ()| n(t)) |n(r)) : is eigenstates of Hamiltonian, basis

_ satisfies time-dependent i _
W) = ), e ln) S e on = 1w(0) = H®) ly(0)

d . :
- HO |n(0) + H(®) | 1(0)) = E, () | n(®)) + E, (1) [ 1(D))
Assume m # n and perform inner product with | m(?)): H(t)|m(r)) = E () | m(?))

(m() | n(®)) = S,
(m(t) | H(?) | n()) + (m(2) | H®) | () = E,(t) (m(2) | n(0)) + E,,(t) (m(?) | (1))
(m(t) | H(®) | n(1))

(m(@) | H® | n(0)) + E, (1) {m(®) (1)) = E,(0 ¢m(®) | 40) ~ (m(@) |i0) = = ==

Adiabatic approximation: the rate of change in Hamiltonian H() is small and there is
finite gap E,(n — E (1) # 0 between energies — (m(1)|n()) ~ 0.



Adiabatic Theorem

0
lha lw () = H(@) |w(1))

= 1Y &0 1n0) + ¢, O]40) = Y E, (1) ¢, (1) | (D)
[w@) = ), (0| n®) 2 :

n

Inner product with [m()):  (m()| | ik ) ¢, [n®) + ¢, (O |AD) = Y E 0 c, (O |n(®))

Using (m(?) | n(t)) = 6, ., we obtain ihe, () +in Z c, () (m(0) | n(2)) = ¢, (1) E,,,(1)

In the adiabatic limit,

(m(t) | 7)) ~ 0 for m # n if ¢, (1) + ihc, () (m(2) | (D)) = ¢, () E,,(£)

) E, () . . A ESD) . .
i¢, (1) = < P I (m(t)lm(t))> c, () — ¢, =i <— : + i (m(t)lm(t))) c, (1)
d _ 1 de, (&, i g .
p Inc, (1) = 0 dr = T = hEm(t) + 1 i{m(t) | (1))
c, (1) = c, (0)enDeln® 0, = —% J E, (1) dr y() =i [ (m) | m(t)) dr’
0 0
dynamical phase, geometrical phase,

real, function of E pure imaginary



Adiabatic Theorem

o 1 (! [ .
c, () = c, (0)e“nDeln® On() = = — J E,(t)dt y(@) = i [ (m(t") | m(t")) dt’
0 0
dynamical phase, geometrical phase,
real, function of E pure imaginary,

Has something to do with
direction in the Hilbert space

d
0= EW” |m(2)) = (ri(®) | m(1)) + (m(t) | m())
= (m() | (1) )* + (m(2) | (1))
= 2Re (m(t) | (1)) — 7,(f) : pure imaginary



Adiabatic Theorem

Schrodinger equation:

Instantaneous eigenstate:

Initial condition:

If evolution is slow enough,

w(t) = U() w(0)

q=0

/ dt, / dty Hy (1

dy/ (1)
dt

i

= H(t) y(?)

H() y, (1) = E,(1) y,(?)
w(t =0) =

w(t) ~ e

- Hy(ty)

10(1) W

Born and Folk 1928



Quantum Annealing

H, is the problem Hamiltonian whose ground state encodes the solution
to the optimization problem

H, is the initial Hamiltonian whose ground state is easy to prepare.

Prepare a quantum system to be in the ground state of H, and evolve the
system using the following time-dependent Hamiltonian,

t t
H(t) = (1 —?>H0+?Hp
The system will remain to its ground state at all times, which means for

t=T, the system will be in the ground state of H,, our problem Hamiltonian.

D-wave has built Quantum Annealing that solves optimization problem by
transferring the original optimization to a hardware, that allows nearest
neighbor interaction of qubits.

If the energy gap b/w the ground state and 1st excited state is small, T
must be very large — computationally difficult.

Apolloni, Bianchi, De Falco 1988



Limitation of Quantum Annealing

* Performance of quantum annealing are governed by the size

of the gap.
£ AW (1(5)| 521 0(s))
At >> max : ‘
0<<1 A(s)?
T'=As, 0<s<1
/ } >
H(0) = H, Ht=T)=H,

* Performance is poor, when eigenvalues are degenerate.



Variational Quantum Algorithms

Hybrid quantum-classical model is suggested to circumvent the issue of
going slow with quantum annealer as well as implementing Hamiltonian
In the available hardware.

Quantum: parameterize wave function
Classical: minimize/maximize the expectation value of H in the problem.

E©) = (w(0)| H|w(®))

Quantum Classical

Output
f(x;6)

l

Cost
Ely - £(x; 01"

'

Update
0i-1 — 6;

State

preparation |$> N U(CE, 9)

x = |x)

X

U(x; 6;)

Quantum circuit




Variational Quantum Algorithms

—~ @ '{

AT
SIS
P

a |
: :_{ Output :
| I f(x; 9) )1
| /74 | [ !
| [ ) l .
State S I Cost
_ |

preparation |CU> . U(a’}, 0) /74 _:— I Ely - r(x; 1" , :

x = |x) I ; l

U(x; 6;)

______________




Variational Quantum Algorithms

2016: first cloud-based quantum computer became available.

Current state-of-the-art device size ranges from 50 to 100 qubits which allows one
to achieve ‘quantum supremacy’: outperforming the best classical supercomputer,
for certain contrived mathematical tasks.

— Sycamore (53 qubits, corresponding to a computational state-space of
dimension 2>} ~ 10'%): 200 seconds vs 10,000 years for sampling the output of a
pseudo-random quantum circuit.

Variational Quantum Algorithms (VQAs) have emerged as the leading strategy to
obtain quantum advantage on NISQ (Noisy Intermediate-Scale Quantum) devices.
Accounting for all of the constraints imposed by NISQ computers with a single

strategy requires an optimization-based or learning- based approach, precisely
what VQAs use.

VQAs are arguably the quantum analog of highly successful machine-learning
methods, such as neural networks.

VQAs leverage the toolbox of classical optimization, since VQASs use parametrized
guantum circuits to be run on the quantum computer, and then outsource the
parameter optimization to a classical optimizer. This approach has the added
advantage of keeping the quantum circuit depth shallow and hence mitigating
noise, in contrast to quantum algorithms developed for the fault-tolerant era.



Quantum Approximate Optimization
Algorithm (QAOA)

1411.4028 E. Farhi, J. Goldstone, S. Gutmann

« Abstract: We introduce a quantum algorithm that produces
approximate solutions for combinatorial optimization problems. The
algorithm depends on a positive integer p and the quality of the
approximation improves as p iIs increased. The quantum circuit that
implements the algorithm consists of unitary gates whose locality is
at most the locality of the objective function whose optimum is
sought. The depth of the circuit grows linearly with p times (at
worst) the number of constraints. If p is fixed, that is, independent of
the input size, the algorithm makes use of efficient classical
preprocessing. If p grows with the input size a different strategy is
proposed. We study the algorithm as applied to MaxCut on regular
graphs and analyze its performance on 2-regular and 3-regular
graphs for fixed p. For p = 1, on 3-regular graphs the quantum
algorithm always finds a cut that is at least 0.6924 times the size of
the optimal cut.



Quantum Approximate Optimization
AlgOrIthm (QAOA) Farhi et al 2014

* Hybrid quantum algorithm: contains a parameterized quantum circuit which
depends on variational parameters.

« Use classical computer to optimize the output of the quantum circuit.
« Consider the Ising model for illustration.

4 N
Variational parameters

(’?. )’) — (’}1 s oees Vs 131 y soey .»'3]))

' '
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il L —i101Hpl— . .... Ll —i8,Hpg
+ e e~ Wr
| | S
5 58 e
4+ = He iB1HBf—- - Y HeiPpHB /f\ SR e
> 33_.' - I; - ™= S B
(:_- (:-‘ T e
"| "| T S
Q Q Q =
S~ 8.
|_+_> 4 —e 'Iiligl H BH— . .... '—'63—7'.‘-3]) HB /% -
_ N J

depth p



Quantum Approximate Optimization
Algorithm (QAOA)

1 o
Hpy = C(s) = B Z (1 — al.zajz) : Problem Hamiltonian

Farhi et al 2014

(i, j) : the edge index

GSs [ . vertex index
—_— — X . 1 < : o,
H,, =B = Z o;" : Mixer Hamiltonian ! S
! t t
Full Hamiltonian: ~ H(t) = (1 - 7> Hy + - Hp

p

t ]
[9)) = exp [—z/o H(t’)dt’] [9g) = exp —iZH(jAt)At 10

N A Undirected Graph: G = (V, E)
exp [—iAt [(1 — ‘7—> Har + ]—HP” WO> V: set of nodes

Yy
Y

—

T T

E: set of edges

<
I
—

R
s

A 1A
exp [—iAt (1 — ‘%) HM] exp [—iAt%HP] |%0)
1

<.
I

Works in the adiabatic limitor p -

_ ﬁexp [—z’ﬁjHM] exp [—ijp] [400) :’> v, 3) = ﬁ U(Hw, B;)U(Hp, ;) |[+)¢"

‘:1\ AN J/ .
g j=1

Ve

U(Har,5;) U(Hp ;)



Quantum Approximate Optimization Algorithm (QAOA)

Variational parameters J

t t 7, 8) = (o
— - — p— 8Ly, ) (’\)11"'3’7'13 .‘513"'3.'3'))
H(t) (1 T)HM—I—THP ‘ F $1
H,, = B : mixer Hamiltonian +) 4 He-isHsf—. .. || —i8, Hp | //‘\=" o b
. . v —i1Hpfp—o- .. ... O H_.—iB,Hpll— - 2 B 27
Hp, = C: problem Hamiltonian +) 1 x et T e A @i g
T T - 5H
- on S
|7’ H HM’BJ Hp,’}/j) ‘_|_> +) 1 e~ P HBE—- —e—’""’PHB"—/f\=\ )
1=1 ~ — _
depth p
U(Hp,v) = exp |—ivi Y ooi| = |] CNOT;xRE(27:)CNOT; B X-
jkeE | iken UH,.B) = exp | —iB, )’ o;
! i=1
7) — * w1 o
) A exp | — (=1} | [jk) = e Pi°
k) —D— R:(27:) —D i=1
n
=[] ries)

FP(AYMB) — <77/6‘HP"77,3> i=1



Quantum Approximate Optimization
Algorlthm (QAOA) Farhi et al 2014

1 . :
C(s) =— Z (1 _ O-izajz> . B= Z GjX (i,j) : the edge index
2 j [ : vertex index

(i,)) ek
10 o; : Pauli’s Z matrix actingon the i vertex
o° =
(0 - 1> of : Pauli’s Z matrix actingon the j™ vertex
e iy (1 _ (0
c%|0) = + 1|0) i) =—=1][1) |0) = 0 1) = X
UC.y=e"C= ] e%, UB.P)=ePE=]]e b
(i,))eE j=1
vy B - ®n ~ifo} — cos B — ic’ sin B
v B) = |[Tvs.ppuc, »|He o) ™ = io}' s
i=1 1 n_1
= U(B,B,) U(C,y,) - UGB, B) UC, 7)) 7 Y1)
2 =

2p angles (parameters): 77 — (yla 7/29 't yp)a and ﬁ — (ﬁla ﬂZ’ ”.9ﬁp)

Goal is to find minimum/maximum over angles: M, = n}aﬁx w,.P) | Cly,p)
7.



Quantum Approximate Optimization Algorithm (QAOA)

 How do u(C,y) and U(B, p) operate on |y)?

| 1
U(C,y) H®" |0 --- 0) = ¢~irC H®" |Q -.. o>=exp[—iy5 Y (1—0 o )]H®"|o 0)
(i,j)eE
_ H exp[ ( lZJZ)] H®" [0 - 0)

(L.))EE

1
exp[—i;/2 <1 — ot )]H‘X’”lO . 0) =exp<—i—>exp(+l}2/a o )H®”|O 0)

exp( + llglquz) | ...O...O...> — exp< 4+ lll . 1) | ...O...O...>
Four different 2 2

possibilities: exp( + Z%GZZG],Z) | ++:0--1:0) = exp( — ,%1 : 1) | ++-0--e1---)
2t )

exp< + ZKO'ZGZ) | -..1...1...> — exp( + 111 . 1) | ...1...1...>
2 b )



Quantum Approximate Optimization Algorithm (QAOA)

L . 1 -
« If bits i and j are the same, exp| — WE (1 — gl.Zng)- | Y =4+1] )
« |f bits i and j are different, T T / N iy L
! J exp | zy2<1 0i6j>_| y=e 7| )

:’> « If bits i and j are different, rotate the output state around z axis by an angle y.

- ) 0 o—i02
ozla) = (=1)"|a) R,(0) = exp( — 1502> = < 0 e+i9/2>
In circuit: CNOT [xy)| = |[xx D y)
I®R(2|xx®Y) = exp( = ir(= 1) |xx @)
| x) —eo ®
For U, p) = /7 =[] e " =[] Ri2p) y) —D— R.(2v;) —D
=1 =1

Rotation of all n-qubits about x-axis with angle 24



Quantum Approximate Optimization Algorithm (QAOA)
= 2:, i)
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i= 1/ \/ 7) R.(2y):

el = cosf—i smﬂaf = Ri(Zﬂ)
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Rotate qubit j around x-axis by 2/
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Quantum Approximate Optimization Algorithm (QAOA)
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i=1
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1 [ (el ) Iy
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x€{0,1}®" 0.1
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)=— ¥ 1) %)
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2
F(r.p) = max WP ICly.py= ), C® ‘ <XIl/f(7f,ﬁ)>‘
’ x€{0,1}®"
 Measure of how good the approximation _ F(7, 'E)

IS to actual best value of the cost function * Coox



Maximum Likelihood detection

QAOA Traveling salesman problem
Scheduling management

e"ﬂ””M/ Unstructured search

M/ Graph coloring

Max-cut
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Example: Max Cut



https://colab.research.google.com/drive/1pkUutpqZa16GmDZdZtD__tIopdpfxoov

Object identification

Taken from Vecanoi (Youtube Educational channel about Al)




Object identification

Taken from Vecanoi (Youtube Educational channel about Al)




QAOA summary

One can solve the optimization problems on a quantum
computer by initializing the quantum device in the ground
state of a hamiltonian that is easy to prepare and
adiabatically tuning H into the problem Hamiltonian.

In a digital qguantum computer, this translates into a
Trotterized version of the adiabatic evolution operator. In
the limit of an infinite product, this Trotterized form
becomes exact.

QAOA is a hybrid quantum-classical variational algorithm
with a finite order version of the evolution operator.

Many experimental and theoretical studies, suggesting
QAOA may provide a significant qguantum advantage
over classical algorithms, and that it is computationally
universal.



Limitations and potential iIssues
with QAOA

The performance improves with the number of alternating layers
In the Ansatz, which is limited by coherences times in exiting and
near-term quantum processors.

More layers implies more variational parameters (challenging for
classical optimizers) [19].

Short-depth ansatz is not really the digitized version of the
adiabatic problem but rather an adhoc ansatz, which does not
guarantee to perform optimally [20].

Fixed form of standard QAOA is not optimal but no systematic
approach for finding a better ansatz.

ADAPT-QAOA converges faster, reducing the required number of
CNOT gates and optimization parameters.

Connection to concept of shortcuts to adiabaticity.
Inspired by ADAPT-VQE [28,29] (Refs in 2005.10258).



