Day 3 Recap

Day 3.
— Distance-based classifier (1703:10793)
— Quantum optimization and adiabatic theorem
— QAOA (1411.4028)
* NP-hard problem
» Variational Quantum Algorithms



Day 4 Plan

Day 4.
— ADAPT-QAOA (2103.17047)

— Feedback-based ALgorithm Quantum Optimization (FALQON,
2103.08619)

— Data re-uploading for a universal quantum classifier
(1907.02085)

Day 5: 1pm - 3:30pm
— Quantum Fourier Transformation and Phase estimation
— Error correction

— Bernstein-Vazirani Algorithm and Simon’s algorithm
— Shor’s algorithm, Grover’s algorithm



Adaptive Derivative Assembled
Problem Tailored - Quantum

Approximate Optimization
Algorithm (ADAPT-QAOA)

 https://arxiv.org/pdf/2005.10258.pdf
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ADAPT-QAOA
Up(7.8)) = (,}1 ‘Z’HMBke‘iHC”'“}>|wref> = [1(7.8) = (H Z‘A”kemmowre&

Algorithm 1 ADAPT-QAOA

) = |gret) = [+)°" Initial state: [¥) = [¢her) = |+)°"
Predefined: Number of layers p; Cost Hamiltonian H¢;
Initial parameter for optimization: ~o; Operator pool with
m operators A;, j € [1,m]
for k=1...pdo

//From operator pool select operator

for j =1...m do

n=number of qubits

mixer pool = set of A;: {A;}

//Get max measured gradient operator Amax

Set v = Yo |
Define W(k)>t _ e—zHcvk|¢(k—1)>

Al = argmax (=i (6@ [He, 4]0 0), )

end for
//Add A% to current ansatz:
" (k) —1
‘w(’f)> _ ALY Bk o Hc’m|¢(k’ 1)>

// Optimlzatlon

min (™ |[Heo|p®)) — 3,7

output.add(8, 7, Afrae, min(® | Holp®))
end for
return output
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ADAPT-QAOA
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Algorithm 1 ADAPT-QAOA

Initial state: |07 = |¢hrer) = |[+)®"
Predefined: Number of layers p; Cost Hamiltonian H¢;
Initial parameter for optimization: ~o; Operator pool with
m operators A;, j € [1,m]
for k=1...pdo

//From operator pool select operator

for j =1...m do

//Get max measured gradient operator AL
Set v = Yo |
Define W(k)>t — e—zHcvk|¢(k—1)>

Atrde = argmax (=i (0@ |[He, A7]|p®), )
end for
//Add A% to current ansatz:

)} = o= iAmxBr =i HETE |y (k—1)

// Optimization

min (™ |[Heo|p®)) — 3,7

output.add(8, 7, Afrae, min(® | Holp®))
end for
return output
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ADAPT-QAOA

5 P | PO = [thet) = |+)*"
o) = (e o ) = oo

mixer pool = set of A;: {A;}

{ZiEQ Xi}

O(n) elements Piingle = Uic { X4, Y3t U {Zie@ Yz} U Poaoa

O(1) elements Poaoa

@(nZ) elements Prulti =Uije@xQ {BZC]‘B’M Cj S {Xa Y, Z}} U Psingle

Poaoa C Fsingle C Pt
———, Best performance

1
He =—3 sz’,j(f — ZiZ;)
(Z¥]

H- has a z, symmetry associated with the operator F = ®, X.. Since [F,H/] =0, one can
show that the gradient is only nonzero for [F,A] = 0. The 4, that commutes with F are

Pauli strings that have an even number of Y or Z operators.



ADAPT-QAOA

2005.10258
Zhu et al 2020
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ADAPT-QAQOA applied to Mascot
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FIG. 1. Comparison of the performance of standard QAOA (blue) with ADAPT-QAOA for the single-qubit (orange) and
multi-qubit (green) pools. The algorithms are run on the Max-Cut problem for the regular graphs shown in the figure, which
have n=6 vertices and are of degree D=3 (a) and D=5 (b). The energy error (the difference between the energy estimate
obtained by the algorithm and the exact ground state energy of H¢) is shown as a function of the number of layers in the
ansatz. Results are shown for 20 different instances of edge weights, which are randomly sampled from the uniform distribution
U(0,1). The shaded regions indicate 95% confidence intervals.

Nelder-Mead for optimization
= downhill simplex method
= amoeba method

o = 0.01 = polytope method
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FIG. 6. Probability of operators picked by the original QAOA, ADAPT-QAOA with the single-qubit mixer and ADAPT-QAOA
with multi-qubit pool for the Max-Cut problem on regular graphs with n=6 vertices with degree D=3 (a)(b) and D=5 (c)(d)
with random edge weights sampled from a uniform distribution U(0, 1). The blue bars show the probability of each particular
operator used for ansatz, and green bars show the probability of the original mixer, sum over all single-qubit gates and sum
over all entangling gates used in ansatz. The results from 20 instances of random edge weights.
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e ADAPT-QAOA provides a
systematic way to both improve
performance and reduce the
number of parameters and CNOTs.

FIG. 2. Resource comparison of the standard QAOA,
ADAPT-QAOA with the single-qubit mixer pool, and
ADAPT-QAOA with the multi-qubit mixer pool for the Max-
Cut problem on regular graphs with n=6 vertices and random
edge weights. Panels (a) and (b) show the comparison for
graphs of degree D=3 and D=5, respectively. For all cases
except the standard QAOA applied to D = 5 graphs, we
count the number of parameters and CNOT's needed to reach
an energy error of 6 = 1072, As standard QAOA for D =5
graphs never reaches this error threshold, we instead count the
CNOT gates and parameters at the end of the simulation (15
layers). The dark (light) red bars show variational parameter
(CNOT gate) counts. The error bars show variances obtained
by sampling over 20 different instances of edge weights.



Why ADAPT-QAQOA performs better?

» Considering that the standard QAOA ansatz has a structure
dictated by the adiabatic theorem, a possible explanation is related
to Shortcuts to adiabaticity (STA).

« STA (counter-diabatic or transition less driving) was introduced by
Demirplak and Rice [21] and later, independently, by Berry [22, 23].

* |f we want to drive a system such that it remains in the
iInstantaneous ground state at all times, then by adding a certain
term H_, to the Hamiltonian, we can achieve this without paying the
price of a slow evolution.

 Although the instantaneous eigenstates of the original Hamiltonian
only solve the time-dependent Schrodinger equation in the
adiabatic limit, they become exact solutions when the Hamiltonian
IS updated to include H .

* The advantage of STA is that the evolution can be achieved non-
adiabatically.



Shortcuts to Adiabaticity
(transitionless driving protocols)

i0;|y) = HO®) |w) > i0, 1) = (H - 04,) | )
W) — @)y =U'|y) Hcp = 04,
H — H=UHU A, =iU0,U
io, — id,—0A, Ay=UA,U"

« Suppose that we consider a unitary transformation U(6(r)) to move the Hamiltonian
H(O(1)) from the initial basis to its instantaneous eigenbasis, where
H®) = U'(0) H®) U(9) is diagonal at all times.

« The Schrodinger equation in the instantaneous eigenbasis isio, |y) = (H - A,) | ), where
A,=iU"A,U is the adiabatic gauge potential in the rotated frame. It is evident that the
term —60A, drives transitions between the energy levels of the original Hamiltonian H.
Therefore, one can add the counterdiabatic term H,, = 04,10 H©®), with A, = UA,U", to

eliminate such transitions in the rotated frame. This is the core of transitionless driving
protocols.

« Ref. [40] proposes an approximate gauge potential:

p

AW :izak[HaaeH]Qk—l XY i1 = [X[X Y]
k=1



Adaptive Derivative Assembled Problem
Tailored QAOA (ADAPT-QAOA)

QAOA Adaptive QAOA

Mixers Pool

Figure taken from 2103.17047



Questions?

» Paper contains an interesting discussion on
how to exploit non-adiabatic path.

* Paper contains evidence that ADAPT-QAQA is
related to STA but not rigorous proof.

* Paper uses mixers with two Pauli matrices.
What about 4, 6 or more?

* Non-Abelian shortcuts to adiabaticity on
guantum simulation.

* There is an example code implemented In
TensorFlowQuantum.



Quantum Neural Networks
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* Training variational quantum algorithms is NP-hard
» https://arxiv.org/pdf/2101.07267.pdf



https://arxiv.org/pdf/2101.07267.pdf

Quantum circuit

An overview of current
gquantum machine
learning algorithm.

Representation of a
variational quantum circuit
optimization scheme.
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Objective
function
Quantum Routines QML Applications
QSVM [4,74]
HHL algorithm Q linear regression [8]

Q least squares [75]
QPCA [14]

Q k-Means [10]
Q K-Median [13]
Grover’s algorithm QKNN [6]
Q Perceptron Models [76]
Q Neural Networks [3]

Quantum phase estimation Q k-Means [10]

Q decision tree [9]
Circuit-centric quantum
Variational quantum circuit classifiers [77]
Deep reinforcement
learning [78]




Feedback-based ALgorithm Quantum
Optimization (FALQON)

« 2103.08619, https://pennylane.ai/gml/demos/tutorial_falgon.html
« Consider a quantum system whose dynamics is governed by

i 1(t)) = (Hp+HaB(t)) (1))
* Goalis to minimize: (H,) = (¥ (t)|Hp|w(t))

H, : drift Hamiltonian p(t) . time — dependent control function

H, : control Hamiltonian
« One can minimize (H,) by designing f(¢) such that

d

SAWH (D) (1) <0, V=0

d
—(w(0)| H, lw(0) = (o) | (H, + HyfO)H, () = i (o) | H(H, + Hab() Ly ()

=(w®) | i[H; H,)] |y(@®) @) = A@) @)


https://pennylane.ai/qml/demos/tutorial_falqon.html

Feedback-based ALgorithm Quantum
Optimization (FALQON)

d
EWU) |H, |w(D)) = (w(@®) | i [Hy Hy) |w(D) p(t) = A@) p(2)

* We can choose any j(z).

« Consider p(r) = —wflt, A(r)) for w > 0, where f(z, A(z)) is any
continuous function with £(z,0) = 0 and A(?)f(¢, A(z)) > 0 for all A®®) # 0.
 Take w =1 and f(z, A(¥)) = A(r) such that (1) = — A(r) for simplicity.
- Consider alternating (rather than concurrent) applications of H, and
H, leading to a time evolution:
U= Ud(ﬁf) Up Ud(ﬁl) Up

Up — e—inAl‘ k = 1,2, ...,f ﬁk =ﬁ(k’l'— At)

U,(B,) = e it T = 2At = B((k — 1)Ar)

* For small At, this unitary evolution yields Trotterized approximation
to the continuous time evolution of the system.



Feedback-based ALgorithm Quantum
Optimization (FALQON)

During the time evolution when H), is applied, %(H]) =0, but eigenstate
of H, accumulates phase changes. (H, is time-independent.)

For the time evolution when H, is applied, we recover %(Hl) = AP

Set f, = — A, where A, = (y | i[H, H,] |y)
In this setting, it is always possible to choose Ar small enough such
that %(w(t) |H,|w(n) <0.If Aris chosen to be too large, the inequality

will be violated.

FALQON is a constructive, optimization free procedure for assigning
values to each g, according to a feedback law.

By design, the quality of the solution to the combinatorial optimization
problem improves monotonically with respect to depth of the circuit, k.



Feedback-based ALgorithm Quantum

Optimization (FALQON)
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Figure 1. (a) The procedure for implementing FALQON. The initial step is to seed the procedure by setting 1 = 0. The
qubits are then initialized in the state |1)p), and a single FALQON layer is implemented to prepare |¢1) = Uq(B1)Up|t0). The
qubits are then measured to estimate A;, whose result is fed back to set 2 = — A1, up to sampling error. For subsequent steps
k=2,--- /¢, the same procedure is repeated, as shown in (b): the qubits are initialized as |1)0), after which k layers are applied
to obtain |¢g) = Ua(Br)Up - - - Ua(B1)Up|1b0), and then the qubits are measured to estimate Ay, and the result is fed back to set
the value of Bi+1. This procedure causes (Hp) to decrease layer-by-layer as per (i1 |Hp|t1) > (2| Hp|th2) > -+ > (| Hp|te),
as shown in (c), such that the quality of the solution to the combinatorial optimization problem monotonically improves with
circuit depth. The protocol can be terminated when the value of (Hy) converges or a threshold number of layers /¢ is reached.
Then, after the final step, Z basis measurements on |¢;) can be used to determine a best candidate solution to the combinatorial
optimization problem of interest, by repeatedly sampling from the probability distribution over bit strings induced by [i,) and

selecting the outcome associated with the best solution.




FALQON vs QAOA

Circuits used in QAOA has the same alternative structure as those in
FALQON with additional parameters y = (y,, ---,7,) that enter into U, such that

Uoson = UsdBUre) U PUL 1))

Solution to the original combinatorial optimization is found by minimizing
(w7, ) |Hp|w(7,ﬁ)> over 27 parameters, using classical optimization.
(@, p)) = Upaoa | W)

FALQON minimizes (H,) over a sequence of quantum circuit layers, guided
by qubit measurement-based feed back without classical optimization.

FALQON for MaxCut problem

: 1 \
MaxCut: H,=- 3 —(1-2zz)and H,= ) X
(i.))EE J=1
i[H.H)= ) YZ+ZzY, whereX,Y, and Z are Pauli’'s matrices.
(i,j))€EE



FALQON for MaxCut problem

Approximation ration:
FA = <Hp>/<Hp>min

The largest known approximation
ratio r, = 0.932 by algorithm of
Goemans and Williamson.

approximation ratio (dashed curves)
and the success probability of
measuring the degenerate ground
state (solid curves)

Pictorial representation of
MaxCut on a 3-regular graph
with 8 vertices.
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FALQON for MaxCut problem
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The mean number of layers needed to achieve
the reference values of r, = 0.932(dashed curve)
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ra = (Hp)/(Hp)min = approximation ratio
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The only free parameter is time step At,
which is tuned to be as large as possible.

Pictorial
representation of
MaxCut on a 3-
regular graph
with 8 vertices.




Combinatorial problems at the LHC

e Assuming 2 — 2 production
with subsequent decays,
identification of an event-
topology becomes a binary
classification, with 2"

) ! _ possibilities.
PP — (v} PP — (v} U {v) PP AUB « Combinatorial problem: What
would be an efficient way of
FIG. 1. (a) n-observed particles (b) Dividing n particles into assigning all observed
two groups for 2 — 2 process (c) Identified event-topology particles in two decay chains?
with A and B.
p; 1s the momentum of constituent of A if x; =1 Py = sz' T

p; 18 the momentum of constituent of B if x; =0 P, = Z pi (1 —x;)
Minimize the mass difference: H = (P12 — 1'322)2 for all possible combinations of x;

Hqueo = »  Jijsis; + > hisi | x=—21 7 2_ PP
i 2 hi ZQZ[Z(PikPje—PMPij)],

Jj k£

¥




Combinatorial problems in the top quark production

e b-£ ambiguity
(Semi-leptonic and dilepton)

Ht, mbl
pt, mbl

MT2, mbl
MT2, mbl, MAOS, hybrid
M2, mbl, hybrid
NN

b 6 b
q /é+ :: v <O g q /€+
q o:s‘ O ‘,",‘.“
\.“‘_‘5 : '.o‘. A o..‘.
a / ve O W qa / ve
DOOODO0 5
b ) S b
“‘ % GO0 0> t !
q “‘ b“c‘
-/ q & % W- -/ q
v/ q v/ q

CDF
1009.2751, Rajaraman, Yu

1109.1563, Baringer, Kong, McCaskey, Noonan
1109.2201, Kim, Guadagnoli, Park

1706.04995, Debnath, Kim, Kim, Kong, Matchev
2202.05849, Alhazmi, Dong, Huang, Kim, Kong, Shih

 Fully hadronic channel:
2% = 64 possibilities for 6
particles in the final state.
But in reality, 10-20 jets
appear in the final state,
leading to 2!0-2%0
possibilities.



Combinatorial problems at the LHC

HQUBO — HQUBO + )‘(Plz + P22)
— HQUBO + )\ZP’LJ[SZS] + (1 — SZ)(l — SJ)]

i

= J!.s.5: + h! s

T 17°1°) 7 21
i i

pp — t7£_> {j17j27j37j47j57j6}7
pp — H7 Z — {j17j27j37j47j57j6}7
pp — 57 0" — tat_vtat_% {j17j27j37 T 7j117j12}'

for m, # my

2111.078006, Kim, Ko, Park, Park

Process pp — tt|\pp — HZ|pp — 00"
Eq. (7a)| Eq. (7b) | Eq. (7c)
Hemishere| 33.6% | 86.2% 7.2%

Compared to the processing time of O(2*n) with the simplest but a robust brute-force
scanning algorithm with a classical computer, a quantum annealer can have an
enormous advantage in the computation complexity as

TQUBQ (TL) ~ O(n2) < O(Qn)
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Matching efficiency
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Data re-uploading for a universal quantum classifier
1907.02085

ooy —> ?7) oo 00

10)—

(a) Neural network (b) Quantum classifier

« Universal approximation theorem

. We can approximate a function F(¥) with £(%, 8), where ¥ is an input feature and @ is
a learnable parameter.

. The cost function (ex. MSE) to be minimized is Z |FGE) - fG,0) )
i=1



Single qubit classifier using data re-uploading

« Consider the three dimensional data, x. (can be generalized.) 1907.02085
« Date can be re-uploaded using unitary transformation U(x) rotating the qubit.

« The single-qubit classifier has the following structure: -

V) = U(9,7)|0)

- —

U(P,Z) = L(N)...L(1) L(i) = U(¢:)U(Z) d = (1, Py, P3)
UG, T) = U(dN)U (D) ... U(@1)UE)  Uldy. dy d3) € SUR)
L(1) L(N)
I__:_____)_—I I__:_____)__I L(Z’):U(Q_;'—I—wiof)
0) HU (%) ——U(¢1) = HU @) ——U(pn) —1-A
| — — _ _ —— = | | — — _ T —— |

Hadamard product of W, and Xx:

- 1.1 ,,,2..2 .33
= — = — 4 = = = —
0) | U(qbl,f) - | U(¢N,f) | A L(z'):U(ék>+w§k>of<k>)---U(§§1>+w§”of<1>>
| |

(b) Compressed scheme



Single qubit classifier: measurements

« The quantum circuit characterized by a series of@o&e&ﬁ@d’g #nole {6;} and weights
{w;} delivers a final state |y).

* The critical point in the quantum measurement is to find an optimal way to
associate outputs from the observations to target classes.

* This is easily established for a dichotomic classification, where one of two classes
A and B have to be assigned to the final measurement of the single qubit.

* |n such a case it is possible to measure the output probabilities p(0) for [0) and P(1)
for|1). A given pattern could be classified into the A class if P(0) > P(1) and into B
otherwise.

* We may refine this criterium by introducing a bias. That is, the pattern is classified
as Aif P(0) > 1, and as B otherwise. The A is chosen to optimize the success of
classification on a training set.

* The assignment of classes to the output reading of a single qubit becomes an
iInvolved issue when many classes are present.

* For example, one possible strategy consists on comparing the probability P(0) to
four sectors with three thresholds: 0 < 1, < 1, < 4, < 1. Then, the value of P(0) will
fall into one of them, and classification is issued.

1907.02085



Single qubit classifier: cost function

* Afidelity cost function:

» We want to force the quantum state (data state) |y (@, w,x)) to be as near as
possible to one particular state (label state) on the Bloch sphere.

* The angular distance between the label state and the data state can be
measured with the relative fidelity between the two states.

« Goal is to maximize the average fidelity
M
BRCATIEDY <1 - | w1y @, Tv’,;‘c’ﬂ)f) where |i,) is the correct label state of the i data

u=1
point. (M = total number of training data)
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Single qubit classifier: example
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Single qubit classifier: example
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X

Qubits 1 2

Layers No Ent. Ent.
1 0.73 0.56 -
2 0.79 0.77 0.78
3 0.79 0.76 0.75
4 0.84 0.80 0.80
5 0.87 0.84 0.81
6 0.90 0.88 0.86
8 0.89 0.85 0.89
10 0.91 0.86 0.90
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gle qubit classifier: example

(e)

5 layers
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(f)

6 layers

—1.01

(c)
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8 layers

—-1.01
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—1.01

X

Qubits 1 2

Layers No Ent. Ent.
1 0.34 0.51 -
2 0.57 0.63 0.59
3 0.80 0.68 0.65
4 0.84 0.78 0.89
5 0.92 0.86 0.82
6 0.93 0.91 0.93
8 0.90 0.89 0.90
10 0.90 0.91 0.92




Single qubit classifier: example

Classical classifiers

Quantum classifier

Problem NN e X% X%u )
Circle 0.96 0.97 0.96 0.97

3 circles 0.88 0.66 0.91 0.91
Hypersphere 0.98 0.95 0.91 0.98
Annulus 0.96 0.77 0.93 0.97
Non-Convex 0.99 0.77 0.96 0.98
Binary annulus | 0.94 0.79 0.95 0.97
Sphere 0.97 0.95 0.93 0.96
Squares 0.98 0.96 0.99 0.95
Wavy Lines 0.95 0.82 0.93 0.94

1907.02085

Comparison between single-qubit quantum classifier and two well-known classical classification
techniques: a neural network (NN) with a single hidden layer composed of 100 neurons and a support
vector classifier (SVC), both with the default parameters as defined in scikit-learn python package. We
analyze nine problems: the first four are presented in Section 6 and the remaining five in Appendix B.
Results of the single-qubit quantum classifier are obtained with the fidelity and weighted fidelity cost

functions, ¥2f and 2wf defined in Eq. (7) and Eq. (9) respectively. This table shows the best success
rate, being 1 the perfect classification, obtained after running ten times the NN and SVC algorithms

and the best results obtained with single-qubit classifiers up to 10 layers.



Self-Supervised Quantum Metric Learning
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Supervised learning
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Equivariant Quantum Neural Networks

* Given some function f(x), and a symmetry transformation on the
input w(x) , equivariance means the following relation

f(x(2)) = ¥ f ()
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