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– Quantum optimization and adiabatic theorem  
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Approximate Optimization 
Algorithm (ADAPT-QAOA)
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II. ADAPT-QAOA

A. Framework

In QAOA [4, 5], the variational ansatz consists of p
layers, each containing the cost Hamiltonian HC and a
mixer, HM :

��� p(~�, ~�)
E
=

 
pY

k=1

⇥
e�iHM�ke�iHC�k

⇤
!
| refi , (1)

where | refi = |+i⌦n, n is the number of qubits, and

~� and ~� are sets of variational parameters. If these pa-

rameters are chosen such that
D
 p(~�, ~�)

���HC

��� p(~�, ~�)
E

is minimized, then the resulting energy and state provide
an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the standard QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the stan-
dard QAOA ansatz for specific problems and hardware
architectures [25–27]. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.

In this work, we replace the single, fixed mixer HM

by a set of mixers Ak that change from one layer to the
next:

��� p(~�, ~�)
E
=

 
pY

k=1

⇥
e�iAk�ke�iHC�k

⇤
!
| refi . (2)

We build up this ansatz iteratively, one layer at a time,
in a way that is determined by HC . This iterative pro-
cess is inspired by the variational quantum eigensolver
algorithm, ADAPT-VQE [28, 29]. It can be summa-
rized by three basic steps: First, define the operator set
{Aj} (called the “mixer pool”, and where Aj = A†

j
)

and select a suitable reference state to be the initial
state:

�� (0)
↵
= | refi. Here, we choose | refi = |+i⌦n

as in the standard QAOA. We will return shortly to
the question of how to choose the pool. Second, pre-
pare the current ansatz

�� (k�1)
↵
on the quantum pro-

cessor and measure the energy gradient with respect
to the pool, the jth component of which is given by
�i
⌦
 (k�1)

�� eiHC�k [HC , Aj ]e�iHC�k
�� (k�1)

↵
, where the

new variational parameter �k is set to a predefined value
�0. For the measurement, we can decompose the commu-
tator into linear combinations of Pauli strings and mea-
sure the expectation values of the strings using general
variational quantum algorithm methods [30]. If the norm
of the gradient is below a predefined threshold, then the
algorithm stops, and the current state and energy esti-
mate approximate the desired solution. If the gradient
threshold is not met, modify the ansatz by adding the

operator, A(k)

max, associated with the largest component

of the gradient:
�� (k)

↵
= e�iA

(k)
max�ke�iHC�k

�� (k�1)
↵
,

where �k is a new variational parameter. Third, op-
timize all parameters currently in the ansatz, �m, �m,
m = 1, ..., k, such that

⌦
 (k)

��HC

�� (k)
↵
is minimized,

and return to the second step. This algorithm, which we
call ADAPT-QAOA, lies somewhere between standard
QAOA and ADAPT-VQE in the sense that it possesses
the alternating-operator structure of QAOA but enjoys
additional flexibility by allowing the mixers to vary over
the course of the iterative construction.

B. Operator Pool

The first step in running this algorithm is to de-
fine the mixer pool. Define Q to be the set of
qubits. The pool corresponding to the standard QAOA

contains only one operator, PQAOA =
nP

i2Q
Xi

o
.

Here, we introduce two qualitatively di↵erent pools:
one consisting entirely of single-qubit mixers, and one
with both single-qubit and multi-qubit entangling gates:

Psingle = [i2Q {Xi, Yi} [
nP

i2Q
Yi

o
[ PQAOA, Pmulti =

[i,j2Q⇥Q {BiCj |Bi, Cj 2 {X,Y, Z}} [ Psingle. Because
PQAOA ⇢ Psingle ⇢ Pmulti, we expect that Pmulti will pro-
vide the best performance. The QAOA, single-qubit, and
multi-qubit pools have O(1), O(n), and O(n2) elements,
respectively.

Max-Cut is a classic (NP-hard) quadratic uncon-
strained binary optimization problem, and it can be used
to solve other optimization problems. Thus, it is a use-
ful benchmarking problem for QAOA and has been used
as such in prior works [5, 7, 11]. It is defined as fol-
lows: Given a graph G = (V,E), with weight wi,j for
edge (i, j), find a cut S ✓ V such that S [ S̄ = V , andP

i✏S,j✏S̄,i,j✏E
wi,j is maximized. This problem can be

encoded in the Ising Hamiltonian

HC = �1

2

X

i,j

wi,j(I � ZiZj), (3)

where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) rep-
resents a possible cut. HC counts the sum of the weights
of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC

has a Z2 symmetry generated by F = ⌦iXi. Only the Aj

that commute with F have a nonzero gradient (see Ap-
pendix A), so we retain only these Pauli strings (which
have an even number of Y or Z operators) in our mixer
pool.

C. Performance and Resource Comparison

We use the Max-Cut problem on regular graphs with
n=6 vertices and degrees D=3 and D=5 to bench-
mark the performance of ADAPT-QAOA. For each type

2

II. ADAPT-QAOA

A. Framework

In QAOA [4, 5], the variational ansatz consists of p
layers, each containing the cost Hamiltonian HC and a
mixer, HM :

��� p(~�, ~�)
E
=

 
pY

k=1

⇥
e�iHM�ke�iHC�k

⇤
!
| refi , (1)

where | refi = |+i⌦n, n is the number of qubits, and

~� and ~� are sets of variational parameters. If these pa-

rameters are chosen such that
D
 p(~�, ~�)

���HC

��� p(~�, ~�)
E

is minimized, then the resulting energy and state provide
an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the standard QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the stan-
dard QAOA ansatz for specific problems and hardware
architectures [25–27]. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.

In this work, we replace the single, fixed mixer HM

by a set of mixers Ak that change from one layer to the
next:

��� p(~�, ~�)
E
=

 
pY

k=1

⇥
e�iAk�ke�iHC�k

⇤
!
| refi . (2)

We build up this ansatz iteratively, one layer at a time,
in a way that is determined by HC . This iterative pro-
cess is inspired by the variational quantum eigensolver
algorithm, ADAPT-VQE [28, 29]. It can be summa-
rized by three basic steps: First, define the operator set
{Aj} (called the “mixer pool”, and where Aj = A†

j
)

and select a suitable reference state to be the initial
state:

�� (0)
↵
= | refi. Here, we choose | refi = |+i⌦n

as in the standard QAOA. We will return shortly to
the question of how to choose the pool. Second, pre-
pare the current ansatz

�� (k�1)
↵
on the quantum pro-

cessor and measure the energy gradient with respect
to the pool, the jth component of which is given by
�i
⌦
 (k�1)

�� eiHC�k [HC , Aj ]e�iHC�k
�� (k�1)

↵
, where the

new variational parameter �k is set to a predefined value
�0. For the measurement, we can decompose the commu-
tator into linear combinations of Pauli strings and mea-
sure the expectation values of the strings using general
variational quantum algorithm methods [30]. If the norm
of the gradient is below a predefined threshold, then the
algorithm stops, and the current state and energy esti-
mate approximate the desired solution. If the gradient
threshold is not met, modify the ansatz by adding the

operator, A(k)

max, associated with the largest component

of the gradient:
�� (k)

↵
= e�iA

(k)
max�ke�iHC�k

�� (k�1)
↵
,

where �k is a new variational parameter. Third, op-
timize all parameters currently in the ansatz, �m, �m,
m = 1, ..., k, such that

⌦
 (k)

��HC

�� (k)
↵
is minimized,

and return to the second step. This algorithm, which we
call ADAPT-QAOA, lies somewhere between standard
QAOA and ADAPT-VQE in the sense that it possesses
the alternating-operator structure of QAOA but enjoys
additional flexibility by allowing the mixers to vary over
the course of the iterative construction.

B. Operator Pool

The first step in running this algorithm is to de-
fine the mixer pool. Define Q to be the set of
qubits. The pool corresponding to the standard QAOA

contains only one operator, PQAOA =
nP

i2Q
Xi

o
.

Here, we introduce two qualitatively di↵erent pools:
one consisting entirely of single-qubit mixers, and one
with both single-qubit and multi-qubit entangling gates:

Psingle = [i2Q {Xi, Yi} [
nP

i2Q
Yi

o
[ PQAOA, Pmulti =

[i,j2Q⇥Q {BiCj |Bi, Cj 2 {X,Y, Z}} [ Psingle. Because
PQAOA ⇢ Psingle ⇢ Pmulti, we expect that Pmulti will pro-
vide the best performance. The QAOA, single-qubit, and
multi-qubit pools have O(1), O(n), and O(n2) elements,
respectively.

Max-Cut is a classic (NP-hard) quadratic uncon-
strained binary optimization problem, and it can be used
to solve other optimization problems. Thus, it is a use-
ful benchmarking problem for QAOA and has been used
as such in prior works [5, 7, 11]. It is defined as fol-
lows: Given a graph G = (V,E), with weight wi,j for
edge (i, j), find a cut S ✓ V such that S [ S̄ = V , andP

i✏S,j✏S̄,i,j✏E
wi,j is maximized. This problem can be

encoded in the Ising Hamiltonian

HC = �1

2

X

i,j

wi,j(I � ZiZj), (3)

where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) rep-
resents a possible cut. HC counts the sum of the weights
of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC

has a Z2 symmetry generated by F = ⌦iXi. Only the Aj

that commute with F have a nonzero gradient (see Ap-
pendix A), so we retain only these Pauli strings (which
have an even number of Y or Z operators) in our mixer
pool.

C. Performance and Resource Comparison

We use the Max-Cut problem on regular graphs with
n=6 vertices and degrees D=3 and D=5 to bench-
mark the performance of ADAPT-QAOA. For each type

2

II. ADAPT-QAOA

A. Framework

In QAOA [4, 5], the variational ansatz consists of p
layers, each containing the cost Hamiltonian HC and a
mixer, HM :

��� p(~�, ~�)
E
=

 
pY

k=1

⇥
e�iHM�ke�iHC�k

⇤
!
| refi , (1)

where | refi = |+i⌦n, n is the number of qubits, and

~� and ~� are sets of variational parameters. If these pa-

rameters are chosen such that
D
 p(~�, ~�)

���HC

��� p(~�, ~�)
E

is minimized, then the resulting energy and state provide
an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the standard QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the stan-
dard QAOA ansatz for specific problems and hardware
architectures [25–27]. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.

In this work, we replace the single, fixed mixer HM

by a set of mixers Ak that change from one layer to the
next:

��� p(~�, ~�)
E
=

 
pY

k=1

⇥
e�iAk�ke�iHC�k

⇤
!
| refi . (2)

We build up this ansatz iteratively, one layer at a time,
in a way that is determined by HC . This iterative pro-
cess is inspired by the variational quantum eigensolver
algorithm, ADAPT-VQE [28, 29]. It can be summa-
rized by three basic steps: First, define the operator set
{Aj} (called the “mixer pool”, and where Aj = A†

j
)

and select a suitable reference state to be the initial
state:

�� (0)
↵
= | refi. Here, we choose | refi = |+i⌦n

as in the standard QAOA. We will return shortly to
the question of how to choose the pool. Second, pre-
pare the current ansatz

�� (k�1)
↵
on the quantum pro-

cessor and measure the energy gradient with respect
to the pool, the jth component of which is given by
�i
⌦
 (k�1)

�� eiHC�k [HC , Aj ]e�iHC�k
�� (k�1)

↵
, where the

new variational parameter �k is set to a predefined value
�0. For the measurement, we can decompose the commu-
tator into linear combinations of Pauli strings and mea-
sure the expectation values of the strings using general
variational quantum algorithm methods [30]. If the norm
of the gradient is below a predefined threshold, then the
algorithm stops, and the current state and energy esti-
mate approximate the desired solution. If the gradient
threshold is not met, modify the ansatz by adding the

operator, A(k)

max, associated with the largest component

of the gradient:
�� (k)

↵
= e�iA

(k)
max�ke�iHC�k

�� (k�1)
↵
,

where �k is a new variational parameter. Third, op-
timize all parameters currently in the ansatz, �m, �m,
m = 1, ..., k, such that

⌦
 (k)

��HC

�� (k)
↵
is minimized,

and return to the second step. This algorithm, which we
call ADAPT-QAOA, lies somewhere between standard
QAOA and ADAPT-VQE in the sense that it possesses
the alternating-operator structure of QAOA but enjoys
additional flexibility by allowing the mixers to vary over
the course of the iterative construction.

B. Operator Pool

The first step in running this algorithm is to de-
fine the mixer pool. Define Q to be the set of
qubits. The pool corresponding to the standard QAOA

contains only one operator, PQAOA =
nP

i2Q
Xi

o
.

Here, we introduce two qualitatively di↵erent pools:
one consisting entirely of single-qubit mixers, and one
with both single-qubit and multi-qubit entangling gates:

Psingle = [i2Q {Xi, Yi} [
nP

i2Q
Yi

o
[ PQAOA, Pmulti =

[i,j2Q⇥Q {BiCj |Bi, Cj 2 {X,Y, Z}} [ Psingle. Because
PQAOA ⇢ Psingle ⇢ Pmulti, we expect that Pmulti will pro-
vide the best performance. The QAOA, single-qubit, and
multi-qubit pools have O(1), O(n), and O(n2) elements,
respectively.

Max-Cut is a classic (NP-hard) quadratic uncon-
strained binary optimization problem, and it can be used
to solve other optimization problems. Thus, it is a use-
ful benchmarking problem for QAOA and has been used
as such in prior works [5, 7, 11]. It is defined as fol-
lows: Given a graph G = (V,E), with weight wi,j for
edge (i, j), find a cut S ✓ V such that S [ S̄ = V , andP

i✏S,j✏S̄,i,j✏E
wi,j is maximized. This problem can be

encoded in the Ising Hamiltonian

HC = �1

2

X

i,j

wi,j(I � ZiZj), (3)

where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) rep-
resents a possible cut. HC counts the sum of the weights
of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC

has a Z2 symmetry generated by F = ⌦iXi. Only the Aj

that commute with F have a nonzero gradient (see Ap-
pendix A), so we retain only these Pauli strings (which
have an even number of Y or Z operators) in our mixer
pool.

C. Performance and Resource Comparison

We use the Max-Cut problem on regular graphs with
n=6 vertices and degrees D=3 and D=5 to bench-
mark the performance of ADAPT-QAOA. For each type

n=number of qubits

mixer pool = set of Aj : {Aj}

2

II. ADAPT-QAOA

A. Framework

In QAOA [4, 5], the variational ansatz consists of p
layers, each containing the cost Hamiltonian HC and a
mixer, HM :

��� p(~�, ~�)
E
=

 
pY

k=1

⇥
e�iHM�ke�iHC�k

⇤
!
| refi , (1)

where | refi = |+i⌦n, n is the number of qubits, and

~� and ~� are sets of variational parameters. If these pa-

rameters are chosen such that
D
 p(~�, ~�)

���HC

��� p(~�, ~�)
E

is minimized, then the resulting energy and state provide
an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the standard QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the stan-
dard QAOA ansatz for specific problems and hardware
architectures [25–27]. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.

In this work, we replace the single, fixed mixer HM

by a set of mixers Ak that change from one layer to the
next:

��� p(~�, ~�)
E
=

 
pY

k=1

⇥
e�iAk�ke�iHC�k

⇤
!
| refi . (2)

We build up this ansatz iteratively, one layer at a time,
in a way that is determined by HC . This iterative pro-
cess is inspired by the variational quantum eigensolver
algorithm, ADAPT-VQE [28, 29]. It can be summa-
rized by three basic steps: First, define the operator set
{Aj} (called the “mixer pool”, and where Aj = A†

j
)

and select a suitable reference state to be the initial
state:

�� (0)
↵
= | refi. Here, we choose | refi = |+i⌦n

as in the standard QAOA. We will return shortly to
the question of how to choose the pool. Second, pre-
pare the current ansatz

�� (k�1)
↵
on the quantum pro-

cessor and measure the energy gradient with respect
to the pool, the jth component of which is given by
�i
⌦
 (k�1)

�� eiHC�k [HC , Aj ]e�iHC�k
�� (k�1)

↵
, where the

new variational parameter �k is set to a predefined value
�0. For the measurement, we can decompose the commu-
tator into linear combinations of Pauli strings and mea-
sure the expectation values of the strings using general
variational quantum algorithm methods [30]. If the norm
of the gradient is below a predefined threshold, then the
algorithm stops, and the current state and energy esti-
mate approximate the desired solution. If the gradient
threshold is not met, modify the ansatz by adding the

operator, A(k)

max, associated with the largest component

of the gradient:
�� (k)

↵
= e�iA

(k)
max�ke�iHC�k

�� (k�1)
↵
,

where �k is a new variational parameter. Third, op-
timize all parameters currently in the ansatz, �m, �m,
m = 1, ..., k, such that

⌦
 (k)

��HC

�� (k)
↵
is minimized,

and return to the second step. This algorithm, which we
call ADAPT-QAOA, lies somewhere between standard
QAOA and ADAPT-VQE in the sense that it possesses
the alternating-operator structure of QAOA but enjoys
additional flexibility by allowing the mixers to vary over
the course of the iterative construction.

B. Operator Pool

The first step in running this algorithm is to de-
fine the mixer pool. Define Q to be the set of
qubits. The pool corresponding to the standard QAOA

contains only one operator, PQAOA =
nP

i2Q
Xi

o
.

Here, we introduce two qualitatively di↵erent pools:
one consisting entirely of single-qubit mixers, and one
with both single-qubit and multi-qubit entangling gates:

Psingle = [i2Q {Xi, Yi} [
nP

i2Q
Yi

o
[ PQAOA, Pmulti =

[i,j2Q⇥Q {BiCj |Bi, Cj 2 {X,Y, Z}} [ Psingle. Because
PQAOA ⇢ Psingle ⇢ Pmulti, we expect that Pmulti will pro-
vide the best performance. The QAOA, single-qubit, and
multi-qubit pools have O(1), O(n), and O(n2) elements,
respectively.

Max-Cut is a classic (NP-hard) quadratic uncon-
strained binary optimization problem, and it can be used
to solve other optimization problems. Thus, it is a use-
ful benchmarking problem for QAOA and has been used
as such in prior works [5, 7, 11]. It is defined as fol-
lows: Given a graph G = (V,E), with weight wi,j for
edge (i, j), find a cut S ✓ V such that S [ S̄ = V , andP

i✏S,j✏S̄,i,j✏E
wi,j is maximized. This problem can be

encoded in the Ising Hamiltonian

HC = �1

2

X

i,j

wi,j(I � ZiZj), (3)

where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) rep-
resents a possible cut. HC counts the sum of the weights
of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC

has a Z2 symmetry generated by F = ⌦iXi. Only the Aj

that commute with F have a nonzero gradient (see Ap-
pendix A), so we retain only these Pauli strings (which
have an even number of Y or Z operators) in our mixer
pool.

C. Performance and Resource Comparison

We use the Max-Cut problem on regular graphs with
n=6 vertices and degrees D=3 and D=5 to bench-
mark the performance of ADAPT-QAOA. For each type

2

and a mixer, HM :

��� p(~�, ~�)
E
=

 
pY

k=1

⇥
e�iHM�ke�iHC�k

⇤
!
| refi , (1)

where | refi = |+i⌦n, n is the number of qubits, and

~� and ~� are sets of variational parameters. If these pa-

rameters are chosen such that
D
 p(~�, ~�)

���HC

��� p(~�, ~�)
E

is minimized, then the resulting energy and state provide
an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the original QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the original
QAOA ansatz [21–23]. Farhi et al. [21] allowed the mixer
to rotate each qubit by a di↵erent angle about the x axis
and modified the cost Hamiltonian layer so that it is more
compatible with the hardware architecture they consid-
ered. Hadfield et al. [22] considered more general mixers
defined such that they preserve the relevant subspace for
the given combinatorial problem. Ref. [23] focused on
graph coloring optimization problems using more than
one qubit per node and demonstrated that intra-node en-
tangling mixers that preserve symmetries outperform the
standard X mixer. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.

In this work, we replace the single, fixed mixer HM
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We build up this ansatz iteratively, one layer at a time, in
a way that is determined by HC . This iterative process
is inspired by the variational quantum eigensolver algo-
rithm, ADAPT-VQE, which was developed for molecular
Hamiltonians [24, 25]. It can be summarized by three ba-
sic steps: First, define the operator set {Aj} (called the

“pool”, and where Aj = A†
j
) and select a suitable refer-

ence state to be the initial state:
�� (0)

↵
= | refi. Here,

we choose | refi = |+i⌦n as in the original QAOA. We
will return shortly to the question of how to choose the
pool. Second, prepare the current ansatz

�� (k�1)
↵
on

the quantum processor and measure the energy gradient
with respect to the pool, the jth component of which
is given by �i

⌦
 (k�1)

�� eiHC�k [HC , Aj ]e�iHC�k
�� (k�1)

↵
,

where the new variational parameter �k is set to a pre-
defined value �0. If the norm of the gradient is be-
low a predefined threshold, then the algorithm stops,
and the current state and energy estimate approximate
the desired solution. If the gradient threshold is not

met, modify the ansatz by adding the operator, A(k)

max,
associated with the largest component of the gradient:

�� (k)
↵
= e�iA

(k)
max�ke�iHC�k

�� (k�1)
↵
, where �k is a new

variational parameter. Third, optimize all parameters
currently in the ansatz, �m, �m, m = 1, ..., k, such that⌦
 (k)

��HC

�� (k)
↵
is minimized, and return to the second

step. This algorithm, which we call ADAPT-QAOA, lies
somewhere between standard QAOA and ADAPT-VQE
in the sense that it possesses the alternating-operator
structure of QAOA but enjoys additional flexibility by
allowing the mixers to vary over the course of an itera-
tive construction. Given that a similar iterative approach
was shown to provide accurate ground state energies and
fast convergence for various molecules [24, 25], it is natu-
ral to consider its suitability for determining the mixers
in QAOA. The recipe for ADAPT-QAOA is summarized
below in pseudo-code format.

Algorithm 1 ADAPT-QAOA

Initial state: | (0)i = | refi = |+i⌦n

Predefined: Number of layers p; Cost Hamiltonian HC ;
Initial parameter for optimization: �0; Operator pool with
m operators Aj , j 2 [1,m]
for k = 1...p do

//From operator pool select operator
for j = 1...m do

//Get max measured gradient operator A(k)
max:

Set �k = �0

Define | (k)it = e
�iHC�k | (k�1)i

A
(k)
max = argmax

⇣
�i th (k)|[HC , Aj ]| (k)it

⌘

end for

//Add A
(k)
max to current ansatz:

| (k)i = e
�iA

(k)
max�ke

�iHC�k | (k�1)i
// Optimization

minh (k)|HC | (k)i ! ~�,~�

output.add(~�,~�, A(k)
max,minh (k)|HC | (k)i)

end for

return output

The first step in running this algorithm is to define
the operator pool from which we select the mixers. De-
fine Q to be the set of qubits. The pool correspond-
ing to the original QAOA contains only one operator,

PQAOA =
nP

i2Q
Xi

o
. There is a lot of flexibility in

choosing an operator pool. Here, for our numerical sim-
ulations of ADAPT-QAOA, we select two qualitatively
di↵erent pools to compare to each other and to the origi-
nal QAOA: one consisting entirely of single-qubit mixers,
and one with both single-qubit and multi-qubit entan-
gling gates. The single-qubit pool is defined as Psingle =

[i2Q {Xi, Yi}[
nP

i2Q
Yi

o
[PQAOA, and the multi-qubit

pool as Pmulti = [i,j2Q⇥Q {BiCj |Bi, Cj 2 {X,Y, Z}} [
Psingle. Because PQAOA ⇢ Psingle ⇢ Pmulti, we ex-
pect that Pmulti will provide the best performance. The
QAOA, single-qubit, and multi-qubit pools have O(1),
O(n), and O(n2) elements, respectively. More general
pools can have combinatorially many elements [22].
If HC has symmetries, then additional constraints

should be imposed on the pool. In this work, we focus
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II. ADAPT-QAOA

A. Framework

In QAOA [4, 5], the variational ansatz consists of p
layers, each containing the cost Hamiltonian HC and a
mixer, HM :

��� p(~�, ~�)
E
=

 
pY

k=1

⇥
e�iHM�ke�iHC�k

⇤
!
| refi , (1)

where | refi = |+i⌦n, n is the number of qubits, and

~� and ~� are sets of variational parameters. If these pa-

rameters are chosen such that
D
 p(~�, ~�)

���HC

��� p(~�, ~�)
E

is minimized, then the resulting energy and state provide
an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the standard QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the stan-
dard QAOA ansatz for specific problems and hardware
architectures [25–27]. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.

In this work, we replace the single, fixed mixer HM

by a set of mixers Ak that change from one layer to the
next:

��� p(~�, ~�)
E
=

 
pY

k=1

⇥
e�iAk�ke�iHC�k

⇤
!
| refi . (2)

We build up this ansatz iteratively, one layer at a time,
in a way that is determined by HC . This iterative pro-
cess is inspired by the variational quantum eigensolver
algorithm, ADAPT-VQE [28, 29]. It can be summa-
rized by three basic steps: First, define the operator set
{Aj} (called the “mixer pool”, and where Aj = A†

j
)

and select a suitable reference state to be the initial
state:

�� (0)
↵
= | refi. Here, we choose | refi = |+i⌦n

as in the standard QAOA. We will return shortly to
the question of how to choose the pool. Second, pre-
pare the current ansatz

�� (k�1)
↵
on the quantum pro-

cessor and measure the energy gradient with respect
to the pool, the jth component of which is given by
�i
⌦
 (k�1)

�� eiHC�k [HC , Aj ]e�iHC�k
�� (k�1)

↵
, where the

new variational parameter �k is set to a predefined value
�0. For the measurement, we can decompose the commu-
tator into linear combinations of Pauli strings and mea-
sure the expectation values of the strings using general
variational quantum algorithm methods [30]. If the norm
of the gradient is below a predefined threshold, then the
algorithm stops, and the current state and energy esti-
mate approximate the desired solution. If the gradient
threshold is not met, modify the ansatz by adding the

operator, A(k)

max, associated with the largest component

of the gradient:
�� (k)

↵
= e�iA

(k)
max�ke�iHC�k

�� (k�1)
↵
,

where �k is a new variational parameter. Third, op-
timize all parameters currently in the ansatz, �m, �m,
m = 1, ..., k, such that

⌦
 (k)

��HC

�� (k)
↵
is minimized,

and return to the second step. This algorithm, which we
call ADAPT-QAOA, lies somewhere between standard
QAOA and ADAPT-VQE in the sense that it possesses
the alternating-operator structure of QAOA but enjoys
additional flexibility by allowing the mixers to vary over
the course of the iterative construction.

B. Operator Pool

The first step in running this algorithm is to de-
fine the mixer pool. Define Q to be the set of
qubits. The pool corresponding to the standard QAOA

contains only one operator, PQAOA =
nP

i2Q
Xi

o
.

Here, we introduce two qualitatively di↵erent pools:
one consisting entirely of single-qubit mixers, and one
with both single-qubit and multi-qubit entangling gates:

Psingle = [i2Q {Xi, Yi} [
nP

i2Q
Yi

o
[ PQAOA, Pmulti =

[i,j2Q⇥Q {BiCj |Bi, Cj 2 {X,Y, Z}} [ Psingle. Because
PQAOA ⇢ Psingle ⇢ Pmulti, we expect that Pmulti will pro-
vide the best performance. The QAOA, single-qubit, and
multi-qubit pools have O(1), O(n), and O(n2) elements,
respectively.

Max-Cut is a classic (NP-hard) quadratic uncon-
strained binary optimization problem, and it can be used
to solve other optimization problems. Thus, it is a use-
ful benchmarking problem for QAOA and has been used
as such in prior works [5, 7, 11]. It is defined as fol-
lows: Given a graph G = (V,E), with weight wi,j for
edge (i, j), find a cut S ✓ V such that S [ S̄ = V , andP

i✏S,j✏S̄,i,j✏E
wi,j is maximized. This problem can be

encoded in the Ising Hamiltonian

HC = �1

2

X

i,j

wi,j(I � ZiZj), (3)

where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) rep-
resents a possible cut. HC counts the sum of the weights
of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC

has a Z2 symmetry generated by F = ⌦iXi. Only the Aj

that commute with F have a nonzero gradient (see Ap-
pendix A), so we retain only these Pauli strings (which
have an even number of Y or Z operators) in our mixer
pool.

C. Performance and Resource Comparison

We use the Max-Cut problem on regular graphs with
n=6 vertices and degrees D=3 and D=5 to bench-
mark the performance of ADAPT-QAOA. For each type
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A few papers have suggested modifications to the stan-
dard QAOA ansatz for specific problems and hardware
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rized by three basic steps: First, define the operator set
{Aj} (called the “mixer pool”, and where Aj = A†
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and select a suitable reference state to be the initial
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as in the standard QAOA. We will return shortly to
the question of how to choose the pool. Second, pre-
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, where the

new variational parameter �k is set to a predefined value
�0. For the measurement, we can decompose the commu-
tator into linear combinations of Pauli strings and mea-
sure the expectation values of the strings using general
variational quantum algorithm methods [30]. If the norm
of the gradient is below a predefined threshold, then the
algorithm stops, and the current state and energy esti-
mate approximate the desired solution. If the gradient
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where �k is a new variational parameter. Third, op-
timize all parameters currently in the ansatz, �m, �m,
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and return to the second step. This algorithm, which we
call ADAPT-QAOA, lies somewhere between standard
QAOA and ADAPT-VQE in the sense that it possesses
the alternating-operator structure of QAOA but enjoys
additional flexibility by allowing the mixers to vary over
the course of the iterative construction.

B. Operator Pool

The first step in running this algorithm is to de-
fine the mixer pool. Define Q to be the set of
qubits. The pool corresponding to the standard QAOA

contains only one operator, PQAOA =
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Xi
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one consisting entirely of single-qubit mixers, and one
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vide the best performance. The QAOA, single-qubit, and
multi-qubit pools have O(1), O(n), and O(n2) elements,
respectively.

Max-Cut is a classic (NP-hard) quadratic uncon-
strained binary optimization problem, and it can be used
to solve other optimization problems. Thus, it is a use-
ful benchmarking problem for QAOA and has been used
as such in prior works [5, 7, 11]. It is defined as fol-
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edge (i, j), find a cut S ✓ V such that S [ S̄ = V , andP
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where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) rep-
resents a possible cut. HC counts the sum of the weights
of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC
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pendix A), so we retain only these Pauli strings (which
have an even number of Y or Z operators) in our mixer
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mark the performance of ADAPT-QAOA. For each type
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an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
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dard QAOA ansatz for specific problems and hardware
architectures [25–27]. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.
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next:
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We build up this ansatz iteratively, one layer at a time,
in a way that is determined by HC . This iterative pro-
cess is inspired by the variational quantum eigensolver
algorithm, ADAPT-VQE [28, 29]. It can be summa-
rized by three basic steps: First, define the operator set
{Aj} (called the “mixer pool”, and where Aj = A†

j
)

and select a suitable reference state to be the initial
state:

�� (0)
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= | refi. Here, we choose | refi = |+i⌦n

as in the standard QAOA. We will return shortly to
the question of how to choose the pool. Second, pre-
pare the current ansatz

�� (k�1)
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on the quantum pro-

cessor and measure the energy gradient with respect
to the pool, the jth component of which is given by
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�� eiHC�k [HC , Aj ]e�iHC�k
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↵
, where the

new variational parameter �k is set to a predefined value
�0. For the measurement, we can decompose the commu-
tator into linear combinations of Pauli strings and mea-
sure the expectation values of the strings using general
variational quantum algorithm methods [30]. If the norm
of the gradient is below a predefined threshold, then the
algorithm stops, and the current state and energy esti-
mate approximate the desired solution. If the gradient
threshold is not met, modify the ansatz by adding the
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max, associated with the largest component
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where �k is a new variational parameter. Third, op-
timize all parameters currently in the ansatz, �m, �m,
m = 1, ..., k, such that
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is minimized,

and return to the second step. This algorithm, which we
call ADAPT-QAOA, lies somewhere between standard
QAOA and ADAPT-VQE in the sense that it possesses
the alternating-operator structure of QAOA but enjoys
additional flexibility by allowing the mixers to vary over
the course of the iterative construction.

B. Operator Pool

The first step in running this algorithm is to de-
fine the mixer pool. Define Q to be the set of
qubits. The pool corresponding to the standard QAOA

contains only one operator, PQAOA =
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i2Q
Xi
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.

Here, we introduce two qualitatively di↵erent pools:
one consisting entirely of single-qubit mixers, and one
with both single-qubit and multi-qubit entangling gates:

Psingle = [i2Q {Xi, Yi} [
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vide the best performance. The QAOA, single-qubit, and
multi-qubit pools have O(1), O(n), and O(n2) elements,
respectively.

Max-Cut is a classic (NP-hard) quadratic uncon-
strained binary optimization problem, and it can be used
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where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) rep-
resents a possible cut. HC counts the sum of the weights
of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC

has a Z2 symmetry generated by F = ⌦iXi. Only the Aj

that commute with F have a nonzero gradient (see Ap-
pendix A), so we retain only these Pauli strings (which
have an even number of Y or Z operators) in our mixer
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where | refi = |+i⌦n, n is the number of qubits, and

~� and ~� are sets of variational parameters. If these pa-
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is minimized, then the resulting energy and state provide
an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the original QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the original
QAOA ansatz [21–23]. Farhi et al. [21] allowed the mixer
to rotate each qubit by a di↵erent angle about the x axis
and modified the cost Hamiltonian layer so that it is more
compatible with the hardware architecture they consid-
ered. Hadfield et al. [22] considered more general mixers
defined such that they preserve the relevant subspace for
the given combinatorial problem. Ref. [23] focused on
graph coloring optimization problems using more than
one qubit per node and demonstrated that intra-node en-
tangling mixers that preserve symmetries outperform the
standard X mixer. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.

In this work, we replace the single, fixed mixer HM

by a set of mixers Ak that change from one layer to the
next:
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We build up this ansatz iteratively, one layer at a time, in
a way that is determined by HC . This iterative process
is inspired by the variational quantum eigensolver algo-
rithm, ADAPT-VQE, which was developed for molecular
Hamiltonians [24, 25]. It can be summarized by three ba-
sic steps: First, define the operator set {Aj} (called the

“pool”, and where Aj = A†
j
) and select a suitable refer-

ence state to be the initial state:
�� (0)

↵
= | refi. Here,

we choose | refi = |+i⌦n as in the original QAOA. We
will return shortly to the question of how to choose the
pool. Second, prepare the current ansatz

�� (k�1)
↵
on

the quantum processor and measure the energy gradient
with respect to the pool, the jth component of which
is given by �i

⌦
 (k�1)

�� eiHC�k [HC , Aj ]e�iHC�k
�� (k�1)

↵
,

where the new variational parameter �k is set to a pre-
defined value �0. If the norm of the gradient is be-
low a predefined threshold, then the algorithm stops,
and the current state and energy estimate approximate
the desired solution. If the gradient threshold is not

met, modify the ansatz by adding the operator, A(k)

max,
associated with the largest component of the gradient:

�� (k)
↵
= e�iA

(k)
max�ke�iHC�k

�� (k�1)
↵
, where �k is a new

variational parameter. Third, optimize all parameters
currently in the ansatz, �m, �m, m = 1, ..., k, such that⌦
 (k)

��HC

�� (k)
↵
is minimized, and return to the second

step. This algorithm, which we call ADAPT-QAOA, lies
somewhere between standard QAOA and ADAPT-VQE
in the sense that it possesses the alternating-operator
structure of QAOA but enjoys additional flexibility by
allowing the mixers to vary over the course of an itera-
tive construction. Given that a similar iterative approach
was shown to provide accurate ground state energies and
fast convergence for various molecules [24, 25], it is natu-
ral to consider its suitability for determining the mixers
in QAOA. The recipe for ADAPT-QAOA is summarized
below in pseudo-code format.

Algorithm 1 ADAPT-QAOA

Initial state: | (0)i = | refi = |+i⌦n

Predefined: Number of layers p; Cost Hamiltonian HC ;
Initial parameter for optimization: �0; Operator pool with
m operators Aj , j 2 [1,m]
for k = 1...p do

//From operator pool select operator
for j = 1...m do

//Get max measured gradient operator A(k)
max:

Set �k = �0

Define | (k)it = e
�iHC�k | (k�1)i

A
(k)
max = argmax

⇣
�i th (k)|[HC , Aj ]| (k)it

⌘

end for

//Add A
(k)
max to current ansatz:

| (k)i = e
�iA

(k)
max�ke

�iHC�k | (k�1)i
// Optimization

minh (k)|HC | (k)i ! ~�,~�

output.add(~�,~�, A(k)
max,minh (k)|HC | (k)i)

end for

return output

The first step in running this algorithm is to define
the operator pool from which we select the mixers. De-
fine Q to be the set of qubits. The pool correspond-
ing to the original QAOA contains only one operator,

PQAOA =
nP

i2Q
Xi

o
. There is a lot of flexibility in

choosing an operator pool. Here, for our numerical sim-
ulations of ADAPT-QAOA, we select two qualitatively
di↵erent pools to compare to each other and to the origi-
nal QAOA: one consisting entirely of single-qubit mixers,
and one with both single-qubit and multi-qubit entan-
gling gates. The single-qubit pool is defined as Psingle =

[i2Q {Xi, Yi}[
nP

i2Q
Yi

o
[PQAOA, and the multi-qubit

pool as Pmulti = [i,j2Q⇥Q {BiCj |Bi, Cj 2 {X,Y, Z}} [
Psingle. Because PQAOA ⇢ Psingle ⇢ Pmulti, we ex-
pect that Pmulti will provide the best performance. The
QAOA, single-qubit, and multi-qubit pools have O(1),
O(n), and O(n2) elements, respectively. More general
pools can have combinatorially many elements [22].
If HC has symmetries, then additional constraints

should be imposed on the pool. In this work, we focus

∂
∂β t⟨ψ (k) |HC |ψ (k)⟩t =

∂
∂β

⟨ψ (k) |HC |ψ (k)⟩
β=0

=

|ψ (k)⟩ = e−iβAje−iHCγk |ψ (k−1)⟩

∂
∂β

⟨ψ (k−1) |eiβAjeiHCγkHCe−iβAje−iHCγk |ψ (k−1)⟩
β=0

|ψ (k)⟩t = |ψ (k)⟩t
β=0
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II. ADAPT-QAOA

A. Framework

In QAOA [4, 5], the variational ansatz consists of p
layers, each containing the cost Hamiltonian HC and a
mixer, HM :

��� p(~�, ~�)
E
=

 
pY

k=1

⇥
e�iHM�ke�iHC�k

⇤
!
| refi , (1)

where | refi = |+i⌦n, n is the number of qubits, and

~� and ~� are sets of variational parameters. If these pa-

rameters are chosen such that
D
 p(~�, ~�)

���HC

��� p(~�, ~�)
E

is minimized, then the resulting energy and state provide
an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the standard QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the stan-
dard QAOA ansatz for specific problems and hardware
architectures [25–27]. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.

In this work, we replace the single, fixed mixer HM

by a set of mixers Ak that change from one layer to the
next:

��� p(~�, ~�)
E
=

 
pY

k=1

⇥
e�iAk�ke�iHC�k

⇤
!
| refi . (2)

We build up this ansatz iteratively, one layer at a time,
in a way that is determined by HC . This iterative pro-
cess is inspired by the variational quantum eigensolver
algorithm, ADAPT-VQE [28, 29]. It can be summa-
rized by three basic steps: First, define the operator set
{Aj} (called the “mixer pool”, and where Aj = A†

j
)

and select a suitable reference state to be the initial
state:

�� (0)
↵
= | refi. Here, we choose | refi = |+i⌦n

as in the standard QAOA. We will return shortly to
the question of how to choose the pool. Second, pre-
pare the current ansatz

�� (k�1)
↵
on the quantum pro-

cessor and measure the energy gradient with respect
to the pool, the jth component of which is given by
�i
⌦
 (k�1)

�� eiHC�k [HC , Aj ]e�iHC�k
�� (k�1)

↵
, where the

new variational parameter �k is set to a predefined value
�0. For the measurement, we can decompose the commu-
tator into linear combinations of Pauli strings and mea-
sure the expectation values of the strings using general
variational quantum algorithm methods [30]. If the norm
of the gradient is below a predefined threshold, then the
algorithm stops, and the current state and energy esti-
mate approximate the desired solution. If the gradient
threshold is not met, modify the ansatz by adding the

operator, A(k)

max, associated with the largest component

of the gradient:
�� (k)

↵
= e�iA

(k)
max�ke�iHC�k

�� (k�1)
↵
,

where �k is a new variational parameter. Third, op-
timize all parameters currently in the ansatz, �m, �m,
m = 1, ..., k, such that

⌦
 (k)

��HC

�� (k)
↵
is minimized,

and return to the second step. This algorithm, which we
call ADAPT-QAOA, lies somewhere between standard
QAOA and ADAPT-VQE in the sense that it possesses
the alternating-operator structure of QAOA but enjoys
additional flexibility by allowing the mixers to vary over
the course of the iterative construction.

B. Operator Pool

The first step in running this algorithm is to de-
fine the mixer pool. Define Q to be the set of
qubits. The pool corresponding to the standard QAOA

contains only one operator, PQAOA =
nP

i2Q
Xi

o
.

Here, we introduce two qualitatively di↵erent pools:
one consisting entirely of single-qubit mixers, and one
with both single-qubit and multi-qubit entangling gates:

Psingle = [i2Q {Xi, Yi} [
nP

i2Q
Yi

o
[ PQAOA, Pmulti =

[i,j2Q⇥Q {BiCj |Bi, Cj 2 {X,Y, Z}} [ Psingle. Because
PQAOA ⇢ Psingle ⇢ Pmulti, we expect that Pmulti will pro-
vide the best performance. The QAOA, single-qubit, and
multi-qubit pools have O(1), O(n), and O(n2) elements,
respectively.

Max-Cut is a classic (NP-hard) quadratic uncon-
strained binary optimization problem, and it can be used
to solve other optimization problems. Thus, it is a use-
ful benchmarking problem for QAOA and has been used
as such in prior works [5, 7, 11]. It is defined as fol-
lows: Given a graph G = (V,E), with weight wi,j for
edge (i, j), find a cut S ✓ V such that S [ S̄ = V , andP

i✏S,j✏S̄,i,j✏E
wi,j is maximized. This problem can be

encoded in the Ising Hamiltonian

HC = �1

2

X

i,j

wi,j(I � ZiZj), (3)

where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) rep-
resents a possible cut. HC counts the sum of the weights
of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC

has a Z2 symmetry generated by F = ⌦iXi. Only the Aj

that commute with F have a nonzero gradient (see Ap-
pendix A), so we retain only these Pauli strings (which
have an even number of Y or Z operators) in our mixer
pool.

C. Performance and Resource Comparison

We use the Max-Cut problem on regular graphs with
n=6 vertices and degrees D=3 and D=5 to bench-
mark the performance of ADAPT-QAOA. For each type
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A few papers have suggested modifications to the stan-
dard QAOA ansatz for specific problems and hardware
architectures [25–27]. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
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next:
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We build up this ansatz iteratively, one layer at a time,
in a way that is determined by HC . This iterative pro-
cess is inspired by the variational quantum eigensolver
algorithm, ADAPT-VQE [28, 29]. It can be summa-
rized by three basic steps: First, define the operator set
{Aj} (called the “mixer pool”, and where Aj = A†

j
)

and select a suitable reference state to be the initial
state:

�� (0)
↵
= | refi. Here, we choose | refi = |+i⌦n

as in the standard QAOA. We will return shortly to
the question of how to choose the pool. Second, pre-
pare the current ansatz

�� (k�1)
↵
on the quantum pro-

cessor and measure the energy gradient with respect
to the pool, the jth component of which is given by
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, where the

new variational parameter �k is set to a predefined value
�0. For the measurement, we can decompose the commu-
tator into linear combinations of Pauli strings and mea-
sure the expectation values of the strings using general
variational quantum algorithm methods [30]. If the norm
of the gradient is below a predefined threshold, then the
algorithm stops, and the current state and energy esti-
mate approximate the desired solution. If the gradient
threshold is not met, modify the ansatz by adding the

operator, A(k)

max, associated with the largest component

of the gradient:
�� (k)
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where �k is a new variational parameter. Third, op-
timize all parameters currently in the ansatz, �m, �m,
m = 1, ..., k, such that
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is minimized,

and return to the second step. This algorithm, which we
call ADAPT-QAOA, lies somewhere between standard
QAOA and ADAPT-VQE in the sense that it possesses
the alternating-operator structure of QAOA but enjoys
additional flexibility by allowing the mixers to vary over
the course of the iterative construction.

B. Operator Pool

The first step in running this algorithm is to de-
fine the mixer pool. Define Q to be the set of
qubits. The pool corresponding to the standard QAOA

contains only one operator, PQAOA =
nP

i2Q
Xi

o
.

Here, we introduce two qualitatively di↵erent pools:
one consisting entirely of single-qubit mixers, and one
with both single-qubit and multi-qubit entangling gates:

Psingle = [i2Q {Xi, Yi} [
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[ PQAOA, Pmulti =

[i,j2Q⇥Q {BiCj |Bi, Cj 2 {X,Y, Z}} [ Psingle. Because
PQAOA ⇢ Psingle ⇢ Pmulti, we expect that Pmulti will pro-
vide the best performance. The QAOA, single-qubit, and
multi-qubit pools have O(1), O(n), and O(n2) elements,
respectively.

Max-Cut is a classic (NP-hard) quadratic uncon-
strained binary optimization problem, and it can be used
to solve other optimization problems. Thus, it is a use-
ful benchmarking problem for QAOA and has been used
as such in prior works [5, 7, 11]. It is defined as fol-
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edge (i, j), find a cut S ✓ V such that S [ S̄ = V , andP
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wi,j is maximized. This problem can be
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where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) rep-
resents a possible cut. HC counts the sum of the weights
of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC

has a Z2 symmetry generated by F = ⌦iXi. Only the Aj

that commute with F have a nonzero gradient (see Ap-
pendix A), so we retain only these Pauli strings (which
have an even number of Y or Z operators) in our mixer
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mark the performance of ADAPT-QAOA. For each type
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~� and ~� are sets of variational parameters. If these pa-

rameters are chosen such that
D
 p(~�, ~�)
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is minimized, then the resulting energy and state provide
an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the standard QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the stan-
dard QAOA ansatz for specific problems and hardware
architectures [25–27]. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.

In this work, we replace the single, fixed mixer HM

by a set of mixers Ak that change from one layer to the
next:
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We build up this ansatz iteratively, one layer at a time,
in a way that is determined by HC . This iterative pro-
cess is inspired by the variational quantum eigensolver
algorithm, ADAPT-VQE [28, 29]. It can be summa-
rized by three basic steps: First, define the operator set
{Aj} (called the “mixer pool”, and where Aj = A†

j
)

and select a suitable reference state to be the initial
state:

�� (0)
↵
= | refi. Here, we choose | refi = |+i⌦n

as in the standard QAOA. We will return shortly to
the question of how to choose the pool. Second, pre-
pare the current ansatz

�� (k�1)
↵
on the quantum pro-

cessor and measure the energy gradient with respect
to the pool, the jth component of which is given by
�i
⌦
 (k�1)

�� eiHC�k [HC , Aj ]e�iHC�k
�� (k�1)

↵
, where the

new variational parameter �k is set to a predefined value
�0. For the measurement, we can decompose the commu-
tator into linear combinations of Pauli strings and mea-
sure the expectation values of the strings using general
variational quantum algorithm methods [30]. If the norm
of the gradient is below a predefined threshold, then the
algorithm stops, and the current state and energy esti-
mate approximate the desired solution. If the gradient
threshold is not met, modify the ansatz by adding the

operator, A(k)

max, associated with the largest component

of the gradient:
�� (k)

↵
= e�iA

(k)
max�ke�iHC�k
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↵
,

where �k is a new variational parameter. Third, op-
timize all parameters currently in the ansatz, �m, �m,
m = 1, ..., k, such that

⌦
 (k)

��HC

�� (k)
↵
is minimized,

and return to the second step. This algorithm, which we
call ADAPT-QAOA, lies somewhere between standard
QAOA and ADAPT-VQE in the sense that it possesses
the alternating-operator structure of QAOA but enjoys
additional flexibility by allowing the mixers to vary over
the course of the iterative construction.

B. Operator Pool

The first step in running this algorithm is to de-
fine the mixer pool. Define Q to be the set of
qubits. The pool corresponding to the standard QAOA

contains only one operator, PQAOA =
nP

i2Q
Xi

o
.

Here, we introduce two qualitatively di↵erent pools:
one consisting entirely of single-qubit mixers, and one
with both single-qubit and multi-qubit entangling gates:

Psingle = [i2Q {Xi, Yi} [
nP

i2Q
Yi

o
[ PQAOA, Pmulti =

[i,j2Q⇥Q {BiCj |Bi, Cj 2 {X,Y, Z}} [ Psingle. Because
PQAOA ⇢ Psingle ⇢ Pmulti, we expect that Pmulti will pro-
vide the best performance. The QAOA, single-qubit, and
multi-qubit pools have O(1), O(n), and O(n2) elements,
respectively.

Max-Cut is a classic (NP-hard) quadratic uncon-
strained binary optimization problem, and it can be used
to solve other optimization problems. Thus, it is a use-
ful benchmarking problem for QAOA and has been used
as such in prior works [5, 7, 11]. It is defined as fol-
lows: Given a graph G = (V,E), with weight wi,j for
edge (i, j), find a cut S ✓ V such that S [ S̄ = V , andP

i✏S,j✏S̄,i,j✏E
wi,j is maximized. This problem can be

encoded in the Ising Hamiltonian

HC = �1

2

X

i,j

wi,j(I � ZiZj), (3)

where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) rep-
resents a possible cut. HC counts the sum of the weights
of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC

has a Z2 symmetry generated by F = ⌦iXi. Only the Aj

that commute with F have a nonzero gradient (see Ap-
pendix A), so we retain only these Pauli strings (which
have an even number of Y or Z operators) in our mixer
pool.

C. Performance and Resource Comparison

We use the Max-Cut problem on regular graphs with
n=6 vertices and degrees D=3 and D=5 to bench-
mark the performance of ADAPT-QAOA. For each type
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is minimized, then the resulting energy and state provide
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coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the standard QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the stan-
dard QAOA ansatz for specific problems and hardware
architectures [25–27]. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.
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We build up this ansatz iteratively, one layer at a time,
in a way that is determined by HC . This iterative pro-
cess is inspired by the variational quantum eigensolver
algorithm, ADAPT-VQE [28, 29]. It can be summa-
rized by three basic steps: First, define the operator set
{Aj} (called the “mixer pool”, and where Aj = A†
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of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC
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would be of both fundamental and practical interest.
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Appendix A: Ising symmetry and mixer pool
operators

In this work, we focus on Ising Hamiltonians of the
form

HC = �1

2

X

i,j

wi,j(I � ZiZj), (A.1)

which have a Z2 symmetry associated with the operator
F = ⌦iXi. Since [F,HC ] = 0 and F | refi = | refi, we
can rewrite the gradient in the first iteration as

h ref |eiHC�1 [HC , Aj ]e
�iHC�1 | refi

= h ref |eiHC�1F [HC , Aj ]Fe�iHC�1 | refi, (A.2)

where Aj is an operator from the mixer pool. However,
we also know that FAj = ±AjF because F and Aj are
Pauli strings (except when Aj is the standard QAOA
mixer

P
i2Q

Xi or
P

i2Q
Yi, but the former commutes

and the latter anticommutes with F ), so F [HC , Aj ]F =
±[HC , Aj ]. Comparing this to Eq. (A.2), we see that to
have a non-zero gradient, we need [F,Aj ] = 0. This holds
for all steps of the algorithm, because only operators that
commute with F appear in the ansätze, so a formula like
Eq. (A.2) holds at every iteration. The Aj that commute
with F are Pauli strings that have an even number of Y
or Z operators, so we retain only these Pauli strings in
our mixer pool.

Appendix B: First Layer of ADAPT-QAOA ansatz

Here we analyze the ADAPT-QAOA cost function in
the first layer, and the results show that the minimum
of the energy in the first layer of ADAPT-QAOA never
occurs at � = 0 for any operator included in the pool.
We also show that � = 0 is a critical point of the cost
function.

At level p of ADAPT-QAOA, the cost function is

Ep(�, �) = h (p�1)|e�i�He�i�MHei�Mei�H | (p�1)i.
(B.1)

Where H is a linear combination of Pauli strings that
are tensor products of the identity and Z. All the terms

in H commute with each other. M is the mixer. If the
mixers M are single-Pauli strings, we have

e�i�MHei�M = Hc+cos(2�)Ha� i sin(2�)MHa, (B.2)

where Hc is the part of H that commutes with M , and
Ha is the part of H that anticommutes with M . We then
have

e�i�He�i�MHei�Mei�H

= Hc + cos(2�)Ha � i sin(2�)e�i�HMei�HHa

= Hc + cos(2�)Ha � i sin(2�)MHae
2i�Ha . (B.3)

We know that Ep(�, �) is periodic in � with period ⇡.
Therefore, we can restrict � to the range � 2 [�⇡/2,⇡/2]
without loss of generality. Let’s define

G(�) ⌘ �iMHae
2i�Ha . (B.4)

The cost function is then

Ep(�, �) = hHci+ cos(2�)hHai+ sin(2�)hG(�)i, (B.5)

where the expectation values are taken with respect to
| (p�1)i. Therefore,

@Ep

@�
= �2 sin(2�)hHai+ 2 cos(2�)hG(�)i = 0

) tan(2�) =
hG(�)i
hHai

, (B.6)

and

@Ep

@�
= sin(2�)hG0(�)i = 0

) � = 0,±⇡/2 or hG0(�)i = 0. (B.7)

For the first layer, p = 1, the state is | (0)i = |+i⌦n,
and so hHai = 0. From Eq. (B.6), we see that � =
±⇡/4 assuming h0|G(�)|0i 6= 0. Eq. (B.7) then requires
hG0(�)i = 0. Using Eq. (B.4), for p = 1 this is:

h0|G0(�)|0i= 2 h0|MH2

a
e2i�Ha |0i

= 2 h0|H2

a
e2i�Ha |0i = 0. (B.8)

Notice that � = 0 is not a solution of this equation
because h0|H2

a
|0i > 0, which follows from the fact that

this is the norm of a nonzero state, Ha|+i⌦n. Numerics
are needed to determine if there is a nonzero value of �
that satisfies h0|G0(�)|0i = 0.
On the other hand, if h0|G(�)|0i = 0, then there is

no constraint on � from @Ep

@�
= 0. Notice that this hap-

pens when � = 0 since h0|G(0)|0i = �i h0|MHa|0i = 0,
which is true for regular graphs where Ha is a sum of
terms like ZjZk, and M is a Pauli string that commutes
with F = ⌦`X`. In this case, we must have � = 0
or ±⇡/2. There could be other values of � that sat-
isfy h0|G(�)|0i = 0, but it seems unlikely that both this

•  has a  symmetry associated with the operator . Since , one can 
show that the gradient is only nonzero for . The  that commutes with  are 
Pauli strings that have an even number of  or  operators.

HC Z2 F = ⊗i Xi [F , HC] = 0
[F , Aj] = 0 Aj F
Y Z
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FIG. 7. Quantum circuit schematic of QDD. QDD solves optimization problems of continuous variable. In this figure,
◊i are the continuous variables to be optimized in the training, where each ◊i is digitized into binary form and stored
in an independent register. The overall process of QDD is similar to that of the original QAOA, where the di�erence
is that the mixer of QDD with Hamiltonian S is acting on the registers of ◊i (rather than single qubits as in the
original QAOA). The e�ect of the mixer in QDD is to shift the value for each ◊i.

replaced the fixed mixer HM by a set of di�erent mixers Ak that change from layer to layer. They entitled
this variation of QAOA as ADAPT-QAOA. This adaptive approach would dramatically shorten the depth of
QAOA layers while significantly improving the quality of the solution. Here we depict the quantum circuit
schematic of ADAPT-QAOA in Fig. 8.

ADAPT-QAOA  
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FIG. 8. Quantum circuit schematic of ADAPT-QAOA. The overall process of LH-QAOA is similar to that of
the original QAOA in Fig. 5, where the di�erence is that the mixer of LH-QAOA contains variable mixers taken
from a mixers pool. Define Q to be the set of qubits. The mixer pool of ADAPT-QAOA is PADAPT-QAOA =
fiiœQ

Ó
Xi, Yi,

q
iœQ

Xi,
q

iœQ
Yi

Ô
fii,jœQ◊Q {BiCj |Bi, Cj œ {X, Y, Z}}.

Compared to the original QAOA, allowing Y mixers and entangling mixers enables ADAPT-QAOA to
dramatically improve algorithmic performance while achieving rapid convergence for problems with complex
structures. This e�ect of the adaptive mechanism can be illustrated in Fig. 9.

Zhu et al 2020

Figure taken from 2103.17047
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FIG. 1. Comparison of the performance of standard QAOA (blue) with ADAPT-QAOA for the single-qubit (orange) and
multi-qubit (green) pools. The algorithms are run on the Max-Cut problem for the regular graphs shown in the figure, which
have n=6 vertices and are of degree D=3 (a) and D=5 (b). The energy error (the di↵erence between the energy estimate
obtained by the algorithm and the exact ground state energy of HC) is shown as a function of the number of layers in the
ansatz. Results are shown for 20 di↵erent instances of edge weights, which are randomly sampled from the uniform distribution
U(0, 1). The shaded regions indicate 95% confidence intervals.

of graph, we analyze 20 instances of random edge
weights, which are drawn from the uniform distribution
U(0, 1) [31]. We use Nelder-Mead for the optimization of

the variational parameters ~� and ~�. The gradients used
to select new operators are sensitive to the initial val-
ues for ~�. It is natural to initialize these parameters at
�0 = 0 to avoid biasing the optimization. However, as we
show in Appendix B, �0 = 0 is a critical point of the cost
function [32]. Moreover, the minimum of the energy in
the first layer of ADAPT-QAOA never occurs at �0 = 0.
Therefore, we shift the initial value �0 slightly away from
zero (�0 = 0.01) to avoid these issues.

In Fig. 1 we show the error as a function of the number
of ansatz layers for the standard QAOA and for ADAPT-
QAOA using single-qubit and multi-qubit mixer pools.
For both 3- and 5-regular graphs, we find that using the
single-qubit mixer pool provides a modest improvement
over standard QAOA. On the other hand, the multi-qubit
pool performs dramatically better, leading to a rapid con-
vergence to the exact solution after only ⇠3 layers. We
also find that for the degree-5 graphs, standard QAOA
and ADAPT-QAOA with single-qubit mixers converge
slower than the degree-3 case, whereas the performance
of ADAPT-QAOA with the multi-qubit operator pool re-
mains approximately the same. Note that the particular
form of the two-qubit operators in the pool was chosen
for its simplicity. In general, one can choose a hardware-
tailored operator pool, in the spirit of Ref. [33]. In Ap-
pendix C, we show similar results for n = 8 and n = 10
graphs of degree D = 2, where ADAPT-QAOA with the
multi-qubit pool substantially outperforms the standard
QAOA again. Going to larger values of D or n is made
challenging by a sharp increase in the number of layers

needed to reach convergence, as reported for standard
QAOA in Ref. [34].
It is interesting to ask how much the ADAPT-QAOA

ansätze di↵er from the standard QAOA ansatz. We find
that when the single-qubit mixer pool is used, the single-
qubit operators Xi are chosen instead of the standard
mixer approximately 36.6% of the time for n=6, D=3
graphs and 25% of the time for n=6, D=5 graphs. For
the multi-qubit mixer pool, the algorithm chooses oper-
ators other than the standard mixer approximately 75%
of the time for n=6, D=3 graphs and 80% of the time for
n=6, D=5 graphs (see Appendix D). This trend supports
the intuitive idea that a more connected graph requires
more entanglement for a rapid convergence to the solu-
tion.
A crucial question, especially for near-term platforms,

is how the di↵erent mixer pools compare with respect to
resource overhead. Fig. 2 shows the number of CNOTs
and number of parameters for the three algorithms. The
CNOT counts are determined by decomposing each two-
qubit operator into two CNOT gates and one or two
single-qubit gates. Surprisingly, we find that both the
standard QAOA and the single-qubit mixer ansätze in
fact have more CNOTs compared to that constructed
from the entangling multi-qubit mixer pool. Moreover,
on average, the standard QAOA algorithm uses more
parameters and CNOTs to reach the same convergence
threshold than either version of ADAPT-QAOA. About
half as many CNOTs are required for the ADAPT-QAOA
multi-qubit pool case, despite the fact that the mixers
in the multi-qubit pool themselves introduce additional
CNOT gates on top of those coming from HC . Ref. [25]
proposed using a restricted form of entangling gates in

γ0 = 0.01

Nelder-Mead for optimization 
= downhill simplex method 
= amoeba method 
= polytope method

2005.10258
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FIG. 6. Probability of operators picked by the original QAOA, ADAPT-QAOA with the single-qubit mixer and ADAPT-QAOA
with multi-qubit pool for the Max-Cut problem on regular graphs with n=6 vertices with degree D=3 (a)(b) and D=5 (c)(d)
with random edge weights sampled from a uniform distribution U(0, 1). The blue bars show the probability of each particular
operator used for ansatz, and green bars show the probability of the original mixer, sum over all single-qubit gates and sum
over all entangling gates used in ansatz. The results from 20 instances of random edge weights.

Appendix D: Role of entangling mixers versus
entangling gates

In Fig. 2, we compared the resources used by three
di↵erent algorithms for the Max-Cut problem on regular
graphs. These resources include the number of CNOT
gates and the number of optimization parameters. From
the comparison we can see that including entangling mix-
ers in the ansatz produces a dramatically faster con-
vergence to the exact solution compared to the original
QAOA. Surprisingly, despite the inclusion of these en-
tangling mixers, the improvement in convergence comes
with a simultaneous reduction in both the number of en-
tangling gates in the compiled ansatz.

To further investigate the role of entangling mixers,
we consider the n = 6, D = 3 (in Fig. 6 (a), (b)) and
n = 6, D = 5 graphs (in Fig. 6 (c), (d)) and show the

probability for an operator to be picked by the original
QAOA and by ADAPT-QAOA with a single-qubit mixer
pool in Fig. S1. Similar results for ADAPT-QAOA with
a multi-qubit mixer pool are also shown in Fig. 6(b),(d).
We find that when only the single-qubit mixer pool is
used, the single-qubit operators Xi are chosen instead
of the original mixer approximately 25% of the time.
For the multi-qubit mixer pool, the algorithm chooses
two-qubit entangling operators approximately 70% of the
time. Clearly, entangling mixers play a central role in the
improved performance of ADAPT-QAOA.

Additionally, to understand the importance of CNOT
gates in the compiled ansatz, in Fig. 7 we show the er-
ror for the solution determined by each algorithm as a
function of the number of CNOTs used in the ansatz for
both n = 6, D = 3 and n = 6, D = 5 graphs. Based
on the figure, we can see that ADAPT-QAOA with the

• How much does the ADAPT-
QAOA ansatz differ from the 
standard QAOA ansatz? 

• When the single-qubit mixer 
pool is used, the single- qubit 
operators Xi are chosen 
instead of the standard mixer 
approximately 36.6% of the 
time for n=6,D=3 graphs and 
25% of the time for n=6,D=5 
graphs. 

• For the multi-qubit mixer 
pool, the algorithm chooses 
operators other than the 
standard mixer approximately 
75% of the time for n=6, D=3 
graphs and 80% of the time 
for n=6, D=5 graphs.

• This trend supports the 
intuitive idea that a more 
connected graph requires more 
entanglement for a rapid 
convergence to the solution. 
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FIG. 2. Resource comparison of the standard QAOA,
ADAPT-QAOA with the single-qubit mixer pool, and
ADAPT-QAOA with the multi-qubit mixer pool for the Max-
Cut problem on regular graphs with n=6 vertices and random
edge weights. Panels (a) and (b) show the comparison for
graphs of degree D=3 and D=5, respectively. For all cases
except the standard QAOA applied to D = 5 graphs, we
count the number of parameters and CNOTs needed to reach
an energy error of �E = 10�3. As standard QAOA for D = 5
graphs never reaches this error threshold, we instead count the
CNOT gates and parameters at the end of the simulation (15
layers). The dark (light) red bars show variational parameter
(CNOT gate) counts. The error bars show variances obtained
by sampling over 20 di↵erent instances of edge weights.

the ansatz to obtain better performance in combinato-
rial problems at the cost of introducing more variational
parameters. In contrast, ADAPT-QAOA provides a sys-
tematic way to both improve performance and reduce the
number of parameters and CNOTs.

III. SHORTCUTS TO ADIABATICITY

One may wonder whether there is a physically intuitive
way to understand the strikingly better performance of
ADAPT-QAOA. Considering that the standard QAOA
ansatz has a structure dictated by the adiabatic theo-
rem, a possible explanation is that the ADAPT algo-

rithm is related to shortcuts to adiabaticity (STA). STA,
also known as counterdiabatic or transitionless driving,
was introduced for quantum systems by Demirplak and
Rice [21] and later, independently, by Berry [22, 23]. STA
has also been explored in the classical context [35, 36],
including a recent application in biology [37]. The idea
is that if we want to drive a system such that it re-
mains in the instantaneous ground state at all times,
then by adding a certain term HCD to the Hamilto-
nian, we can achieve this without paying the price of a
slow evolution. Although the instantaneous eigenstates
of the original Hamiltonian only solve the time-dependent
Schrödinger equation in the adiabatic limit, they become
exact solutions when the Hamiltonian is updated to in-
clude HCD. The advantage of STA is that the evolution
can be achieved nonadiabatically. Below, we provide ev-
idence that ADAPT-QAOA is indeed related to STA, a
likely explanation for why it converges to the solution
much faster than its adiabatic counterpart, the standard
QAOA. Before we present this evidence, we must first
explain how HCD can be constructed using the concept
of adiabatic gauge potentials.

A. Approximate adiabatic gauge potentials

Here we briefly review the mathematical machinery
of STA and adiabatic gauge potentials [38–40]. Let | i
be a state evolving under H(✓(t)), i@t | i = H(✓(t)) | i,
where ✓ is a continuous variable that parameterizes the
Hamiltonian. A unitary transformation U(✓(t)) can be
applied to move the Hamiltonian H(✓(t)) from the ini-
tial basis to its instantaneous eigenbasis, where H̃(✓) =
U†(✓)H(✓)U(✓) is diagonal at all times. The Schrödinger
equation in the instantaneous eigenbasis is i@t | ̃i =
[H̃ � ✓̇Ã✓] | ̃i, where | ̃i = U † | i, ✓̇ = d✓/dt, and
Ã✓ = iU †@✓U is the adiabatic gauge potential in the ro-
tated frame. It is evident that the term�✓̇Ã✓ drives tran-
sitions between the energy levels of the original Hamilto-
nian H. Therefore, one can add the counterdiabatic term
HCD = ✓̇A✓ to H(✓), with A✓ = UÃ✓U†, to eliminate
such transitions in the rotated frame. This is the core of
transitionless driving protocols.

Now, the matrix elements of the adiabatic gauge po-
tential in the instantaneous eigenbasis are

hm(✓)| A✓ |n(✓)i = hm(✓)|UÃ✓U
† |n(✓)i

= i hm(✓)| @✓UU† |n(✓)i
= i hm(✓)|@✓n(✓)i ,

(4)

where we used Ã✓ = iU †@✓U and |n(✓)i = U(✓) |n0i with
|n0i being independent of ✓. Moreover, the adiabatic
gauge potential A✓ satisfies [22, 38]

hm| A✓ |ni = i hm|@✓ni = i
hm| @✓H |ni
En � Em

, (5)

which is obtained by di↵erentiating the eigenfunction
H(✓) |n(✓)i = En(✓) |n(✓)i with respect to ✓. Note that

4

FIG. 2. Resource comparison of the standard QAOA,
ADAPT-QAOA with the single-qubit mixer pool, and
ADAPT-QAOA with the multi-qubit mixer pool for the Max-
Cut problem on regular graphs with n=6 vertices and random
edge weights. Panels (a) and (b) show the comparison for
graphs of degree D=3 and D=5, respectively. For all cases
except the standard QAOA applied to D = 5 graphs, we
count the number of parameters and CNOTs needed to reach
an energy error of �E = 10�3. As standard QAOA for D = 5
graphs never reaches this error threshold, we instead count the
CNOT gates and parameters at the end of the simulation (15
layers). The dark (light) red bars show variational parameter
(CNOT gate) counts. The error bars show variances obtained
by sampling over 20 di↵erent instances of edge weights.

the ansatz to obtain better performance in combinato-
rial problems at the cost of introducing more variational
parameters. In contrast, ADAPT-QAOA provides a sys-
tematic way to both improve performance and reduce the
number of parameters and CNOTs.

III. SHORTCUTS TO ADIABATICITY

One may wonder whether there is a physically intuitive
way to understand the strikingly better performance of
ADAPT-QAOA. Considering that the standard QAOA
ansatz has a structure dictated by the adiabatic theo-
rem, a possible explanation is that the ADAPT algo-

rithm is related to shortcuts to adiabaticity (STA). STA,
also known as counterdiabatic or transitionless driving,
was introduced for quantum systems by Demirplak and
Rice [21] and later, independently, by Berry [22, 23]. STA
has also been explored in the classical context [35, 36],
including a recent application in biology [37]. The idea
is that if we want to drive a system such that it re-
mains in the instantaneous ground state at all times,
then by adding a certain term HCD to the Hamilto-
nian, we can achieve this without paying the price of a
slow evolution. Although the instantaneous eigenstates
of the original Hamiltonian only solve the time-dependent
Schrödinger equation in the adiabatic limit, they become
exact solutions when the Hamiltonian is updated to in-
clude HCD. The advantage of STA is that the evolution
can be achieved nonadiabatically. Below, we provide ev-
idence that ADAPT-QAOA is indeed related to STA, a
likely explanation for why it converges to the solution
much faster than its adiabatic counterpart, the standard
QAOA. Before we present this evidence, we must first
explain how HCD can be constructed using the concept
of adiabatic gauge potentials.

A. Approximate adiabatic gauge potentials

Here we briefly review the mathematical machinery
of STA and adiabatic gauge potentials [38–40]. Let | i
be a state evolving under H(✓(t)), i@t | i = H(✓(t)) | i,
where ✓ is a continuous variable that parameterizes the
Hamiltonian. A unitary transformation U(✓(t)) can be
applied to move the Hamiltonian H(✓(t)) from the ini-
tial basis to its instantaneous eigenbasis, where H̃(✓) =
U†(✓)H(✓)U(✓) is diagonal at all times. The Schrödinger
equation in the instantaneous eigenbasis is i@t | ̃i =
[H̃ � ✓̇Ã✓] | ̃i, where | ̃i = U † | i, ✓̇ = d✓/dt, and
Ã✓ = iU †@✓U is the adiabatic gauge potential in the ro-
tated frame. It is evident that the term�✓̇Ã✓ drives tran-
sitions between the energy levels of the original Hamilto-
nian H. Therefore, one can add the counterdiabatic term
HCD = ✓̇A✓ to H(✓), with A✓ = UÃ✓U†, to eliminate
such transitions in the rotated frame. This is the core of
transitionless driving protocols.

Now, the matrix elements of the adiabatic gauge po-
tential in the instantaneous eigenbasis are

hm(✓)| A✓ |n(✓)i = hm(✓)|UÃ✓U
† |n(✓)i

= i hm(✓)| @✓UU† |n(✓)i
= i hm(✓)|@✓n(✓)i ,

(4)

where we used Ã✓ = iU †@✓U and |n(✓)i = U(✓) |n0i with
|n0i being independent of ✓. Moreover, the adiabatic
gauge potential A✓ satisfies [22, 38]

hm| A✓ |ni = i hm|@✓ni = i
hm| @✓H |ni
En � Em

, (5)

which is obtained by di↵erentiating the eigenfunction
H(✓) |n(✓)i = En(✓) |n(✓)i with respect to ✓. Note that

• ADAPT-QAOA provides a 
systematic way to both improve 
performance and reduce the 
number of parameters and CNOTs.
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Why ADAPT-QAOA performs better?

• Considering that the standard QAOA ansatz has a structure 
dictated by the adiabatic theorem, a possible explanation is related 
to Shortcuts to adiabaticity (STA). 

• STA (counter-diabatic or transition less driving) was introduced by 
Demirplak and Rice [21] and later, independently, by Berry [22, 23].  

• If we want to drive a system such that it remains in the 
instantaneous ground state at all times, then by adding a certain 
term  to the Hamiltonian, we can achieve this without paying the 
price of a slow evolution. 

• Although the instantaneous eigenstates of the original Hamiltonian 
only solve the time-dependent Schrodinger equation in the 
adiabatic limit, they become exact solutions when the Hamiltonian 
is updated to include .  

• The advantage of STA is that the evolution can be achieved non-
adiabatically. 

HCD

HCD



Shortcuts to Adiabaticity  
(transitionless driving protocols)

i ∂t |ψ⟩ = H(θ(t)) |ψ⟩

• Suppose that we consider a unitary transformation  to move the Hamiltonian 
 from the initial basis to its instantaneous eigenbasis, where 

 is diagonal at all times. 
• The Schrodinger equation in the instantaneous eigenbasis is , where 

 is the adiabatic gauge potential in the rotated frame. It is evident that the 
term  drives transitions between the energy levels of the original Hamiltonian . 
Therefore, one can add the counterdiabatic term  to , with , to 
eliminate such transitions in the rotated frame. This is the core of transitionless driving 
protocols. 

• Ref. [40] proposes an approximate gauge potential:

U(θ(t))
H(θ(t))
H̃(θ) = U†(θ) H(θ) U(θ)

i ∂t | ψ̃⟩ = (H̃ − ·θÃθ) | ψ̃⟩
Ãθ = iU† Aθ U

− ·θÃθ H
HCD = ·θAθ H(θ) Aθ = U Ãθ U†

|ψ⟩ ⟶ | ψ̃⟩ = U† |ψ⟩

H ⟶ H̃ = U† H U

i∂t ⟶ i∂t − ·θÃθ

Ãθ = iU†∂θ U

i ∂t | ψ̃⟩ = (H̃ − ·θÃθ) | ψ̃⟩

HCD = ·θAθ

Aθ = U Ãθ U†

5

increasing the size of the system can lead to divergent
matrix elements due to exponentially small denomina-
tors (En � Em). In this regard, Ref. [40] proposes an
approximate gauge potential

A(p)

✓
= i

pX

k=1

ak[H, @✓H]2k�1, (6)

where [X,Y ]k+1 = [X, [X,Y ]]k and {a1, a2, . . . , ap} is
a set of coe�cients with p being the order of the ex-
pansion. This set of coe�cients is found by minimizing

Tr
h
G2(A(p)

✓
)
i
, where G(A(p)

✓
) = @✓H � i[H,A(p)

✓
] [40].

In fact, Tr
⇥
G2(X )

⇤
is minimized when X is equal to the

exact adiabatic gauge potential A✓ [38, 39]. Using ma-
trix calculus identities and properties of the trace, it is
straightforward to show that

@ Tr
⇥
G2(X )

⇤

@X = 2[H, i@✓H� [X ,H]]. (7)

Only adiabatic gauge potentials satisfy [H, i@✓H �
[A✓,H]] = 0. This is easily proven by di↵erentiating
H̃(✓) = U†(✓)H(✓)U(✓) with respect to ✓,

@✓H̃ = @✓U
†UU†HU + U†@✓HU + U†HUU†@✓U, (8)

and noting that Ã✓ = �i@✓U†U = iU †@✓U and H =P
n
En(✓) |n(✓)i hn(✓)|, then

[A✓,H] = i(@✓H�
X

n

@✓En(✓) |n(✓)i hn(✓)|). (9)

Given that [H,
P

n
@✓En(✓) |n(✓)i hn(✓)|] = 0, adiabatic

gauge potentials clearly satisfy

[H, i@✓H� [A✓,H]] = 0. (10)

B. Connection between ADAPT-QAOA and STA

To investigate the connection between ADAPT-QAOA
and STA, we apply the above formalism using the Hamil-
tonian H = f(t)HC + [1 � f(t)]

P
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and, since there is no other continuous variable that pa-
rameterizes the Hamiltonian, we simply set ✓ = t in the
equations above. T is the duration of the evolution from
the initial state | ref i = |+i⌦n to the ground state of
the cost Hamiltonian HC , which is given by Eq. (3). The
counterdiabatic Hamiltonian HCD is approximated using
Eq. (6), where p is the order of the approximation.

As a concrete example, we study the Max-Cut problem
on 32 instances of regular graphs (n=6, D=3) with ran-
dom edge weights. Fig. 3 shows the probability that an
operator in the ADAPT-QAOA ansatz is also one of the
dominant operators in HCD. For each of the 32 cases, we

define a set O(i)

CD
(with i = 1, . . . , 32) comprised of the 5

operators with the largest coe�cient in the time-averaged
HCD [41]. The probability P in Fig. 3 is constructed by
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n = 6, D = 3. The di↵erent curves correspond to di↵erent
orders of the approximation.

taking the total number of times the mixer operator at

layer p is also an element of the corresponding set O(i)

CD

and dividing it by the total number of cases. In all cases,
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is inversely propor-

tional to the layer number. We attribute this to the fact
that HCD is computed for a specific mixer Hamiltonian
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Xi), while information about this choice does not

enter into ADAPT-QAOA, which only relies on the ini-
tial state |+i⌦n [42]. Interestingly, from Fig. 3 we see
that going to higher order in the HCD approximation
increases the probability of finding the mixers in the set

O(i)

CD
. It therefore appears that ADAPT-QAOA finds the

appropriate rotation axes in Hilbert space for faster con-
vergence to the solution, and that these axes may in some
sense be universal across all possible choices of H(t) that
interpolate between the initial and target states. This
suggests that STA can be used as a tool to construct
operator pools for ADAPT-QAOA.

IV. CONCLUSION

In conclusion, we introduced ADAPT-QAOA, a new
optimization algorithm that grows the ansatz iteratively
in a way that is naturally tailored to a given problem.
We tested several instances of random diagonal Hamil-
tonians and found that ADAPT-QAOA always outper-
forms the standard QAOA. Given its flexibility with the
choice of mixer pool, the algorithm can be tailored to
the native gates, connectivities, and experimental con-
straints of hardware. It would also be fruitful to em-
ploy ADAPT-QAOA for optimization problems that use
higher-dimensional Hilbert spaces, such as graph coloring
[26, 27]. Finally, more work into the connection to STA
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FIG. 9. Comparison of original QAOA and ADAPT-QAOA. In the left and right panels of this figure, we depict
the state change in the Hilbert space of the parameters to be optimized, for the original QAOA and ADAPT-
QAOA respectively. The starting state

q
◊

|◊Í (omitting the normalization factor), represented by the rounded dot
at the bottom of each space, is the even superposition state of all possible solutions. The arrows represent the
state evolution generated by the cost Hamiltonian and mixer Hamiltonian, and the color and direction of the arrows
indicate the nature of the evolution. Blue arrows represent the evolution by the cost Hamiltonian. Arrows of other
colors represent the evolution by di�erent mixer Hamiltonians. In the original QAOA, there is only one mixer (shown
in pink) available. Whereas, in ADAPT-QAOA there are more alternative mixers to chose from the mixers pool.
The two algorithm try to reach the target state |◊úÍ (represented by the blue star) by stacking these arrows, which
represent the alternating operations of two QAOAs. For reference we sketched the relevant paths — adiabatic path
for the original QAOA and counter-diabatic path for ADAPT-QAOA — along the state evolution of the two QAOAs.
As can be seen, the ADAPT-QAOA takes much fewer iterations to reach a closer point to the target state. This
illustrates that compared to the original QAOA, allowing alternative mixers enables ADAPT-QAOA to dramatically
improve algorithmic performance while achieving rapid convergence.

The advantage of this adaptive ansatz may come from the counter-diabatic (CD) driving mechanism.
Numerical evidence shows that the adaptive mixer sequence chosen by the algorithm coincides with that
of “shortcut to adiabaticity” by CD driving [27]. Inspired by the CD driving procedure, another variant of
QAOA, CD-QAOA [29], also uses an adaptive ansatz to achieve similar advantages. CD-QAOA is designed
for preparing the ground state of quantum-chaotic many-body spin chains. By using terms occurring in the
adiabatic gauge potential as additional control unitaries, CD-QAOA can achieve fast high-fidelity many-body
control.

Inspired by above variants of QAOA, we design a new variant of QAOA tailored for our QNN training
problem. In our case, for QNN training, the parameters we are optimizing (the angles of rotation gates) are
continuous (real) values. Therefore, the choice of mixer Hamiltonian has to be adapted (as in QDD). We
also want take advantage of including alternative mixers and allowing adaptive mixers for di�erent layers (as
in ADAPT-QAOA). Thus, the proper QAOA ansatz for our QNN training problem should be an adaptive
continuous version of QAOA, which we call we call AC-QAOA. Here we depict the the quantum circuit
schematic of AC-QAOA in Fig. 10.

3. Grover Adaptive Search

Grover’s algorithm is generally used as a search method to find a set of desired solutions from a set of
possible solutions. Dürr and Høyer presented an algorithm based on Grover’s method that finds an element

Adaptive Derivative Assembled Problem 
Tailored QAOA (ADAPT-QAOA)

Figure taken from 2103.17047
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that act across di�erent parameters). This potentially leads to a dramatic shortening of the depth of
QAOA layers while significantly improving the quality of the solution (the optimal QNN parameters
found by the QAOA routine).

�

ei�1HC

�1

Phase Oracle

ei�2HC

�2

ei�1A1

�1

Mixer

ei�2A2

�2 �pei�pHC

�p

ei�pAk

�

Phase Oracle Mixers 

ei�iA1 ei�i A2 e i�i Akei�iA3 �

Parameter Register

QNN Register 
&  

Other Registers 

Mixers Pool

FIG. 3. Schematic of our framework for quantum training of QNN. Our quantum training for QNN taking advantage
of the well-established parts in Refs. [25] and [26], while eliminating their shortcomings. We replace the phase
encoding operations in QAOA-like protocol of Ref. [25](as depicted in Fig 2) by the phase oracle in Ref. [26]. For
the mixers in the QAOA-like routine, we allow di�erent mixers for each layer, similar to Ref. [27]. In this figure, the
color of each block represents the nature of the corresponding Hamiltonian: di�erent color corresponds to di�erent
Hamiltonian (One can see that the Cost Hamiltonian is the same throughout the training whereas the mixer varies
from layer to layer). The mixers pool contains the proper mixers tailored to our QNN training problem. These rules
also apply to the other circuit schematic in this paper.

By making the mixers flexible and adaptive to specific optimisation problems, it is demanding to find an
e�cient way of determining the best sequence of mixers and the optimized hyperparameters. To address
these we adopt machine learning approaches (in particular, Recurrent Neural Networks and Reinforcement
Learning) as proposed in Refs. [17, 28–30]. The quantum mechanism of this framework is the best candidate
to exploit hidden structure in the QNN optimisation problem, which would provide beyond-Grover speed up
and mitigate the barren plateau issues for training QNNs.

C. Paper Outline

The remainder of this paper is organized as follows: in Section II we review some essential preliminaries
— particularly on the details of QAOA and its variants, from which we designed a new variant of QAOA
tailored for our QNN training problem. Section II C introduces a way of quantising parameters of a QNN —
that is, we show how to create superposition of a QNN with multiple parameter configurations. In Section
III we present quantum training by Grover adaptive search as a baseline prior to our quantum training
framework using QAOA. In Section IV we present the details of our framework including how to implement
the phase oracle, that can achieve coherent phase encoding of the cost function of a QNN, and which mixers
to use for the QAOA routine, as well as the strategy to determine the mixers sequence and the optimize
their hyper-parameters. Section V presents the deployment potential of our quantum training to a variety
of application including training VQE, learning a pure state, and training a quantum classifier. The final
section summarise our work and provides outlook for future work.

Quantum Neural Networks

Figure taken from 2103.17047
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Figure 13. Representation of a variational quantum circuit optimization scheme.

Table 3 presents a comprehensive overview of the current QML algorithms and indi-
cates the quantum routines they are based on or have used.

Table 3. An overview of current quantum machine learning algorithm.

Quantum Routines QML Applications

HHL algorithm

QSVM [4,74]
Q linear regression [8]

Q least squares [75]
QPCA [14]

Grover’s algorithm

Q k-Means [10]
Q K-Median [13]

QKNN [6]
Q Perceptron Models [76]

Q Neural Networks [3]

Quantum phase estimation Q k-Means [10]

Variational quantum circuit

Q decision tree [9]
Circuit-centric quantum

classifiers [77]
Deep reinforcement

learning [78]

3.3. QML Algorithms
3.3.1. Quantum Support Vector Machines

Support Vector Machines, generally known as SVMs, are a type of supervised algo-
rithm for machine learning that may be used to handle problems involving linear dis-
crimination. The approach involves establishing a hyperplane that differentiates between
two different classes of feature vectors. This hyperplane serves as a decision threshold for
the further categorization of data and is based on the concept of finding the hyperplane.
The SVM is described as aiming to maximize the distance between the hyperplane and
the support vectors of the data points that are located nearest to it. Depending on the
kernel employed by the SVM method, the objective function is sometimes convex or not.
Non-convex functions are often closer to the local maximum; hence, the conventional SVM
compromises optimization efficiency and accuracy rate. QSVM uses Grover’s algorithm as
a quantum subroutine for reduction. This makes it possible for non-convex cost functions
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It is hoped that quantum computers will o↵er advantages over classical computers for combina-
torial optimization. Here, we introduce a feedback-based strategy for quantum optimization, where
the results of qubit measurements are used to constructively assign values to quantum circuit pa-
rameters. We show that this procedure results in an estimate of the combinatorial optimization
problem solution that improves monotonically with the depth of the quantum circuit. Importantly,
the measurement-based feedback enables approximate solutions to the combinatorial optimization
problem without the need for any classical optimization e↵ort, as would be required for the quantum
approximate optimization algorithm (QAOA). We experimentally demonstrate this feedback-based
protocol on a superconducting quantum processor for the graph-partitioning problem MaxCut, and
present a series of numerical analyses that further investigate the protocol’s performance.

Introduction.— Combinatorial optimization has
broad and high-value applications in many sectors of
industry and science, including for optimization of logis-
tics and supply chain, and drug discovery [1]. Solving
general combinatorial optimization problems is NP hard
and most practical strategies involve developing good
quality approximate solutions. Recently, there has been
much interest in approximate solution of combinatorial
optimziation problems through mapping to quantum
systems, whereby the problem is encoded into an Ising
Hamiltonian Hp [2], such that the solution of problem
is encoded in the ground state of Hp. Then methods
such as quantum annealing [3], or within the quantum
circuit model, the quantum approximate optimization
algorithm (QAOA) [4], are used to approximately
prepare the ground state of Hp. Although there is no
rigorous proof of an advantage to using such quantum
techniques over classical approximation algorithms, it is
widely believed that at some scale of problem such an
advantage should exist.

We introduce a new approach to solving combinatorial
optimization problems using quantum computers that
operates through the use of parameterized quantum cir-
cuits and feedback, that is conditioned on qubit measure-
ments at every quantum circuit layer, in order to deter-
mine the circuit parameter values at subsequent layers.
This Feedback-based ALgorithm for Quantum Optimiza-
tioN (FALQON) makes a direct connection to quantum
Lyapunov control (QLC), a control strategy that uses
feedback to identify the controls to drive the dynamics
of a quantum system in a desired manner [5–13]. Our
approach works within the framework of circuit-model
quantum computing, but avoids a critical challenge fac-
ing the scaling of QAOA, which is the di�culty of opti-
mizing a large number of variational parameters. In fact,

it was recently shown that under certain assumptions,
this classical optimization problem is itself NP-hard for
QAOA [14]. Our feedback-based approach circumvents
the need for optimization of variational parameters by
using information from iterative measurements.
In the following, we show that FALQON produces

a monotonically improving estimate of the combinato-
rial optimization problem solution, with respect to the
depth of the circuit. We then consider the application
of FALQON towards solving the MaxCut problem, and
present the results of an experimental demonstration on
quantum hardware. This is followed by a series of numer-
ical analyses that explore the performance of FALQON
for MaxCut on 3-regular graphs. Finally, we examine the
required number of repeated circuit evaluations and com-
pare this to the requirements of QAOA in this context.
We conclude with a discussion of the tradeo↵s between
FALQON and QAOA, outline the additional content in
our companion paper [15], and look to the future.
Feedback-based algorithm for quantum optimization.—

We begin by considering a quantum system whose dy-
namics are governed by i

d
dt | (t)i = (Hp+Hd�(t))| (t)i ,

where | (t)i is the system state vector, we have set ~ = 1,
and Hp and Hd denote the (unitless) “drift” and “con-
trol” Hamiltonians, where the latter couples a scalar,
time-dependent control function �(t) to the system. We
seek to minimize hHpi = h (t)|Hp| (t)i [16], and accom-
plish this by designing �(t) such that

d

dt
h (t)|Hp| (t)i(t)  0, 8t � 0 . (1)

Evaluating the left-hand-side of Eq. (1), we see
that d

dt h (t)|Hp| (t)i = A(t)�(t), where A(t) ⌘

h (t)|i[Hd, Hp]| (t)i. There is significant flexibility in
choosing �(t) in order to satisfy Eq. (1), i.e., we may take
�(t) = �w f(t, A(t)), for w > 0, where f(t, A(t)) is any
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In the following, we show that FALQON produces
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rial optimization problem solution, with respect to the
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present the results of an experimental demonstration on
quantum hardware. This is followed by a series of numer-
ical analyses that explore the performance of FALQON
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required number of repeated circuit evaluations and com-
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namics are governed by i
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dt | (t)i = (Hp+Hd�(t))| (t)i ,

where | (t)i is the system state vector, we have set ~ = 1,
and Hp and Hd denote the (unitless) “drift” and “con-
trol” Hamiltonians, where the latter couples a scalar,
time-dependent control function �(t) to the system. We
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It is hoped that quantum computers will o↵er advantages over classical computers for combina-
torial optimization. Here, we introduce a feedback-based strategy for quantum optimization, where
the results of qubit measurements are used to constructively assign values to quantum circuit pa-
rameters. We show that this procedure results in an estimate of the combinatorial optimization
problem solution that improves monotonically with the depth of the quantum circuit. Importantly,
the measurement-based feedback enables approximate solutions to the combinatorial optimization
problem without the need for any classical optimization e↵ort, as would be required for the quantum
approximate optimization algorithm (QAOA). We experimentally demonstrate this feedback-based
protocol on a superconducting quantum processor for the graph-partitioning problem MaxCut, and
present a series of numerical analyses that further investigate the protocol’s performance.

Introduction.— Combinatorial optimization has
broad and high-value applications in many sectors of
industry and science, including for optimization of logis-
tics and supply chain, and drug discovery [1]. Solving
general combinatorial optimization problems is NP hard
and most practical strategies involve developing good
quality approximate solutions. Recently, there has been
much interest in approximate solution of combinatorial
optimziation problems through mapping to quantum
systems, whereby the problem is encoded into an Ising
Hamiltonian Hp [2], such that the solution of problem
is encoded in the ground state of Hp. Then methods
such as quantum annealing [3], or within the quantum
circuit model, the quantum approximate optimization
algorithm (QAOA) [4], are used to approximately
prepare the ground state of Hp. Although there is no
rigorous proof of an advantage to using such quantum
techniques over classical approximation algorithms, it is
widely believed that at some scale of problem such an
advantage should exist.

We introduce a new approach to solving combinatorial
optimization problems using quantum computers that
operates through the use of parameterized quantum cir-
cuits and feedback, that is conditioned on qubit measure-
ments at every quantum circuit layer, in order to deter-
mine the circuit parameter values at subsequent layers.
This Feedback-based ALgorithm for Quantum Optimiza-
tioN (FALQON) makes a direct connection to quantum
Lyapunov control (QLC), a control strategy that uses
feedback to identify the controls to drive the dynamics
of a quantum system in a desired manner [5–13]. Our
approach works within the framework of circuit-model
quantum computing, but avoids a critical challenge fac-
ing the scaling of QAOA, which is the di�culty of opti-
mizing a large number of variational parameters. In fact,

it was recently shown that under certain assumptions,
this classical optimization problem is itself NP-hard for
QAOA [14]. Our feedback-based approach circumvents
the need for optimization of variational parameters by
using information from iterative measurements.
In the following, we show that FALQON produces

a monotonically improving estimate of the combinato-
rial optimization problem solution, with respect to the
depth of the circuit. We then consider the application
of FALQON towards solving the MaxCut problem, and
present the results of an experimental demonstration on
quantum hardware. This is followed by a series of numer-
ical analyses that explore the performance of FALQON
for MaxCut on 3-regular graphs. Finally, we examine the
required number of repeated circuit evaluations and com-
pare this to the requirements of QAOA in this context.
We conclude with a discussion of the tradeo↵s between
FALQON and QAOA, outline the additional content in
our companion paper [15], and look to the future.
Feedback-based algorithm for quantum optimization.—

We begin by considering a quantum system whose dy-
namics are governed by i

d
dt | (t)i = (Hp+Hd�(t))| (t)i ,

where | (t)i is the system state vector, we have set ~ = 1,
and Hp and Hd denote the (unitless) “drift” and “con-
trol” Hamiltonians, where the latter couples a scalar,
time-dependent control function �(t) to the system. We
seek to minimize hHpi = h (t)|Hp| (t)i [16], and accom-
plish this by designing �(t) such that

d

dt
h (t)|Hp| (t)i(t)  0, 8t � 0 . (1)

Evaluating the left-hand-side of Eq. (1), we see
that d

dt h (t)|Hp| (t)i = A(t)�(t), where A(t) ⌘

h (t)|i[Hd, Hp]| (t)i. There is significant flexibility in
choosing �(t) in order to satisfy Eq. (1), i.e., we may take
�(t) = �w f(t, A(t)), for w > 0, where f(t, A(t)) is any
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d
dt

⟨ψ(t) |Hp |ψ(t)⟩ = i⟨ψ(t) | (Hp + Hdβ(t))Hp |ψ(t)⟩ − i⟨ψ(t) |Hp(Hp + Hdβ(t)) |ψ(t)⟩

= ⟨ψ(t) | i [Hd, Hp] |ψ(t)⟩ β(t) ≡ A(t) β(t)

https://pennylane.ai/qml/demos/tutorial_falqon.html
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d
dt

⟨ψ(t) |Hp |ψ(t)⟩ = ⟨ψ(t) | i [Hd, Hp] |ψ(t)⟩ β(t) ≡ A(t) β(t)

• We can choose any .  
• Consider   for , where  is any 

continuous function with   and  for all . 
• Take  and  such that  for simplicity. 
• Consider alternating (rather than concurrent) applications of  and 

, leading to a time evolution:

β(t)
β(t) = − w f(t, A(t)) w > 0 f(t, A(t))

f(t,0) = 0 A(t)f(t, A(t)) > 0 A(t) ≠ 0
w = 1 f(t, A(t)) = A(t) β(t) = − A(t)

Hp

Hd U = Ud (βℓ) Up ⋯ Ud (β1) Up

Up = e−iHpΔt

Ud (βk) = e−iβkHdΔt

βk = β(kτ − Δt)k = 1, 2, ⋯, ℓ
τ = 2Δt

• For small , this unitary evolution yields Trotterized approximation 
to the continuous time evolution of the system.

Δt

= β((k − 1)Δt)
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• During the time evolution when  is applied, , but eigenstate 
of  accumulates phase changes. (  is time-independent.) 

• For the time evolution when  is applied, we recover  

• Set , where  
• In this setting, it is always possible to choose  small enough such 

that . If  is chosen to be too large, the inequality 
will be violated.   

• FALQON is a constructive, optimization free procedure for assigning 
values to each  according to a feedback law. 

• By design, the quality of the solution to the combinatorial optimization 
problem improves monotonically with respect to depth of the circuit, .

Hp
d
dt

⟨Hp⟩ = 0

Hp Hp

Hd
d
dt

⟨Hp⟩ = A(t)β(t)

βk+1 = − Ak Ak = ⟨ψk | i [Hd, Hp] |ψk⟩

Δt
d
dt

⟨ψ(t) |Hp |ψ(t)⟩ ≤ 0 Δt

βk

k
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Figure 1. (a) The procedure for implementing FALQON. The initial step is to seed the procedure by setting �1 = 0. The
qubits are then initialized in the state | 0i, and a single FALQON layer is implemented to prepare | 1i = Ud(�1)Up| 0i. The
qubits are then measured to estimate A1, whose result is fed back to set �2 = �A1, up to sampling error. For subsequent steps
k = 2, · · · , `, the same procedure is repeated, as shown in (b): the qubits are initialized as | 0i, after which k layers are applied
to obtain | ki = Ud(�k)Up · · ·Ud(�1)Up| 0i, and then the qubits are measured to estimate Ak, and the result is fed back to set
the value of �k+1. This procedure causes hHpi to decrease layer-by-layer as per h 1|Hp| 1i � h 2|Hp| 2i � · · · � h `|Hp| `i,
as shown in (c), such that the quality of the solution to the combinatorial optimization problem monotonically improves with
circuit depth. The protocol can be terminated when the value of hHpi converges or a threshold number of layers ` is reached.
Then, after the final step, Z basis measurements on | `i can be used to determine a best candidate solution to the combinatorial
optimization problem of interest, by repeatedly sampling from the probability distribution over bit strings induced by | `i and
selecting the outcome associated with the best solution.

continuous function with f(t, 0) = 0 and A(t)f(t, A(t)) >
0 for all A(t) 6= 0 [17]. Here, we present results for w = 1
and f(t, A(t)) = A(t), such that �(t) = �A(t). In prac-
tice, we assign values to �(t) as a feedback loop, where
�(t) = �A(t� ⌧), and ⌧ is a feedback loop time delay.

We now consider alternating, rather than concurrent,
applications of Hp and Hd, leading to a time evolu-
tion of the form U = Ud(�`)Up · · ·Ud(�1)Up, where
Up = e

�iHp�t, Ud(�k) = e
�i�kHd�t, and �k = �(k⌧��t)

for k = 1, 2, · · · , ` and ⌧ = 2�t, such that after each pe-
riod of �t the applied Hamiltonian alternates between
Hp and Hd. We note that for small �t, this yields a
Trotterized approximation to the continuous time evolu-
tion of the system. In this Trotterized framework, we
again aim to satisfy Eq. (1) by suitably choosing each
value of �k. We note that during the time intervals when
Hp is applied, d

dt hHpi(t) = 0; although its value doesn’t
change, the eigenstates of Hp do accumulate phases dur-
ing this time, which impact the ensuing dynamics. Mean-
while, during the time intervals when Hd is applied, we
recover the same result that d

dt hHpi = A(t)�(t). Conse-
quently, we can ensure that Eq. (1) is satisfied by utiliz-
ing the same feedback law, given by �k+1 = �Ak, where
Ak = h k|i[Hd, Hp]| ki [18]. In this setting, it is always
possible to select �t small enough such that Eq. (1) is
satisfied [15]. However, if �t is chosen to be too large,

Eq. (1) will be violated. Based on this framework, the
FALQON algorithm is presented in Fig. 1. The key fea-
ture of FALQON is that it is a constructive, optimization-
free procedure for assigning values to each �k accord-
ing to a feedback law. And by design, the enforcement
of Eq. (1) ensures that the quality of the solution to
the combinatorial optimization problem under consider-
ation (quantified by hHpi) improves monotonically with
respect to the depth of the circuit, k.
The circuits used in QAOA have the same alternat-

ing structure as those in FALQON, albeit with addi-
tional parameters �1, · · · , �` that enter into Up, such
that UQAOA = Ud(�`)Up(�`) · · ·Ud(�1)Up(�1). Then,
the solution to the original combinatorial optimization
problem is sought by minimizing h (~�, ~�)|Hp| (~�, ~�)i
over the set of 2` circuit parameters ~� = (�1, · · · , �`)

and ~� = (�1, · · · ,�`) using a classical processor, where

| (~�, ~�)i = UQAOA| 0i. However, we emphasize that
FALQON is conceptually distinct from QAOA. Namely,
QAOA seeks to minimize hHpi by classically optimizing

over all parameters ~�, ~� simultaneously, while FALQON
seeks to minimize hHpi over a sequence of quantum cir-
cuit layers, guided by qubit measurement-based feed-
back, without classical optimization.
Applications to MaxCut.— We now consider the ap-

plication of FALQON towards a quintessential combi-
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FALQON vs QAOA
• Circuits used in QAOA has the same alternative structure as those in 

FALQON with additional parameters  that enter into  such that 
. 

• Solution to the original combinatorial optimization is found by minimizing 
 over  parameters, using classical optimization. 

( ) 

• FALQON minimizes  over a sequence of quantum circuit layers, guided 
by qubit measurement-based feed back without classical optimization.

⃗γ = (γ1, ⋯, γℓ) Up

UQAOA = Ud(βℓ)Up(γℓ)⋯Ud(β1)Up(γ1)

⟨ψ( ⃗γ, ⃗β) |Hp |ψ( ⃗γ, ⃗β)⟩ 2ℓ
|ψ( ⃗γ, ⃗β)⟩ = UQAOA |ψ0⟩

⟨Hp⟩

• MaxCut:   and  

•    where  are Pauli’s matrices.

Hp = − ∑
(i, j)∈E

1
2 (1 − ZiZj) Hd =

n

∑
j=1

Xj

i [Hd, Hp] = ∑
(i, j)∈E

YiZj + ZiYj Xj, Yj and Zj

FALQON for MaxCut problem
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natorial optimization problem: MaxCut, which aims to
identify a graph partition that maximizes the number of
edges in a graph that are cut. For an unweighted graph G,
with n nodes and edge set E , the MaxCut problem Hamil-
tonian is defined on n qubits as Hp = �

P
i,j2E

1
2

�
1 �

ZiZj

�
, while Hd has the standard form Hd =

Pn
j=1 Xj ,

such that i[Hd, Hp] =
P

i,j2E YiZj + ZiYj , where Xj ,
Yj , and Zj denote the Pauli operators acting on qubit
j. As such, evaluating the feedback law �k+1 = �Ak =
�h k|i[Hd, Hp]| ki in this setting involves measurements
of maximally n(n� 1) two-qubit Pauli strings.

As a proof-of-principle, in Fig. 2 we present the re-
sults of an experimental demonstration of FALQON on
a superconducting quantum processor for a simple in-
stance of the MaxCut problem. In particular, we con-
sidered an instance of MaxCut on an unweighted graph
composed of n = 3 nodes connected by two edges, such
that Hp = �

1
2 (2 � Z1Z2 � Z2Z3) and i[Hd, Hp] =

Y1Z2 + Z2Y1 + Y2Z3 + Z3Y2. The experiment was per-
formed on the publicly accessible ibmq manila processor
and utilized three qubits with nearest-neighbor connec-
tivity matching that of the graph under consideration.
In this setting, ` = 10 steps of FALQON were performed
according to the procedure outlined in Fig. 1, selecting
�t = 0.2. At each step, one circuit was implemented
in order to estimate hHpik natively in the computational
basis. Two additional circuits were implemented in order
to estimate the terms in Ak. For each circuit, the qubits
were initialized in the ground state of Hd, and m = 1024
shots were taken.

As shown in Fig. 2(a), FALQON was successful in
achieving a monotonic decrease of hHpi in this experi-
ment up to layer five (orange point markers). FALQON
also achieves a monotonic increase in the success prob-
ability of measuring the two degenerate ground states,
denoted by �, as shown in Fig. 2(b). The error bars
in Fig. 2(a) and (b) present the standard error of the
mean, which estimates how much the reported hHpik and
�k may deviate from their true values due to finite sam-
pling. Finally, the associated values of �, determined
according to the feedback law �k+1 = �Ak, are plotted
in Fig. 2(b).

Past layer 5, it is evident that FALQON is no longer
able to decrement hHpi using this hardware platform, de-
spite exhibiting a continued monotonic decrease in associ-
ated noise-free numerical simulations (blue point mark-
ers). This reveals the limitations that hardware noise
presents for this problem instance. Looking ahead, we
are optimistic that continuous improvements to quan-
tum hardware will pave the way towards applications
of FALQON to increasingly complex combinatorial op-
timization problems.

In the interim, we explore how FALQON performs on
larger instances of MaxCut through a series of noise-
free numerical illustrations. These illustrations con-
sider unweighted, connected 3-regular graphs with n 2

Figure 2. Results from experimental implementation of ` = 10
layers of FALQON on a superconducting quantum processor.
For this demonstration, FALQON is applied to an n = 3 qubit
instance of MaxCut on an unweighted graph. Panel (a) shows
that FALQON is successful in achieving a monotonic decrease
of hHpi over layers k = 1, · · · , 5 in this experiment (orange
point markers), noting that the global minimum value for this
problem instance is hHpimin = �2 (dashed black line). In ad-
dition, in panel (b) a monotonic increase of the probability,
�, of measuring the two degenerate ground states is also ob-
served up to layer k = 5 (orange point markers). The error
bars in (a) and (b) indicate the standard error. The values
of � are plotted in (c). In (a)-(c), the blue point markers
correspond to ideal results computed numerically.

{8, 10, · · · , 20} vertices. For n 2 {8, 10} we consider all
nonisomorphic graphs; for n 2 {12, 14, · · · , 20} we con-
sider 50 randomly-generated, nonisomorphic graphs. In
our simulations, the qubits are initialized in the ground
state of Hd, and the performance of FALQON is quan-
tified using the mean and standard deviations (over the
problem instances) of two figures of merit: the approxi-
mation ratio, rA = hHpi/hHpimin and the success prob-
ability of measuring the (potentially degenerate) ground
state(s) {|q0,ii}, � =

P
i |h |q0,ii|

2. We relate the perfor-
mance to two reference values: rA = 0.932, correspond-
ing to the highest approximation ratio that can currently
be guaranteed using a classical approximation algorithm
(i.e., the algorithm of Goemans andWilliamson [19]), and
� = 0.25, which implies that on average, four repetitions
will be needed in order to obtain a sample correspond-
ing to the ground state. Our only free parameter is the
time step �t, which is tuned to be as large as possible,
a value we call the critical �t and denote by �tc, as
long as the condition in Eq. (1) is met for all problem
instances considered. Our results are collected in Fig. 3.
In Fig. 3(b), the mean values of �1,�2, · · · are plotted
as a function of layer for di↵erent values of n, according

Approximation ration: 

4

(a)

(b) (c)

n (d)

(e)

Figure 3. (a) Pictorial representation of MaxCut on a 3-regular graph with 8 vertices. (b) Mean � values are plotted as a
function of layer for di↵erent n values, with shading showing the standard deviations. (c) The performance of FALQON, as
quantified by the approximation ratio (dashed curves) and the success probability of measuring the degenerate ground state
(solid curves) is shown for di↵erent values of n. (d) The mean number of layers needed to achieve the reference values of
rA = 0.932 (dashed curve) and � = 0.25 (solid curve) is shown; error bars report the associated standard deviation. (e) The
critical �t values for di↵erent problem sizes are plotted.

to the legend in Fig. 3(c), with the shading representing
the standard deviation. We find that with increasing n,
the shape of the resultant � curves follows a clear trend,
and the standard deviation decreases. In Fig. 3(c), the
associated rA and � results are shown (dashed and solid
curves, respectively), and the associated reference values
are plotted in black. For the cases considered here, we
find that FALQON consistently leads to monotonic con-
vergence towards very high rA and � values as a function
of layer. To determine how the requisite circuit depths
scale with the problem size, in Fig. 3(d) we plot the av-
erage number of layers required to achieve the reference
values of rA and � as a function of n. Finally, in Fig. 3(e)
we plot �tc for each value of n under consideration. The
scaling of the required number of layers and �tc seems
nearly linear, even up to n = 20, indicating a favorable
runtime scaling of the FALQON algorithm, at least for
this class of MaxCut problems. We remark that in ad-
dition to the analyses presented here, we also tested the
performance of FALQON on weighted 3-regular graphs,
and identified instances where the rA and � convergence
is enhanced by introducing one of three possible heuristic
modifications to the FALQON algorithm. Details can be
found in Appendix A.

In our companion paper [15], we present a sampling
complexity comparison between FALQON and QAOA in
the context of MaxCut, as quantified by the total number
of samples (i.e., circuit repetitions) that are required, de-
noted Ns. When a gradient algorithm is used for QAOA,
N

QAOA
s = O(mq(`)`), where m denotes the number of

samples needed to estimate the expectation value of a
two-qubit Pauli string Pj , and for simplicity, m is as-

sumed to be independent of Pj and q denotes the num-
ber of classical optimization iterations. For gradient-free
methods, NQAOA

s = O(mq(`)). Meanwhile, in FALQON
we find N

FALQON
s = O(md`), where d denotes the de-

gree of the graph. This suggests that FALQON has
a more favorable sampling complexity than QAOA for
cases where the number of QAOA optimization iterations
q(`) exceeds d` in general, or d when a gradient algorithm
is utilized. Further details can be found in [15].

Discussion and outlook.– We have introduced
FALQON as a constructive, feedback-based algorithm
for solving combinatorial optimization problems using
quantum computers. Importantly, FALQON performs
optimization without the need for an expensive classical
optimization loop. We have demonstrated its perfor-
mance on current quantum hardware and provided
numerical analyses of its performance towards finding
the maximum cut of regular graphs. By studying the
performance with respect to layer and the problem
size n, our numerical analyses show that FALQON
converges to very high approximation ratios and success
probabilities with a favorable scaling of resources with
respect to n, suggesting that FALQON may be a useful
heuristic algorithm for this class of problems.

Our findings also suggest that FALQON can require
relatively deep circuits in order to achieve this conver-
gence, relative to the shallow circuits typically considered
in QAOA. In our companion article [15], we provide an in-
depth analysis of the tradeo↵s in the performance and re-
source requirements of FALQON and QAOA, and discuss
the resource regimes where each of these methods can be
expected to o↵er advantages. In short, we expect QAOA

4
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to the legend in Fig. 3(c), with the shading representing
the standard deviation. We find that with increasing n,
the shape of the resultant � curves follows a clear trend,
and the standard deviation decreases. In Fig. 3(c), the
associated rA and � results are shown (dashed and solid
curves, respectively), and the associated reference values
are plotted in black. For the cases considered here, we
find that FALQON consistently leads to monotonic con-
vergence towards very high rA and � values as a function
of layer. To determine how the requisite circuit depths
scale with the problem size, in Fig. 3(d) we plot the av-
erage number of layers required to achieve the reference
values of rA and � as a function of n. Finally, in Fig. 3(e)
we plot �tc for each value of n under consideration. The
scaling of the required number of layers and �tc seems
nearly linear, even up to n = 20, indicating a favorable
runtime scaling of the FALQON algorithm, at least for
this class of MaxCut problems. We remark that in ad-
dition to the analyses presented here, we also tested the
performance of FALQON on weighted 3-regular graphs,
and identified instances where the rA and � convergence
is enhanced by introducing one of three possible heuristic
modifications to the FALQON algorithm. Details can be
found in Appendix A.

In our companion paper [15], we present a sampling
complexity comparison between FALQON and QAOA in
the context of MaxCut, as quantified by the total number
of samples (i.e., circuit repetitions) that are required, de-
noted Ns. When a gradient algorithm is used for QAOA,
N

QAOA
s = O(mq(`)`), where m denotes the number of

samples needed to estimate the expectation value of a
two-qubit Pauli string Pj , and for simplicity, m is as-

sumed to be independent of Pj and q denotes the num-
ber of classical optimization iterations. For gradient-free
methods, NQAOA

s = O(mq(`)). Meanwhile, in FALQON
we find N

FALQON
s = O(md`), where d denotes the de-

gree of the graph. This suggests that FALQON has
a more favorable sampling complexity than QAOA for
cases where the number of QAOA optimization iterations
q(`) exceeds d` in general, or d when a gradient algorithm
is utilized. Further details can be found in [15].

Discussion and outlook.– We have introduced
FALQON as a constructive, feedback-based algorithm
for solving combinatorial optimization problems using
quantum computers. Importantly, FALQON performs
optimization without the need for an expensive classical
optimization loop. We have demonstrated its perfor-
mance on current quantum hardware and provided
numerical analyses of its performance towards finding
the maximum cut of regular graphs. By studying the
performance with respect to layer and the problem
size n, our numerical analyses show that FALQON
converges to very high approximation ratios and success
probabilities with a favorable scaling of resources with
respect to n, suggesting that FALQON may be a useful
heuristic algorithm for this class of problems.

Our findings also suggest that FALQON can require
relatively deep circuits in order to achieve this conver-
gence, relative to the shallow circuits typically considered
in QAOA. In our companion article [15], we provide an in-
depth analysis of the tradeo↵s in the performance and re-
source requirements of FALQON and QAOA, and discuss
the resource regimes where each of these methods can be
expected to o↵er advantages. In short, we expect QAOA
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function of layer for di↵erent n values, with shading showing the standard deviations. (c) The performance of FALQON, as
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rA = 0.932 (dashed curve) and � = 0.25 (solid curve) is shown; error bars report the associated standard deviation. (e) The
critical �t values for di↵erent problem sizes are plotted.
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Figure 3. (a) Pictorial representation of MaxCut on a 3-regular graph with 8 vertices. (b) Mean � values are plotted as a
function of layer for di↵erent n values, with shading showing the standard deviations. (c) The performance of FALQON, as
quantified by the approximation ratio (dashed curves) and the success probability of measuring the degenerate ground state
(solid curves) is shown for di↵erent values of n. (d) The mean number of layers needed to achieve the reference values of
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critical �t values for di↵erent problem sizes are plotted.
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of layer. To determine how the requisite circuit depths
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nearly linear, even up to n = 20, indicating a favorable
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Figure 3. (a) Pictorial representation of MaxCut on a 3-regular graph with 8 vertices. (b) Mean � values are plotted as a
function of layer for di↵erent n values, with shading showing the standard deviations. (c) The performance of FALQON, as
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(solid curves) is shown for di↵erent values of n. (d) The mean number of layers needed to achieve the reference values of
rA = 0.932 (dashed curve) and � = 0.25 (solid curve) is shown; error bars report the associated standard deviation. (e) The
critical �t values for di↵erent problem sizes are plotted.
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find that FALQON consistently leads to monotonic con-
vergence towards very high rA and � values as a function
of layer. To determine how the requisite circuit depths
scale with the problem size, in Fig. 3(d) we plot the av-
erage number of layers required to achieve the reference
values of rA and � as a function of n. Finally, in Fig. 3(e)
we plot �tc for each value of n under consideration. The
scaling of the required number of layers and �tc seems
nearly linear, even up to n = 20, indicating a favorable
runtime scaling of the FALQON algorithm, at least for
this class of MaxCut problems. We remark that in ad-
dition to the analyses presented here, we also tested the
performance of FALQON on weighted 3-regular graphs,
and identified instances where the rA and � convergence
is enhanced by introducing one of three possible heuristic
modifications to the FALQON algorithm. Details can be
found in Appendix A.
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quantum computers. Importantly, FALQON performs
optimization without the need for an expensive classical
optimization loop. We have demonstrated its perfor-
mance on current quantum hardware and provided
numerical analyses of its performance towards finding
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size n, our numerical analyses show that FALQON
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natorial optimization problem: MaxCut, which aims to
identify a graph partition that maximizes the number of
edges in a graph that are cut. For an unweighted graph G,
with n nodes and edge set E , the MaxCut problem Hamil-
tonian is defined on n qubits as Hp = �

P
i,j2E

1
2

�
1 �

ZiZj

�
, while Hd has the standard form Hd =

Pn
j=1 Xj ,

such that i[Hd, Hp] =
P

i,j2E YiZj + ZiYj , where Xj ,
Yj , and Zj denote the Pauli operators acting on qubit
j. As such, evaluating the feedback law �k+1 = �Ak =
�h k|i[Hd, Hp]| ki in this setting involves measurements
of maximally n(n� 1) two-qubit Pauli strings.

As a proof-of-principle, in Fig. 2 we present the re-
sults of an experimental demonstration of FALQON on
a superconducting quantum processor for a simple in-
stance of the MaxCut problem. In particular, we con-
sidered an instance of MaxCut on an unweighted graph
composed of n = 3 nodes connected by two edges, such
that Hp = �

1
2 (2 � Z1Z2 � Z2Z3) and i[Hd, Hp] =

Y1Z2 + Z2Y1 + Y2Z3 + Z3Y2. The experiment was per-
formed on the publicly accessible ibmq manila processor
and utilized three qubits with nearest-neighbor connec-
tivity matching that of the graph under consideration.
In this setting, ` = 10 steps of FALQON were performed
according to the procedure outlined in Fig. 1, selecting
�t = 0.2. At each step, one circuit was implemented
in order to estimate hHpik natively in the computational
basis. Two additional circuits were implemented in order
to estimate the terms in Ak. For each circuit, the qubits
were initialized in the ground state of Hd, and m = 1024
shots were taken.

As shown in Fig. 2(a), FALQON was successful in
achieving a monotonic decrease of hHpi in this experi-
ment up to layer five (orange point markers). FALQON
also achieves a monotonic increase in the success prob-
ability of measuring the two degenerate ground states,
denoted by �, as shown in Fig. 2(b). The error bars
in Fig. 2(a) and (b) present the standard error of the
mean, which estimates how much the reported hHpik and
�k may deviate from their true values due to finite sam-
pling. Finally, the associated values of �, determined
according to the feedback law �k+1 = �Ak, are plotted
in Fig. 2(b).

Past layer 5, it is evident that FALQON is no longer
able to decrement hHpi using this hardware platform, de-
spite exhibiting a continued monotonic decrease in associ-
ated noise-free numerical simulations (blue point mark-
ers). This reveals the limitations that hardware noise
presents for this problem instance. Looking ahead, we
are optimistic that continuous improvements to quan-
tum hardware will pave the way towards applications
of FALQON to increasingly complex combinatorial op-
timization problems.

In the interim, we explore how FALQON performs on
larger instances of MaxCut through a series of noise-
free numerical illustrations. These illustrations con-
sider unweighted, connected 3-regular graphs with n 2

Figure 2. Results from experimental implementation of ` = 10
layers of FALQON on a superconducting quantum processor.
For this demonstration, FALQON is applied to an n = 3 qubit
instance of MaxCut on an unweighted graph. Panel (a) shows
that FALQON is successful in achieving a monotonic decrease
of hHpi over layers k = 1, · · · , 5 in this experiment (orange
point markers), noting that the global minimum value for this
problem instance is hHpimin = �2 (dashed black line). In ad-
dition, in panel (b) a monotonic increase of the probability,
�, of measuring the two degenerate ground states is also ob-
served up to layer k = 5 (orange point markers). The error
bars in (a) and (b) indicate the standard error. The values
of � are plotted in (c). In (a)-(c), the blue point markers
correspond to ideal results computed numerically.

{8, 10, · · · , 20} vertices. For n 2 {8, 10} we consider all
nonisomorphic graphs; for n 2 {12, 14, · · · , 20} we con-
sider 50 randomly-generated, nonisomorphic graphs. In
our simulations, the qubits are initialized in the ground
state of Hd, and the performance of FALQON is quan-
tified using the mean and standard deviations (over the
problem instances) of two figures of merit: the approxi-
mation ratio, rA = hHpi/hHpimin and the success prob-
ability of measuring the (potentially degenerate) ground
state(s) {|q0,ii}, � =

P
i |h |q0,ii|

2. We relate the perfor-
mance to two reference values: rA = 0.932, correspond-
ing to the highest approximation ratio that can currently
be guaranteed using a classical approximation algorithm
(i.e., the algorithm of Goemans andWilliamson [19]), and
� = 0.25, which implies that on average, four repetitions
will be needed in order to obtain a sample correspond-
ing to the ground state. Our only free parameter is the
time step �t, which is tuned to be as large as possible,
a value we call the critical �t and denote by �tc, as
long as the condition in Eq. (1) is met for all problem
instances considered. Our results are collected in Fig. 3.
In Fig. 3(b), the mean values of �1,�2, · · · are plotted
as a function of layer for di↵erent values of n, according

= approximation ratio 

The only free parameter is time step , 
which is tuned to be as large as possible.
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FIG. 1. (a) n-observed particles (b) Dividing n particles into
two groups for 2 ! 2 process (c) Identified event-topology
with A and B.

QUBO for Event-topology classification. Our only
assumption on abnormal events in collider data is that
observed particles are produced through 2 ! 2 process.
More specifically, two new particles A and B are pro-
duced and they decay into observed ones. Thus identi-
fying an event-topology becomes a binary classification,
whose computing complexity increases exponentially as
O(2n) with n observed particles. A schematic description
is presented in Fig. 1. As we have no further assump-
tions, we need to set a guiding rule to assign observed
particles into decay products of either A or B. Moti-
vated by general “energy minimum principle” in various
fields of physics, one attempts to minimize the total in-
variant mass (P1 + P2)2. But unlike the case of signals
with missing energy which have been studied extensively
in the literature, we will have a trivial partonic center of
energy

p
ŝ when all the final particles are visible without

missing energy-momenta.
The next trial we can take is to minimize a mass dif-

ference between A and B. With the four-momentum of
i-th particle as pi, momentums of A and B are;

P1 =
X

i

pi xi, P2 =
X

i

pi (1� xi), (1)

where pi is the constituent of A (P1) if xi = 1 or B (P2)
if xi = 0 [11]. Unlike a jet clustering algorithm, we don’t
require any structure or a seed in clustering particles. By
focusing on the kinematics, we minimize the following
function H, the mass di↵erence of A and B;

H =
�
P

2

1
� P

2

2

�2
(2)

for all possible combinations of {xi}. The dimension of
H, [H] = M

4 is chosen to address our problem as a
QUBO problem with an Ising model form;

HQUBO =
X

ij

Jijsisj +
X

i

hisi, (3)

where {si} is spin set with only ±1 values for spin "

and #, and Jij , hi are the coupling strength and biases,
respectively. We cast our minimization problem on H

into that on HQUBO through a change of variables xi =

(1 + si)/2 to express;

Jij =
X

k`

PikPj`, (4)

hi = 2
X

j

[
X

k`

(PikPj` � Pk`Pij)], (5)

with Pij = pi · pj . Our target function H in Eq. (2) is
optimized to the case of MA = MB , which is the case
of most conventional new physics searches at the LHC.
Thus this functionH can be a starting point, but we need
to generalize this function to handle situations including
(1) various new physics scenarios with asymmetric pro-
duction of MA 6= MB , and (2) o↵-shell e↵ect from the
decay width of unstable particles or smearing from a de-
tector responses. We add an additional constraint term
to deal with above issues;

HQUBO ! HQUBO + �(P 2

1
+ P

2

2
)

= HQUBO + �

X

ij

Pij [sisj + (1� si)(1� sj)]

=
X

ij

J
0
ijsisj +

X

i

h
0
i si, (6)

with J
0
ij = Jij + 2�Pij and h

0
i = hi � 2�

P
j Pij . Here

we remove constant terms. To maintain a hierarchy be-
tween the minimum for mass di↵erence and the minimum
in total mass sum during a minimization procedure, we
set � = min(Jij)/max(Pij). This choice is based on em-
pirical studies as in the case of choosing hyperparameters
in conventional ML algorithms. Finally, we swap A and
B if the number of particles assigned to A is less than
the number of particles clustered into B. We maintain
the ordering between numbers of constituent particles in
A and B over all events.

In order to demonstrate the performance of our QUBO
algorithm, we take three examples: (1) Top quark pair
production, (2) Higgs and Z boson production and (3)
four top-quark production via the pair of color octet õ

scalar where each scalar decays into a top-quark pair [19].
Here we take the mass of õ as 600GeV for a benchmark.
All these particles decay hadronically;

pp ! t, t̄ ! {j1, j2, j3, j4, j5, j6}, (7a)

pp ! H,Z ! {j1, j2, j3, j4, j5, j6}, (7b)

pp ! õ, õ
⇤
! t, t̄, t, t̄ ! {j1, j2, j3, · · · , j11, j12}. (7c)

Here ji is a reconstructed jet as we deal with fully
hadronic processes. To prepare data for above pro-
cesses at the LHC@13TeV, we use the standard chain of
Monte Carlo simulations, MadGraph5, Pythia8 and
Delphes3 with Fastjet [20–23]. As we focus on testing
the feasibility of our QUBO algorithm, we apply it to sig-
nal processes with MPI and ISR/FSR processes turned
o↵. Jets are reconstructed through anti-kT algorithm
with a jet radius R = 0.4. Basic cuts of pT > 25GeV
and rapidity |⌘| < 2.5 are applied to reconstructed jets.
HQUBO in Eq. (6) is calculated with Monte Carlo data
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with Pij = pi · pj . Our target function H in Eq. (2) is
optimized to the case of MA = MB , which is the case
of most conventional new physics searches at the LHC.
Thus this functionH can be a starting point, but we need
to generalize this function to handle situations including
(1) various new physics scenarios with asymmetric pro-
duction of MA 6= MB , and (2) o↵-shell e↵ect from the
decay width of unstable particles or smearing from a de-
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to deal with above issues;
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we remove constant terms. To maintain a hierarchy be-
tween the minimum for mass di↵erence and the minimum
in total mass sum during a minimization procedure, we
set � = min(Jij)/max(Pij). This choice is based on em-
pirical studies as in the case of choosing hyperparameters
in conventional ML algorithms. Finally, we swap A and
B if the number of particles assigned to A is less than
the number of particles clustered into B. We maintain
the ordering between numbers of constituent particles in
A and B over all events.

In order to demonstrate the performance of our QUBO
algorithm, we take three examples: (1) Top quark pair
production, (2) Higgs and Z boson production and (3)
four top-quark production via the pair of color octet õ

scalar where each scalar decays into a top-quark pair [19].
Here we take the mass of õ as 600GeV for a benchmark.
All these particles decay hadronically;

pp ! t, t̄ ! {j1, j2, j3, j4, j5, j6}, (7a)

pp ! H,Z ! {j1, j2, j3, j4, j5, j6}, (7b)

pp ! õ, õ
⇤
! t, t̄, t, t̄ ! {j1, j2, j3, · · · , j11, j12}. (7c)

Here ji is a reconstructed jet as we deal with fully
hadronic processes. To prepare data for above pro-
cesses at the LHC@13TeV, we use the standard chain of
Monte Carlo simulations, MadGraph5, Pythia8 and
Delphes3 with Fastjet [20–23]. As we focus on testing
the feasibility of our QUBO algorithm, we apply it to sig-
nal processes with MPI and ISR/FSR processes turned
o↵. Jets are reconstructed through anti-kT algorithm
with a jet radius R = 0.4. Basic cuts of pT > 25GeV
and rapidity |⌘| < 2.5 are applied to reconstructed jets.
HQUBO in Eq. (6) is calculated with Monte Carlo data

Minimize the mass difference:

pi is the momentum of constituent of A if xi = 1

pi is the momentum of constituent of B if xi = 0

2

PP � {vi} PP � {vi} � {vj} PP � A � B

(a) (b) (c)

FIG. 1. (a) n-observed particles (b) Dividing n particles into
two groups for 2 ! 2 process (c) Identified event-topology
with A and B.

QUBO for Event-topology classification. Our only
assumption on abnormal events in collider data is that
observed particles are produced through 2 ! 2 process.
More specifically, two new particles A and B are pro-
duced and they decay into observed ones. Thus identi-
fying an event-topology becomes a binary classification,
whose computing complexity increases exponentially as
O(2n) with n observed particles. A schematic description
is presented in Fig. 1. As we have no further assump-
tions, we need to set a guiding rule to assign observed
particles into decay products of either A or B. Moti-
vated by general “energy minimum principle” in various
fields of physics, one attempts to minimize the total in-
variant mass (P1 + P2)2. But unlike the case of signals
with missing energy which have been studied extensively
in the literature, we will have a trivial partonic center of
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ŝ when all the final particles are visible without
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with Pij = pi · pj . Our target function H in Eq. (2) is
optimized to the case of MA = MB , which is the case
of most conventional new physics searches at the LHC.
Thus this functionH can be a starting point, but we need
to generalize this function to handle situations including
(1) various new physics scenarios with asymmetric pro-
duction of MA 6= MB , and (2) o↵-shell e↵ect from the
decay width of unstable particles or smearing from a de-
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to deal with above issues;

HQUBO ! HQUBO + �(P 2

1
+ P

2

2
)

= HQUBO + �

X

ij

Pij [sisj + (1� si)(1� sj)]

=
X

ij

J
0
ijsisj +

X

i

h
0
i si, (6)

with J
0
ij = Jij + 2�Pij and h

0
i = hi � 2�

P
j Pij . Here
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tween the minimum for mass di↵erence and the minimum
in total mass sum during a minimization procedure, we
set � = min(Jij)/max(Pij). This choice is based on em-
pirical studies as in the case of choosing hyperparameters
in conventional ML algorithms. Finally, we swap A and
B if the number of particles assigned to A is less than
the number of particles clustered into B. We maintain
the ordering between numbers of constituent particles in
A and B over all events.

In order to demonstrate the performance of our QUBO
algorithm, we take three examples: (1) Top quark pair
production, (2) Higgs and Z boson production and (3)
four top-quark production via the pair of color octet õ

scalar where each scalar decays into a top-quark pair [19].
Here we take the mass of õ as 600GeV for a benchmark.
All these particles decay hadronically;

pp ! t, t̄ ! {j1, j2, j3, j4, j5, j6}, (7a)
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Here ji is a reconstructed jet as we deal with fully
hadronic processes. To prepare data for above pro-
cesses at the LHC@13TeV, we use the standard chain of
Monte Carlo simulations, MadGraph5, Pythia8 and
Delphes3 with Fastjet [20–23]. As we focus on testing
the feasibility of our QUBO algorithm, we apply it to sig-
nal processes with MPI and ISR/FSR processes turned
o↵. Jets are reconstructed through anti-kT algorithm
with a jet radius R = 0.4. Basic cuts of pT > 25GeV
and rapidity |⌘| < 2.5 are applied to reconstructed jets.
HQUBO in Eq. (6) is calculated with Monte Carlo data
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QUBO for Event-topology classification. Our only
assumption on abnormal events in collider data is that
observed particles are produced through 2 ! 2 process.
More specifically, two new particles A and B are pro-
duced and they decay into observed ones. Thus identi-
fying an event-topology becomes a binary classification,
whose computing complexity increases exponentially as
O(2n) with n observed particles. A schematic description
is presented in Fig. 1. As we have no further assump-
tions, we need to set a guiding rule to assign observed
particles into decay products of either A or B. Moti-
vated by general “energy minimum principle” in various
fields of physics, one attempts to minimize the total in-
variant mass (P1 + P2)2. But unlike the case of signals
with missing energy which have been studied extensively
in the literature, we will have a trivial partonic center of
energy

p
ŝ when all the final particles are visible without

missing energy-momenta.
The next trial we can take is to minimize a mass dif-

ference between A and B. With the four-momentum of
i-th particle as pi, momentums of A and B are;
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where pi is the constituent of A (P1) if xi = 1 or B (P2)
if xi = 0 [11]. Unlike a jet clustering algorithm, we don’t
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focusing on the kinematics, we minimize the following
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with Pij = pi · pj . Our target function H in Eq. (2) is
optimized to the case of MA = MB , which is the case
of most conventional new physics searches at the LHC.
Thus this functionH can be a starting point, but we need
to generalize this function to handle situations including
(1) various new physics scenarios with asymmetric pro-
duction of MA 6= MB , and (2) o↵-shell e↵ect from the
decay width of unstable particles or smearing from a de-
tector responses. We add an additional constraint term
to deal with above issues;
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we remove constant terms. To maintain a hierarchy be-
tween the minimum for mass di↵erence and the minimum
in total mass sum during a minimization procedure, we
set � = min(Jij)/max(Pij). This choice is based on em-
pirical studies as in the case of choosing hyperparameters
in conventional ML algorithms. Finally, we swap A and
B if the number of particles assigned to A is less than
the number of particles clustered into B. We maintain
the ordering between numbers of constituent particles in
A and B over all events.

In order to demonstrate the performance of our QUBO
algorithm, we take three examples: (1) Top quark pair
production, (2) Higgs and Z boson production and (3)
four top-quark production via the pair of color octet õ

scalar where each scalar decays into a top-quark pair [19].
Here we take the mass of õ as 600GeV for a benchmark.
All these particles decay hadronically;

pp ! t, t̄ ! {j1, j2, j3, j4, j5, j6}, (7a)

pp ! H,Z ! {j1, j2, j3, j4, j5, j6}, (7b)

pp ! õ, õ
⇤
! t, t̄, t, t̄ ! {j1, j2, j3, · · · , j11, j12}. (7c)

Here ji is a reconstructed jet as we deal with fully
hadronic processes. To prepare data for above pro-
cesses at the LHC@13TeV, we use the standard chain of
Monte Carlo simulations, MadGraph5, Pythia8 and
Delphes3 with Fastjet [20–23]. As we focus on testing
the feasibility of our QUBO algorithm, we apply it to sig-
nal processes with MPI and ISR/FSR processes turned
o↵. Jets are reconstructed through anti-kT algorithm
with a jet radius R = 0.4. Basic cuts of pT > 25GeV
and rapidity |⌘| < 2.5 are applied to reconstructed jets.
HQUBO in Eq. (6) is calculated with Monte Carlo data
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QUBO for Event-topology classification. Our only
assumption on abnormal events in collider data is that
observed particles are produced through 2 ! 2 process.
More specifically, two new particles A and B are pro-
duced and they decay into observed ones. Thus identi-
fying an event-topology becomes a binary classification,
whose computing complexity increases exponentially as
O(2n) with n observed particles. A schematic description
is presented in Fig. 1. As we have no further assump-
tions, we need to set a guiding rule to assign observed
particles into decay products of either A or B. Moti-
vated by general “energy minimum principle” in various
fields of physics, one attempts to minimize the total in-
variant mass (P1 + P2)2. But unlike the case of signals
with missing energy which have been studied extensively
in the literature, we will have a trivial partonic center of
energy

p
ŝ when all the final particles are visible without

missing energy-momenta.
The next trial we can take is to minimize a mass dif-

ference between A and B. With the four-momentum of
i-th particle as pi, momentums of A and B are;

P1 =
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pi xi, P2 =
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pi (1� xi), (1)

where pi is the constituent of A (P1) if xi = 1 or B (P2)
if xi = 0 [11]. Unlike a jet clustering algorithm, we don’t
require any structure or a seed in clustering particles. By
focusing on the kinematics, we minimize the following
function H, the mass di↵erence of A and B;
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with Pij = pi · pj . Our target function H in Eq. (2) is
optimized to the case of MA = MB , which is the case
of most conventional new physics searches at the LHC.
Thus this functionH can be a starting point, but we need
to generalize this function to handle situations including
(1) various new physics scenarios with asymmetric pro-
duction of MA 6= MB , and (2) o↵-shell e↵ect from the
decay width of unstable particles or smearing from a de-
tector responses. We add an additional constraint term
to deal with above issues;
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we remove constant terms. To maintain a hierarchy be-
tween the minimum for mass di↵erence and the minimum
in total mass sum during a minimization procedure, we
set � = min(Jij)/max(Pij). This choice is based on em-
pirical studies as in the case of choosing hyperparameters
in conventional ML algorithms. Finally, we swap A and
B if the number of particles assigned to A is less than
the number of particles clustered into B. We maintain
the ordering between numbers of constituent particles in
A and B over all events.

In order to demonstrate the performance of our QUBO
algorithm, we take three examples: (1) Top quark pair
production, (2) Higgs and Z boson production and (3)
four top-quark production via the pair of color octet õ

scalar where each scalar decays into a top-quark pair [19].
Here we take the mass of õ as 600GeV for a benchmark.
All these particles decay hadronically;

pp ! t, t̄ ! {j1, j2, j3, j4, j5, j6}, (7a)

pp ! H,Z ! {j1, j2, j3, j4, j5, j6}, (7b)

pp ! õ, õ
⇤
! t, t̄, t, t̄ ! {j1, j2, j3, · · · , j11, j12}. (7c)

Here ji is a reconstructed jet as we deal with fully
hadronic processes. To prepare data for above pro-
cesses at the LHC@13TeV, we use the standard chain of
Monte Carlo simulations, MadGraph5, Pythia8 and
Delphes3 with Fastjet [20–23]. As we focus on testing
the feasibility of our QUBO algorithm, we apply it to sig-
nal processes with MPI and ISR/FSR processes turned
o↵. Jets are reconstructed through anti-kT algorithm
with a jet radius R = 0.4. Basic cuts of pT > 25GeV
and rapidity |⌘| < 2.5 are applied to reconstructed jets.
HQUBO in Eq. (6) is calculated with Monte Carlo data
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QUBO for Event-topology classification. Our only
assumption on abnormal events in collider data is that
observed particles are produced through 2 ! 2 process.
More specifically, two new particles A and B are pro-
duced and they decay into observed ones. Thus identi-
fying an event-topology becomes a binary classification,
whose computing complexity increases exponentially as
O(2n) with n observed particles. A schematic description
is presented in Fig. 1. As we have no further assump-
tions, we need to set a guiding rule to assign observed
particles into decay products of either A or B. Moti-
vated by general “energy minimum principle” in various
fields of physics, one attempts to minimize the total in-
variant mass (P1 + P2)2. But unlike the case of signals
with missing energy which have been studied extensively
in the literature, we will have a trivial partonic center of
energy

p
ŝ when all the final particles are visible without

missing energy-momenta.
The next trial we can take is to minimize a mass dif-

ference between A and B. With the four-momentum of
i-th particle as pi, momentums of A and B are;
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X

i
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where pi is the constituent of A (P1) if xi = 1 or B (P2)
if xi = 0 [11]. Unlike a jet clustering algorithm, we don’t
require any structure or a seed in clustering particles. By
focusing on the kinematics, we minimize the following
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with Pij = pi · pj . Our target function H in Eq. (2) is
optimized to the case of MA = MB , which is the case
of most conventional new physics searches at the LHC.
Thus this functionH can be a starting point, but we need
to generalize this function to handle situations including
(1) various new physics scenarios with asymmetric pro-
duction of MA 6= MB , and (2) o↵-shell e↵ect from the
decay width of unstable particles or smearing from a de-
tector responses. We add an additional constraint term
to deal with above issues;
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we remove constant terms. To maintain a hierarchy be-
tween the minimum for mass di↵erence and the minimum
in total mass sum during a minimization procedure, we
set � = min(Jij)/max(Pij). This choice is based on em-
pirical studies as in the case of choosing hyperparameters
in conventional ML algorithms. Finally, we swap A and
B if the number of particles assigned to A is less than
the number of particles clustered into B. We maintain
the ordering between numbers of constituent particles in
A and B over all events.

In order to demonstrate the performance of our QUBO
algorithm, we take three examples: (1) Top quark pair
production, (2) Higgs and Z boson production and (3)
four top-quark production via the pair of color octet õ

scalar where each scalar decays into a top-quark pair [19].
Here we take the mass of õ as 600GeV for a benchmark.
All these particles decay hadronically;

pp ! t, t̄ ! {j1, j2, j3, j4, j5, j6}, (7a)

pp ! H,Z ! {j1, j2, j3, j4, j5, j6}, (7b)

pp ! õ, õ
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! t, t̄, t, t̄ ! {j1, j2, j3, · · · , j11, j12}. (7c)

Here ji is a reconstructed jet as we deal with fully
hadronic processes. To prepare data for above pro-
cesses at the LHC@13TeV, we use the standard chain of
Monte Carlo simulations, MadGraph5, Pythia8 and
Delphes3 with Fastjet [20–23]. As we focus on testing
the feasibility of our QUBO algorithm, we apply it to sig-
nal processes with MPI and ISR/FSR processes turned
o↵. Jets are reconstructed through anti-kT algorithm
with a jet radius R = 0.4. Basic cuts of pT > 25GeV
and rapidity |⌘| < 2.5 are applied to reconstructed jets.
HQUBO in Eq. (6) is calculated with Monte Carlo data
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FIG. 3. Common: HQUBO is calculated with Monte Carlo samples. To find a global minimum of HQUBO, we use a brute force
scanning in (a)-(c), and quantum annealer in (d). For (d), we randomly choose 1000 events from MC samples we used in (c).
Top: Normalized density histogram for reconstructed mass MA and MB Bottom: The number of jets clustered into A.
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FIG. 4. Sequential application of HQUBO to zoom in on the
structure of A in Eq. (7c). After 12 jets are divided into two
groups A and B, HQUBO further investigates the structure of
A. It identifies that A ! tt̄ by measuring (a) masses and (b)
the number of decaying particles of A1, A2 for A ! A1, A2.

structure of an event-topology behind 12 jets as;

pp !õõ
⇤
, (õ ! 6j) , (õ⇤ ! 6j) with

õ ! tt̄, (t ! 3j) , (t̄ ! 3j) ,

õ
⇤
! tt̄, (t ! 3j) , (t̄ ! 3j) ,

by measuring masses and the number of constituent jets
of A1 and A2 as well as B1 and B2.

Before closing this section, we explain the e↵ect of
a constraint term �(P 2

1
+ P

2
2
) in Eq. (6) by showing

results only with minimizing di↵erences between MA

and MB without the constraint term in Fig. 5. As we
expect, HQUBO in Eq. (3) focuses on minimizing the
mass di↵erence between A and B which is inadequate
in handling situations including asymmetric processes
like (pp ! H,Z) in Eq. (7b), particles with a large de-
cay width, and experimental defects including smearing
e↵ects mostly for multi-jet productions as in Eq. (7c).

We close this section by comparing our algorithm and
an existing one. In fact, the subject of identifying event-
topology has not gained much attention as the LHC stud-

(a) (b)

MB

MA

MB

MA

pp � H, Z � {j1, j2, j3, j4, j5, j6} pp � õ, õ* � {j1, j2, j3, �, j11, j12}

FIG. 5. Results with same MC samples in Fig. 3 but using
HQUBO as in Eq. (3) without a constraint term. QUBO algo-
rithm in this case fails in spotting right mass spectrum for (a)
asymmetric case, and (b) highly smeared and o↵-shell case.

Process
pp ! tt̄ pp ! HZ pp ! õõ

⇤

Eq. (7a) Eq. (7b) Eq. (7c)

Algorithm
QUBO 47.3% 89.5% 17.4%

Hemishere 33.6% 86.2% 7.2%

TABLE II. Matching accuracy for the reconstructed momenta
of particles A and B using a clustering algorithm to an actual
momenta of A and B (parton level analysis but with same
basic cuts as in previous Monte Carlo samples).

ies were focused more on optimizing discovery chances of
theoretically well motivated models, mostly supersym-
metric ones where relevant event topologies are man-
ifest3. If we narrow down to a clustering problem in
separating decay chains, there is a hemisphere algorithm
that was designed to assign visible particles correctly ac-

3
Identifying an event topology in missing energy channel was in-

troduced in [27]
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FIG. 1. (a) n-observed particles (b) Dividing n particles into
two groups for 2 ! 2 process (c) Identified event-topology
with A and B.

QUBO for Event-topology classification. Our only
assumption on abnormal events in collider data is that
observed particles are produced through 2 ! 2 process.
More specifically, two new particles A and B are pro-
duced and they decay into observed ones. Thus identi-
fying an event-topology becomes a binary classification,
whose computing complexity increases exponentially as
O(2n) with n observed particles. A schematic description
is presented in Fig. 1. As we have no further assump-
tions, we need to set a guiding rule to assign observed
particles into decay products of either A or B. Moti-
vated by general “energy minimum principle” in various
fields of physics, one attempts to minimize the total in-
variant mass (P1 + P2)2. But unlike the case of signals
with missing energy which have been studied extensively
in the literature, we will have a trivial partonic center of
energy

p
ŝ when all the final particles are visible without

missing energy-momenta.
The next trial we can take is to minimize a mass dif-

ference between A and B. With the four-momentum of
i-th particle as pi, momentums of A and B are;

P1 =
X

i

pi xi, P2 =
X

i

pi (1� xi), (1)

where pi is the constituent of A (P1) if xi = 1 or B (P2)
if xi = 0 [11]. Unlike a jet clustering algorithm, we don’t
require any structure or a seed in clustering particles. By
focusing on the kinematics, we minimize the following
function H, the mass di↵erence of A and B;

H =
�
P

2

1
� P

2

2

�2
(2)

for all possible combinations of {xi}. The dimension of
H, [H] = M

4 is chosen to address our problem as a
QUBO problem with an Ising model form;

HQUBO =
X

ij

Jijsisj +
X

i

hisi, (3)

where {si} is spin set with only ±1 values for spin "

and #, and Jij , hi are the coupling strength and biases,
respectively. We cast our minimization problem on H

into that on HQUBO through a change of variables xi =

(1 + si)/2 to express;

Jij =
X

k`

PikPj`, (4)

hi = 2
X

j

[
X

k`

(PikPj` � Pk`Pij)], (5)

with Pij = pi · pj . Our target function H in Eq. (2) is
optimized to the case of MA = MB , which is the case
of most conventional new physics searches at the LHC.
Thus this functionH can be a starting point, but we need
to generalize this function to handle situations including
(1) various new physics scenarios with asymmetric pro-
duction of MA 6= MB , and (2) o↵-shell e↵ect from the
decay width of unstable particles or smearing from a de-
tector responses. We add an additional constraint term
to deal with above issues;

HQUBO ! HQUBO + �(P 2

1
+ P

2

2
)

= HQUBO + �

X

ij

Pij [sisj + (1� si)(1� sj)]

=
X

ij

J
0
ijsisj +

X

i

h
0
i si, (6)

with J
0
ij = Jij + 2�Pij and h

0
i = hi � 2�

P
j Pij . Here

we remove constant terms. To maintain a hierarchy be-
tween the minimum for mass di↵erence and the minimum
in total mass sum during a minimization procedure, we
set � = min(Jij)/max(Pij). This choice is based on em-
pirical studies as in the case of choosing hyperparameters
in conventional ML algorithms. Finally, we swap A and
B if the number of particles assigned to A is less than
the number of particles clustered into B. We maintain
the ordering between numbers of constituent particles in
A and B over all events.

In order to demonstrate the performance of our QUBO
algorithm, we take three examples: (1) Top quark pair
production, (2) Higgs and Z boson production and (3)
four top-quark production via the pair of color octet õ

scalar where each scalar decays into a top-quark pair [19].
Here we take the mass of õ as 600GeV for a benchmark.
All these particles decay hadronically;

pp ! t, t̄ ! {j1, j2, j3, j4, j5, j6}, (7a)

pp ! H,Z ! {j1, j2, j3, j4, j5, j6}, (7b)

pp ! õ, õ
⇤
! t, t̄, t, t̄ ! {j1, j2, j3, · · · , j11, j12}. (7c)

Here ji is a reconstructed jet as we deal with fully
hadronic processes. To prepare data for above pro-
cesses at the LHC@13TeV, we use the standard chain of
Monte Carlo simulations, MadGraph5, Pythia8 and
Delphes3 with Fastjet [20–23]. As we focus on testing
the feasibility of our QUBO algorithm, we apply it to sig-
nal processes with MPI and ISR/FSR processes turned
o↵. Jets are reconstructed through anti-kT algorithm
with a jet radius R = 0.4. Basic cuts of pT > 25GeV
and rapidity |⌘| < 2.5 are applied to reconstructed jets.
HQUBO in Eq. (6) is calculated with Monte Carlo data
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fying an event-topology becomes a binary classification,
whose computing complexity increases exponentially as
O(2n) with n observed particles. A schematic description
is presented in Fig. 1. As we have no further assump-
tions, we need to set a guiding rule to assign observed
particles into decay products of either A or B. Moti-
vated by general “energy minimum principle” in various
fields of physics, one attempts to minimize the total in-
variant mass (P1 + P2)2. But unlike the case of signals
with missing energy which have been studied extensively
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energy
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ŝ when all the final particles are visible without

missing energy-momenta.
The next trial we can take is to minimize a mass dif-

ference between A and B. With the four-momentum of
i-th particle as pi, momentums of A and B are;

P1 =
X
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pi (1� xi), (1)

where pi is the constituent of A (P1) if xi = 1 or B (P2)
if xi = 0 [11]. Unlike a jet clustering algorithm, we don’t
require any structure or a seed in clustering particles. By
focusing on the kinematics, we minimize the following
function H, the mass di↵erence of A and B;
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for all possible combinations of {xi}. The dimension of
H, [H] = M

4 is chosen to address our problem as a
QUBO problem with an Ising model form;

HQUBO =
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ij

Jijsisj +
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hisi, (3)

where {si} is spin set with only ±1 values for spin "

and #, and Jij , hi are the coupling strength and biases,
respectively. We cast our minimization problem on H

into that on HQUBO through a change of variables xi =

(1 + si)/2 to express;
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hi = 2
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with Pij = pi · pj . Our target function H in Eq. (2) is
optimized to the case of MA = MB , which is the case
of most conventional new physics searches at the LHC.
Thus this functionH can be a starting point, but we need
to generalize this function to handle situations including
(1) various new physics scenarios with asymmetric pro-
duction of MA 6= MB , and (2) o↵-shell e↵ect from the
decay width of unstable particles or smearing from a de-
tector responses. We add an additional constraint term
to deal with above issues;
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j Pij . Here

we remove constant terms. To maintain a hierarchy be-
tween the minimum for mass di↵erence and the minimum
in total mass sum during a minimization procedure, we
set � = min(Jij)/max(Pij). This choice is based on em-
pirical studies as in the case of choosing hyperparameters
in conventional ML algorithms. Finally, we swap A and
B if the number of particles assigned to A is less than
the number of particles clustered into B. We maintain
the ordering between numbers of constituent particles in
A and B over all events.

In order to demonstrate the performance of our QUBO
algorithm, we take three examples: (1) Top quark pair
production, (2) Higgs and Z boson production and (3)
four top-quark production via the pair of color octet õ

scalar where each scalar decays into a top-quark pair [19].
Here we take the mass of õ as 600GeV for a benchmark.
All these particles decay hadronically;

pp ! t, t̄ ! {j1, j2, j3, j4, j5, j6}, (7a)

pp ! H,Z ! {j1, j2, j3, j4, j5, j6}, (7b)

pp ! õ, õ
⇤
! t, t̄, t, t̄ ! {j1, j2, j3, · · · , j11, j12}. (7c)

Here ji is a reconstructed jet as we deal with fully
hadronic processes. To prepare data for above pro-
cesses at the LHC@13TeV, we use the standard chain of
Monte Carlo simulations, MadGraph5, Pythia8 and
Delphes3 with Fastjet [20–23]. As we focus on testing
the feasibility of our QUBO algorithm, we apply it to sig-
nal processes with MPI and ISR/FSR processes turned
o↵. Jets are reconstructed through anti-kT algorithm
with a jet radius R = 0.4. Basic cuts of pT > 25GeV
and rapidity |⌘| < 2.5 are applied to reconstructed jets.
HQUBO in Eq. (6) is calculated with Monte Carlo data

for mA ≠ mB

Compared to the processing time of O(2^n) with the simplest but a robust brute-force 
scanning algorithm with a classical computer, a quantum annealer can have an 
enormous advantage in the computation complexity as 
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FIG. 2. We choose an event from detector level MC samples
of EEq.q. (7c) to calculate (a) energy spectrum of HQUBO

with increasing indices of spin states, (b) histogram of energy
spectrum of HQUBO for all possible 212(= 4096) spin states.

for a given spin state {si}. In Fig. 2 we show (a) the
energy spectrum of HQUBO and (b) histogram of en-
ergy spectrum of HQUBO with an event from a four top-
quark production process as in Eq. (7c). For the order-
ing of spin states in Fig. 2(a), we increase a spin state
by flipping a spin in an increasing order based on a bi-
nary digit. For example with four spins, the spin order
(""""!"""#!""#"!""##! · · · ) corresponds to the in-
dex as (0 ! 1 ! 2 ! 3 ! 4 ! · · · ). One can try a con-
ventional procedure called a simulated annealing to find
a global minimum in HQUBO distribution of Eq. (6) [24].
Simulated annealing uses a thermodynamic probability
to find a global ground state. It starts with an initial
temperature T0 and gradually decreases temperature T

to zero degree at each annealing step. In each step, this
algorithm checks whether flipping a spin is beneficial to
get a global minimum. If the energy with flipped spin is
lower than the initial energy, it takes the flipped spin con-
figuration. If not, the spin will be flipped according to
the probability of Boltzmann factor, e�(En+1�En)/kB T .
But when the structure of an energy spectrum with a
spin state is complicated, it will have a local minimum
problem. In our case, the energy spectrum can be ex-
tremely complicated as shown in Fig. 2. In Fig. 2(a), the
energy structure similar to a dense pine tree park neu-
tralizes simulated annealing, as sudden drops and rises
disable the attempt of spin flipping procedures. On top
of this local minimum problem, the population near a
global minimum is sparse as we observe in Fig. 2(b). Thus
we choose to take a quantum advantage to find a global
minimum for a complicated energy distribution.
Quantum advantage. Quantum annealing (QA) is op-
timized to handle problems in a QUBO form. It uses the
adiabatic theorem to find the ground state of a compli-
cated HQUBO starting from the ground state of a trivial
Hamiltonian H0 [25];

HQA(t) = A(t)H0 +B(t)HQUBO, (8)

where H0 =
P

i (s?)i with a new spin set {s?} which is
transverse to the spin set {s} of HQUBO. At the be-
ginning of t = 0, HQA(0) = A(0)H0 as A 6= 0 and
B = 0. Thus the ground state of HQA(0) is the same

Process
pp ! tt̄ pp ! HZ pp ! õõ

⇤

Eq. (7a) Eq. (7b) Eq. (7c)

Success rate 100% 100% 93%

TABLE I. Success rate in finding a global minimum of HQUBO

using D-Wave Advantage™.

as the ground state of H0. By adiabatically decreasing
A to 0 but increasing B with a time t, the ground state
of H0 can be transmitted to the ground state of HQUBO

via HQA. To realize QA process of Eq. (8), we use a com-
mercial D-Wave Advantage™ which has 5000+ available
spins (=qubits) [26].
Most of time spent by a QA procedure is dedicated to

a preparation step, while required time for an annealing
process is independent on the size of inputs. In our case
with Eq. (3), preparation time TQUBO is of O(n2). Com-
pared to the processing time of O(2n) with the simplest
but a robust brute-force scanning algorithm with a classi-
cal computer, a quantum annealer can have an enormous
advantage in the computational complexity as

TQUBO(n) ⇠ O(n2) ⌧ O(2n), (9)

In Table I, we illustrate the performance of a quantum
annealer in finding a global minimum. Monte Carlo sam-
ples for HQUBO are generated as in the previous section.
As we notice, current quantum annealer achieves a good
performance to find a global minimum for complicated
energy distributions which is not possible with simulated
annealing. By assigning jets into either A orB, we can re-
construct the four-momenta of A and B to identify their
properties as in Fig. 3. Reconstructed mass MA and MB

with HQUBO algorithm spots the true mass point (Top
panel in Fig. 3). The most populated number of clustered
jets in A is equal to the true number of decayed particles
from A (Bottom panel in Fig. 3) for a hadronically de-
caying top quark in Eq. (7a), a higgs decaying into four
jets via W

± bosons in Eq. (7b) and a color octet scalar õ
which decays into a top-quark pair, resulting in six jets
as in Eq. (7c). We can apply HQUBO sequentially to find
the substructures of A and B;

H
(A)

QUBO
=

X̀

ij=1

J
0↵
ij s

↵
i s

↵
j +

X̀

i=1

h
0↵
i s

↵
i , (10)

H
(B)

QUBO
=

mX

ij=1

J
0�
ij s

�
i s

�
j +

mX

i=1

h
0�
i s

�
i , (11)

where {s
↵
i } is a spin set for particles clustered into A

and {s
�
i } is the one for particles assigned to B after min-

imizing an original HQUBO. Here ` and m vary in an
event by event basis, only need to satisfy ` + m = n.
We get additional constraints for the number of inter-
mediate particles from the decay of each of A and B as
A ! A1, A2 and B ! B1, B2. In Fig. 4, we present the
result of above sequential application to the most com-
plicated process of Eq. (7c). Sequential QA reveals the
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Figure 1: The matching accuracy and success rate of QAOA and FALQON with parton-level events for
various iterations/depths without (left) and with (right) an assumption of symmetric decays. The green
and red histograms in the top represent the “matching accuracy”, i.e., the fraction of events for which the
global minimum (true ground state) of the Ising Hamiltonian resolves the combinatorial problem. This is the
maximum accuracy that quantum algorithms can achieve. The other histograms in the top panel represent
the success rate in resolving the combinatorial problem (blue for FALQON and orange for QAOA). The
second and third panel show the success rate for at least two and three most likely states to resolve the
combinatorial problem, respectively.
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Annealer seems to 
work better in the 
boosted region.

FALQON seems 
to work better 
near threshold.

Hemisphere
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Figure 5: The mass di↵erence between the particle combination that gives the minimum energy and that
which gives the second smallest energy for the parton level and smeared events. The value n1

min
is the fraction

of events for which the mass di↵erence for the minimum energy configuration is smaller than that for the
second smallest configuration.
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Data re-uploading for a universal quantum classifier

quantum circuit where all data are loaded in the co-
e�cients of the initial wave function [8, 9, 13–15]. In
the simplest of cases, data are uploaded as rotations of
qubits in the computational basis. A quantum circuit
would then follow that should perform some classifi-
cation.

This strategy would be insu�cient to create a uni-
versal quantum classifier with a single qubit. A first
limitation is that a single qubit only has two degrees
of freedom, thus only allowing to represent data in
a two-dimensional space. No quantum classifier in
higher dimensions can be created if this architecture
is to be used. A second limitation is that, once data
is uploaded, the only quantum circuit available is a
rotation in the Bloch sphere. It is easy to prove that
a single rotation cannot capture any non-trivial sepa-
ration of patterns in the original data.

We need to turn to a di↵erent strategy, which turns
out to be inspired by neural networks. In the case of
feed-forward neural networks, data are entered in a
network in such a way that they are processed by sub-
sequent layers of neurons. The key idea is to observe
that the original data are processed several times, one
for each neuron in the first hidden layer. Strictly
speaking, data are re-uploaded onto the neural net-
work. If neural networks were a↵ected by some sort
of no-cloning theorem, they could not work as they
do. Coming back to the quantum circuit, we need to
design a new architecture where data can be intro-
duced several times into the circuit.

The central idea to build a universal quantum clas-
sifier with a single qubit is thus to re-upload classical
data along with the computation. Following the com-
parison with an artificial neural network with a single
hidden layer, we can represent this re-upload diagram-
matically, as it is shown in Figure 1. Data points in a
neural network are introduced in each processing unit,
represented with squares, which are the neurons of the
hidden layer. After the neurons process these data, a
final neuron is necessary to construct the output to be
analyzed. Similarly, in the single-qubit quantum clas-
sifier, data points are introduced in each processing
unit, which this time corresponds to a unitary rota-
tion. However, each processing unit is a↵ected by the
previous ones and re-introduces the input data. The
final output is a quantum state to be analyzed as it
will be explained in the next subsections.

The explicit form of this single-qubit classifier is
shown in Figure 2. Classical data are re-introduced
several times in a sequence interspaced with process-
ing units. We shall consider the introduction of data
as a rotation of the qubit. This means that data from
three-dimensional space, x̨, can be re-uploaded using
unitaries that rotate the qubit U(x̨). Later processing
units will also be rotations as discussed later on. The
whole structure needs to be trained in the classifica-
tion of patterns.

As we shall see, the performance of the single-qubit

(a) Neural network (b) Quantum classifier

Figure 1: Simplified working schemes of a neural network

and a single-qubit quantum classifier with data re-uploading.

In the neural network, every neuron receives input from all

neurons of the previous layer. In contrast with that, the

single-qubit classifier receives information from the previous

processing unit and the input (introduced classically). It pro-

cesses everything all together and the final output of the

computation is a quantum state encoding several repetitions

of input uploads and processing parameters.

quantum classifier will depend on the number of re-
uploads of classical data. This fact will be explored
in the results section.

2.2 Processing along re-uploading
The single-qubit classifier belongs to the category of
parametrized quantum circuits. The performance of
the circuit is quantified by a figure of merit, some
specific ‰2 to be minimized and defined later. We
need, though, to specify the processing gates present
in the circuit in terms of a classical set of parameters.

Given the simple structure of a single-qubit circuit
presented in Figure 2, the data is introduced in a sim-
ple rotation of the qubit, which is easy to character-
ize. We just need to use arbitrary single-qubit rota-
tions U(„1, „2, „3) œ SU(2). We will write U(„̨) with

„̨ = („1, „2, „3). Then, the structure of the universal
quantum classifier made with a single qubit is

U(„̨, x̨) © U(„̨N )U(x̨) . . . U(„̨1)U(x̨), (1)

which acts as
|ÂÍ = U(„̨, x̨)|0Í. (2)

The final classification of patterns will come from
the results of measurements on |ÂÍ. We may introduce
the concept of processing layer as the combination

L(i) © U(„̨i)U(x̨), (3)

so that the classifier corresponds to

U(„̨, x̨) = L(N) . . . L(1), (4)

where the depth of the circuit is 2N . The more layers
the more representation capabilities the circuit will
have, and the more powerful the classifier will be-
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quantum circuit where all data are loaded in the co-
e�cients of the initial wave function [8, 9, 13–15]. In
the simplest of cases, data are uploaded as rotations of
qubits in the computational basis. A quantum circuit
would then follow that should perform some classifi-
cation.

This strategy would be insu�cient to create a uni-
versal quantum classifier with a single qubit. A first
limitation is that a single qubit only has two degrees
of freedom, thus only allowing to represent data in
a two-dimensional space. No quantum classifier in
higher dimensions can be created if this architecture
is to be used. A second limitation is that, once data
is uploaded, the only quantum circuit available is a
rotation in the Bloch sphere. It is easy to prove that
a single rotation cannot capture any non-trivial sepa-
ration of patterns in the original data.

We need to turn to a di↵erent strategy, which turns
out to be inspired by neural networks. In the case of
feed-forward neural networks, data are entered in a
network in such a way that they are processed by sub-
sequent layers of neurons. The key idea is to observe
that the original data are processed several times, one
for each neuron in the first hidden layer. Strictly
speaking, data are re-uploaded onto the neural net-
work. If neural networks were a↵ected by some sort
of no-cloning theorem, they could not work as they
do. Coming back to the quantum circuit, we need to
design a new architecture where data can be intro-
duced several times into the circuit.

The central idea to build a universal quantum clas-
sifier with a single qubit is thus to re-upload classical
data along with the computation. Following the com-
parison with an artificial neural network with a single
hidden layer, we can represent this re-upload diagram-
matically, as it is shown in Figure 1. Data points in a
neural network are introduced in each processing unit,
represented with squares, which are the neurons of the
hidden layer. After the neurons process these data, a
final neuron is necessary to construct the output to be
analyzed. Similarly, in the single-qubit quantum clas-
sifier, data points are introduced in each processing
unit, which this time corresponds to a unitary rota-
tion. However, each processing unit is a↵ected by the
previous ones and re-introduces the input data. The
final output is a quantum state to be analyzed as it
will be explained in the next subsections.

The explicit form of this single-qubit classifier is
shown in Figure 2. Classical data are re-introduced
several times in a sequence interspaced with process-
ing units. We shall consider the introduction of data
as a rotation of the qubit. This means that data from
three-dimensional space, x̨, can be re-uploaded using
unitaries that rotate the qubit U(x̨). Later processing
units will also be rotations as discussed later on. The
whole structure needs to be trained in the classifica-
tion of patterns.

As we shall see, the performance of the single-qubit
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Figure 1: Simplified working schemes of a neural network

and a single-qubit quantum classifier with data re-uploading.

In the neural network, every neuron receives input from all

neurons of the previous layer. In contrast with that, the

single-qubit classifier receives information from the previous

processing unit and the input (introduced classically). It pro-

cesses everything all together and the final output of the

computation is a quantum state encoding several repetitions

of input uploads and processing parameters.

quantum classifier will depend on the number of re-
uploads of classical data. This fact will be explored
in the results section.

2.2 Processing along re-uploading
The single-qubit classifier belongs to the category of
parametrized quantum circuits. The performance of
the circuit is quantified by a figure of merit, some
specific ‰2 to be minimized and defined later. We
need, though, to specify the processing gates present
in the circuit in terms of a classical set of parameters.

Given the simple structure of a single-qubit circuit
presented in Figure 2, the data is introduced in a sim-
ple rotation of the qubit, which is easy to character-
ize. We just need to use arbitrary single-qubit rota-
tions U(„1, „2, „3) œ SU(2). We will write U(„̨) with

„̨ = („1, „2, „3). Then, the structure of the universal
quantum classifier made with a single qubit is

U(„̨, x̨) © U(„̨N )U(x̨) . . . U(„̨1)U(x̨), (1)

which acts as
|ÂÍ = U(„̨, x̨)|0Í. (2)

The final classification of patterns will come from
the results of measurements on |ÂÍ. We may introduce
the concept of processing layer as the combination

L(i) © U(„̨i)U(x̨), (3)

so that the classifier corresponds to

U(„̨, x̨) = L(N) . . . L(1), (4)

where the depth of the circuit is 2N . The more layers
the more representation capabilities the circuit will
have, and the more powerful the classifier will be-
come. Again, this follows from the analogy to neural
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quantum classifier will depend on the number of re-
uploads of classical data. This fact will be explored
in the results section.

2.2 Processing along re-uploading
The single-qubit classifier belongs to the category of
parametrized quantum circuits. The performance of
the circuit is quantified by a figure of merit, some
specific ‰2 to be minimized and defined later. We
need, though, to specify the processing gates present
in the circuit in terms of a classical set of parameters.

Given the simple structure of a single-qubit circuit
presented in Figure 2, the data is introduced in a sim-
ple rotation of the qubit, which is easy to character-
ize. We just need to use arbitrary single-qubit rota-
tions U(„1, „2, „3) œ SU(2). We will write U(„̨) with

„̨ = („1, „2, „3). Then, the structure of the universal
quantum classifier made with a single qubit is

U(„̨, x̨) © U(„̨N )U(x̨) . . . U(„̨1)U(x̨), (1)

which acts as
|ÂÍ = U(„̨, x̨)|0Í. (2)

The final classification of patterns will come from
the results of measurements on |ÂÍ. We may introduce
the concept of processing layer as the combination

L(i) © U(„̨i)U(x̨), (3)

so that the classifier corresponds to

U(„̨, x̨) = L(N) . . . L(1), (4)

where the depth of the circuit is 2N . The more layers
the more representation capabilities the circuit will
have, and the more powerful the classifier will be-
come. Again, this follows from the analogy to neural
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duced several times into the circuit.
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data along with the computation. Following the com-
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hidden layer, we can represent this re-upload diagram-
matically, as it is shown in Figure 1. Data points in a
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represented with squares, which are the neurons of the
hidden layer. After the neurons process these data, a
final neuron is necessary to construct the output to be
analyzed. Similarly, in the single-qubit quantum clas-
sifier, data points are introduced in each processing
unit, which this time corresponds to a unitary rota-
tion. However, each processing unit is a↵ected by the
previous ones and re-introduces the input data. The
final output is a quantum state to be analyzed as it
will be explained in the next subsections.

The explicit form of this single-qubit classifier is
shown in Figure 2. Classical data are re-introduced
several times in a sequence interspaced with process-
ing units. We shall consider the introduction of data
as a rotation of the qubit. This means that data from
three-dimensional space, x̨, can be re-uploaded using
unitaries that rotate the qubit U(x̨). Later processing
units will also be rotations as discussed later on. The
whole structure needs to be trained in the classifica-
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and a single-qubit quantum classifier with data re-uploading.
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of input uploads and processing parameters.

quantum classifier will depend on the number of re-
uploads of classical data. This fact will be explored
in the results section.

2.2 Processing along re-uploading
The single-qubit classifier belongs to the category of
parametrized quantum circuits. The performance of
the circuit is quantified by a figure of merit, some
specific ‰2 to be minimized and defined later. We
need, though, to specify the processing gates present
in the circuit in terms of a classical set of parameters.

Given the simple structure of a single-qubit circuit
presented in Figure 2, the data is introduced in a sim-
ple rotation of the qubit, which is easy to character-
ize. We just need to use arbitrary single-qubit rota-
tions U(„1, „2, „3) œ SU(2). We will write U(„̨) with

„̨ = („1, „2, „3). Then, the structure of the universal
quantum classifier made with a single qubit is

U(„̨, x̨) © U(„̨N )U(x̨) . . . U(„̨1)U(x̨), (1)

which acts as
|ÂÍ = U(„̨, x̨)|0Í. (2)

The final classification of patterns will come from
the results of measurements on |ÂÍ. We may introduce
the concept of processing layer as the combination

L(i) © U(„̨i)U(x̨), (3)

so that the classifier corresponds to

U(„̨, x̨) = L(N) . . . L(1), (4)

where the depth of the circuit is 2N . The more layers
the more representation capabilities the circuit will
have, and the more powerful the classifier will be-
come. Again, this follows from the analogy to neural
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sifier, data points are introduced in each processing
unit, which this time corresponds to a unitary rota-
tion. However, each processing unit is a↵ected by the
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final output is a quantum state to be analyzed as it
will be explained in the next subsections.
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as a rotation of the qubit. This means that data from
three-dimensional space, x̨, can be re-uploaded using
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quantum classifier will depend on the number of re-
uploads of classical data. This fact will be explored
in the results section.

2.2 Processing along re-uploading
The single-qubit classifier belongs to the category of
parametrized quantum circuits. The performance of
the circuit is quantified by a figure of merit, some
specific ‰2 to be minimized and defined later. We
need, though, to specify the processing gates present
in the circuit in terms of a classical set of parameters.

Given the simple structure of a single-qubit circuit
presented in Figure 2, the data is introduced in a sim-
ple rotation of the qubit, which is easy to character-
ize. We just need to use arbitrary single-qubit rota-
tions U(„1, „2, „3) œ SU(2). We will write U(„̨) with

„̨ = („1, „2, „3). Then, the structure of the universal
quantum classifier made with a single qubit is

U(„̨, x̨) © U(„̨N )U(x̨) . . . U(„̨1)U(x̨), (1)

which acts as
|ÂÍ = U(„̨, x̨)|0Í. (2)

The final classification of patterns will come from
the results of measurements on |ÂÍ. We may introduce
the concept of processing layer as the combination

L(i) © U(„̨i)U(x̨), (3)

so that the classifier corresponds to

U(„̨, x̨) = L(N) . . . L(1), (4)

where the depth of the circuit is 2N . The more layers
the more representation capabilities the circuit will
have, and the more powerful the classifier will be-
come. Again, this follows from the analogy to neural
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Figure 2: Single-qubit classifier with data re-uploading. The

quantum circuit is divided into layer gates L(i), which con-

stitutes the classifier building blocks. In the upper circuit,

each of these layers is composed of a U(x̨) gate, which up-

loads the data, and a parametrized unitary gate U(„̨). We

apply this building block N times and finally compute a cost

function that is related to the fidelity of the final state of

the circuit with the corresponding target state of its class.

This cost function may be minimized by tunning the „̨i pa-

rameters. Eventually, data and tunable parameters can be

introduced with a single unitary gate, as illustrated in the

bottom circuit.

networks, where the size of the intermediate hidden
layer of neurons is critical to represent complex func-
tions.

There is a way to compactify the quantum circuit
into a shorter one. This can be done if we incorporate
data and processing angles in a single step. Then, a
layer would only need a single rotation to introduce
data and tunable parameters, i.e. L(i) = U(„̨, x̨). In
addition, each data point can be uploaded with some
weight wi. These weights will play a similar role as
weights in artificial neural networks, as we will see in
the next section. Altogether, each layer gate can be
taken as

L(i) = U
1

◊̨i + w̨i ¶ x̨
2

, (5)

where w̨i ¶ x̨ =
!
w1

i x1, w2
i x2, w3

i x3"
is the Hadamard

product of two vectors. In case the data points have
dimension lesser than three, the rest of x̨ components
are set to zero. Such an approach reduces the depth of
the circuit by half. Further combinations of layers into
fewer rotations are also possible, but the nonlinearity
inherent to subsequent rotations would be lost, and
the circuit would not be performing well.

Notice that data points are introduced linearly into
the rotational gate. Non-linearities will come from
the structure of these gates. We chose this encoding
function as we believe it is one of the lesser biased
ways to encode data with unknown properties. Due
to the structure of single-qubit unitary gates, we will
see that this encoding is particularly suited for data
with rotational symmetry. Still, it can also classify
other kinds of data structures. We can also apply

other encoding techniques, e.g. the ones proposed in
Ref. [10], but for the scope of this work, we have
just tested the linear encoding strategy as a proof of
concept of the performance of this quantum classifier.
It is also possible to enlarge the dimensionality of

the input space in the following way. Let us extend
the definition of i-th layer to

L(i) = U
1

◊̨(k)
i + w̨(k)

i ¶ x̨(k)
2

· · · U
1

◊̨(1)
i + w̨(1)

i ¶ x̨(1)
2

,

(6)

where each data point is divided into k vectors of di-
mension three. In general, each unitary U could ab-
sorb as many variables as freedom in an SU(2) uni-
tary. Each set of variables act at a time, and all of
them have been shown to the circuit after k iterations.
Then, the layer structure follows. The complexity of
the circuit only increases linearly with the size of the
input space.

2.3 Measurement
The quantum circuit characterized by a series of pro-
cessing angles {◊i} and weights {wi} delivers a final
state |ÂÍ, which needs to be measured. The results
of each measurement are used to compute a ‰2 that
quantifies the error made in the classification. The
minimization of this quantity in terms of the classical
parameters of the circuit can be organized using any
preferred supervised machine learning technique.

The critical point in the quantum measurement is
to find an optimal way to associate outputs from the
observations to target classes. The fundamental guid-
ing principle to be used is given by the idea of max-
imal orthogonality of outputs [16]. This is easily es-
tablished for a dichotomic classification, where one of
two classes A and B have to be assigned to the final
measurement of the single qubit. In such a case it
is possible to measure the output probabilities P (0)

for |0Í and P (1) for |1Í. A given pattern could be
classified into the A class if P (0) > P (1) and into B
otherwise. We may refine this criterium by introduc-
ing a bias. That is, the pattern is classified as A if
P (0) > ⁄, and as B otherwise. The ⁄ is chosen to op-
timize the success of classification on a training set.
Results are then checked on an independent validation
set.

The assignment of classes to the output reading of
a single qubit becomes an involved issue when many
classes are present. For the sake of simplicity, let us
mention two examples for the case of classification to
four distinct classes. One possible strategy consists on
comparing the probability P (0) to four sectors with
three thresholds: 0 Æ ⁄1 Æ ⁄2 Æ ⁄3 Æ 1. Then, the
value of P (0) will fall into one of them, and classifi-
cation is issued. A second, more robust assignment is
obtained by computing the overlap of the final state
to one of the states of a label states-set. This states-
set is to be chosen with maximal orthogonality among
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data and processing angles in a single step. Then, a
layer would only need a single rotation to introduce
data and tunable parameters, i.e. L(i) = U(„̨, x̨). In
addition, each data point can be uploaded with some
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are set to zero. Such an approach reduces the depth of
the circuit by half. Further combinations of layers into
fewer rotations are also possible, but the nonlinearity
inherent to subsequent rotations would be lost, and
the circuit would not be performing well.

Notice that data points are introduced linearly into
the rotational gate. Non-linearities will come from
the structure of these gates. We chose this encoding
function as we believe it is one of the lesser biased
ways to encode data with unknown properties. Due
to the structure of single-qubit unitary gates, we will
see that this encoding is particularly suited for data
with rotational symmetry. Still, it can also classify
other kinds of data structures. We can also apply
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just tested the linear encoding strategy as a proof of
concept of the performance of this quantum classifier.
It is also possible to enlarge the dimensionality of

the input space in the following way. Let us extend
the definition of i-th layer to

L(i) = U
1

◊̨(k)
i + w̨(k)

i ¶ x̨(k)
2

· · · U
1

◊̨(1)
i + w̨(1)

i ¶ x̨(1)
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where each data point is divided into k vectors of di-
mension three. In general, each unitary U could ab-
sorb as many variables as freedom in an SU(2) uni-
tary. Each set of variables act at a time, and all of
them have been shown to the circuit after k iterations.
Then, the layer structure follows. The complexity of
the circuit only increases linearly with the size of the
input space.

2.3 Measurement
The quantum circuit characterized by a series of pro-
cessing angles {◊i} and weights {wi} delivers a final
state |ÂÍ, which needs to be measured. The results
of each measurement are used to compute a ‰2 that
quantifies the error made in the classification. The
minimization of this quantity in terms of the classical
parameters of the circuit can be organized using any
preferred supervised machine learning technique.

The critical point in the quantum measurement is
to find an optimal way to associate outputs from the
observations to target classes. The fundamental guid-
ing principle to be used is given by the idea of max-
imal orthogonality of outputs [16]. This is easily es-
tablished for a dichotomic classification, where one of
two classes A and B have to be assigned to the final
measurement of the single qubit. In such a case it
is possible to measure the output probabilities P (0)

for |0Í and P (1) for |1Í. A given pattern could be
classified into the A class if P (0) > P (1) and into B
otherwise. We may refine this criterium by introduc-
ing a bias. That is, the pattern is classified as A if
P (0) > ⁄, and as B otherwise. The ⁄ is chosen to op-
timize the success of classification on a training set.
Results are then checked on an independent validation
set.

The assignment of classes to the output reading of
a single qubit becomes an involved issue when many
classes are present. For the sake of simplicity, let us
mention two examples for the case of classification to
four distinct classes. One possible strategy consists on
comparing the probability P (0) to four sectors with
three thresholds: 0 Æ ⁄1 Æ ⁄2 Æ ⁄3 Æ 1. Then, the
value of P (0) will fall into one of them, and classifi-
cation is issued. A second, more robust assignment is
obtained by computing the overlap of the final state
to one of the states of a label states-set. This states-
set is to be chosen with maximal orthogonality among
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quantum circuit is divided into layer gates L(i), which con-

stitutes the classifier building blocks. In the upper circuit,

each of these layers is composed of a U(x̨) gate, which up-

loads the data, and a parametrized unitary gate U(„̨). We

apply this building block N times and finally compute a cost

function that is related to the fidelity of the final state of

the circuit with the corresponding target state of its class.

This cost function may be minimized by tunning the „̨i pa-

rameters. Eventually, data and tunable parameters can be

introduced with a single unitary gate, as illustrated in the

bottom circuit.

networks, where the size of the intermediate hidden
layer of neurons is critical to represent complex func-
tions.

There is a way to compactify the quantum circuit
into a shorter one. This can be done if we incorporate
data and processing angles in a single step. Then, a
layer would only need a single rotation to introduce
data and tunable parameters, i.e. L(i) = U(„̨, x̨). In
addition, each data point can be uploaded with some
weight wi. These weights will play a similar role as
weights in artificial neural networks, as we will see in
the next section. Altogether, each layer gate can be
taken as

L(i) = U
1

◊̨i + w̨i ¶ x̨
2

, (5)

where w̨i ¶ x̨ =
!
w1

i x1, w2
i x2, w3

i x3"
is the Hadamard

product of two vectors. In case the data points have
dimension lesser than three, the rest of x̨ components
are set to zero. Such an approach reduces the depth of
the circuit by half. Further combinations of layers into
fewer rotations are also possible, but the nonlinearity
inherent to subsequent rotations would be lost, and
the circuit would not be performing well.

Notice that data points are introduced linearly into
the rotational gate. Non-linearities will come from
the structure of these gates. We chose this encoding
function as we believe it is one of the lesser biased
ways to encode data with unknown properties. Due
to the structure of single-qubit unitary gates, we will
see that this encoding is particularly suited for data
with rotational symmetry. Still, it can also classify
other kinds of data structures. We can also apply

other encoding techniques, e.g. the ones proposed in
Ref. [10], but for the scope of this work, we have
just tested the linear encoding strategy as a proof of
concept of the performance of this quantum classifier.
It is also possible to enlarge the dimensionality of

the input space in the following way. Let us extend
the definition of i-th layer to

L(i) = U
1

◊̨(k)
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· · · U
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where each data point is divided into k vectors of di-
mension three. In general, each unitary U could ab-
sorb as many variables as freedom in an SU(2) uni-
tary. Each set of variables act at a time, and all of
them have been shown to the circuit after k iterations.
Then, the layer structure follows. The complexity of
the circuit only increases linearly with the size of the
input space.

2.3 Measurement
The quantum circuit characterized by a series of pro-
cessing angles {◊i} and weights {wi} delivers a final
state |ÂÍ, which needs to be measured. The results
of each measurement are used to compute a ‰2 that
quantifies the error made in the classification. The
minimization of this quantity in terms of the classical
parameters of the circuit can be organized using any
preferred supervised machine learning technique.

The critical point in the quantum measurement is
to find an optimal way to associate outputs from the
observations to target classes. The fundamental guid-
ing principle to be used is given by the idea of max-
imal orthogonality of outputs [16]. This is easily es-
tablished for a dichotomic classification, where one of
two classes A and B have to be assigned to the final
measurement of the single qubit. In such a case it
is possible to measure the output probabilities P (0)

for |0Í and P (1) for |1Í. A given pattern could be
classified into the A class if P (0) > P (1) and into B
otherwise. We may refine this criterium by introduc-
ing a bias. That is, the pattern is classified as A if
P (0) > ⁄, and as B otherwise. The ⁄ is chosen to op-
timize the success of classification on a training set.
Results are then checked on an independent validation
set.

The assignment of classes to the output reading of
a single qubit becomes an involved issue when many
classes are present. For the sake of simplicity, let us
mention two examples for the case of classification to
four distinct classes. One possible strategy consists on
comparing the probability P (0) to four sectors with
three thresholds: 0 Æ ⁄1 Æ ⁄2 Æ ⁄3 Æ 1. Then, the
value of P (0) will fall into one of them, and classifi-
cation is issued. A second, more robust assignment is
obtained by computing the overlap of the final state
to one of the states of a label states-set. This states-
set is to be chosen with maximal orthogonality among
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the circuit with the corresponding target state of its class.

This cost function may be minimized by tunning the „̨i pa-

rameters. Eventually, data and tunable parameters can be

introduced with a single unitary gate, as illustrated in the
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networks, where the size of the intermediate hidden
layer of neurons is critical to represent complex func-
tions.

There is a way to compactify the quantum circuit
into a shorter one. This can be done if we incorporate
data and processing angles in a single step. Then, a
layer would only need a single rotation to introduce
data and tunable parameters, i.e. L(i) = U(„̨, x̨). In
addition, each data point can be uploaded with some
weight wi. These weights will play a similar role as
weights in artificial neural networks, as we will see in
the next section. Altogether, each layer gate can be
taken as

L(i) = U
1

◊̨i + w̨i ¶ x̨
2

, (5)

where w̨i ¶ x̨ =
!
w1

i x1, w2
i x2, w3

i x3"
is the Hadamard

product of two vectors. In case the data points have
dimension lesser than three, the rest of x̨ components
are set to zero. Such an approach reduces the depth of
the circuit by half. Further combinations of layers into
fewer rotations are also possible, but the nonlinearity
inherent to subsequent rotations would be lost, and
the circuit would not be performing well.

Notice that data points are introduced linearly into
the rotational gate. Non-linearities will come from
the structure of these gates. We chose this encoding
function as we believe it is one of the lesser biased
ways to encode data with unknown properties. Due
to the structure of single-qubit unitary gates, we will
see that this encoding is particularly suited for data
with rotational symmetry. Still, it can also classify
other kinds of data structures. We can also apply

other encoding techniques, e.g. the ones proposed in
Ref. [10], but for the scope of this work, we have
just tested the linear encoding strategy as a proof of
concept of the performance of this quantum classifier.
It is also possible to enlarge the dimensionality of

the input space in the following way. Let us extend
the definition of i-th layer to

L(i) = U
1

◊̨(k)
i + w̨(k)

i ¶ x̨(k)
2

· · · U
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◊̨(1)
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where each data point is divided into k vectors of di-
mension three. In general, each unitary U could ab-
sorb as many variables as freedom in an SU(2) uni-
tary. Each set of variables act at a time, and all of
them have been shown to the circuit after k iterations.
Then, the layer structure follows. The complexity of
the circuit only increases linearly with the size of the
input space.

2.3 Measurement
The quantum circuit characterized by a series of pro-
cessing angles {◊i} and weights {wi} delivers a final
state |ÂÍ, which needs to be measured. The results
of each measurement are used to compute a ‰2 that
quantifies the error made in the classification. The
minimization of this quantity in terms of the classical
parameters of the circuit can be organized using any
preferred supervised machine learning technique.

The critical point in the quantum measurement is
to find an optimal way to associate outputs from the
observations to target classes. The fundamental guid-
ing principle to be used is given by the idea of max-
imal orthogonality of outputs [16]. This is easily es-
tablished for a dichotomic classification, where one of
two classes A and B have to be assigned to the final
measurement of the single qubit. In such a case it
is possible to measure the output probabilities P (0)

for |0Í and P (1) for |1Í. A given pattern could be
classified into the A class if P (0) > P (1) and into B
otherwise. We may refine this criterium by introduc-
ing a bias. That is, the pattern is classified as A if
P (0) > ⁄, and as B otherwise. The ⁄ is chosen to op-
timize the success of classification on a training set.
Results are then checked on an independent validation
set.

The assignment of classes to the output reading of
a single qubit becomes an involved issue when many
classes are present. For the sake of simplicity, let us
mention two examples for the case of classification to
four distinct classes. One possible strategy consists on
comparing the probability P (0) to four sectors with
three thresholds: 0 Æ ⁄1 Æ ⁄2 Æ ⁄3 Æ 1. Then, the
value of P (0) will fall into one of them, and classifi-
cation is issued. A second, more robust assignment is
obtained by computing the overlap of the final state
to one of the states of a label states-set. This states-
set is to be chosen with maximal orthogonality among
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Single qubit classifier: measurements
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• The quantum circuit characterized by a series of processing angle  and weights 
 delivers a final state . 

• The critical point in the quantum measurement is to find an optimal way to 
associate outputs from the observations to target classes. 

• This is easily established for a dichotomic classification, where one of two classes 
A and B have to be assigned to the final measurement of the single qubit. 

• In such a case it is possible to measure the output probabilities  for  and  
for . A given pattern could be classified into the A class if  and into B 
otherwise.  

• We may refine this criterium by introducing a bias. That is, the pattern is classified 
as A if , and as B otherwise. The  is chosen to optimize the success of 
classification on a training set. 

• The assignment of classes to the output reading of a single qubit becomes an 
involved issue when many classes are present.  

• For example, one possible strategy consists on comparing the probability  to 
four sectors with three thresholds: . Then, the value of  will 
fall into one of them, and classification is issued.

{θi}
{wi} |ψ⟩

P(0) |0⟩ P(1)
|1⟩ P(0) > P(1)

P(0) > λ λ

P(0)
0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ 1 P(0)

quantum circuit where all data are loaded in the co-
e�cients of the initial wave function [8, 9, 13–15]. In
the simplest of cases, data are uploaded as rotations of
qubits in the computational basis. A quantum circuit
would then follow that should perform some classifi-
cation.

This strategy would be insu�cient to create a uni-
versal quantum classifier with a single qubit. A first
limitation is that a single qubit only has two degrees
of freedom, thus only allowing to represent data in
a two-dimensional space. No quantum classifier in
higher dimensions can be created if this architecture
is to be used. A second limitation is that, once data
is uploaded, the only quantum circuit available is a
rotation in the Bloch sphere. It is easy to prove that
a single rotation cannot capture any non-trivial sepa-
ration of patterns in the original data.

We need to turn to a di↵erent strategy, which turns
out to be inspired by neural networks. In the case of
feed-forward neural networks, data are entered in a
network in such a way that they are processed by sub-
sequent layers of neurons. The key idea is to observe
that the original data are processed several times, one
for each neuron in the first hidden layer. Strictly
speaking, data are re-uploaded onto the neural net-
work. If neural networks were a↵ected by some sort
of no-cloning theorem, they could not work as they
do. Coming back to the quantum circuit, we need to
design a new architecture where data can be intro-
duced several times into the circuit.

The central idea to build a universal quantum clas-
sifier with a single qubit is thus to re-upload classical
data along with the computation. Following the com-
parison with an artificial neural network with a single
hidden layer, we can represent this re-upload diagram-
matically, as it is shown in Figure 1. Data points in a
neural network are introduced in each processing unit,
represented with squares, which are the neurons of the
hidden layer. After the neurons process these data, a
final neuron is necessary to construct the output to be
analyzed. Similarly, in the single-qubit quantum clas-
sifier, data points are introduced in each processing
unit, which this time corresponds to a unitary rota-
tion. However, each processing unit is a↵ected by the
previous ones and re-introduces the input data. The
final output is a quantum state to be analyzed as it
will be explained in the next subsections.

The explicit form of this single-qubit classifier is
shown in Figure 2. Classical data are re-introduced
several times in a sequence interspaced with process-
ing units. We shall consider the introduction of data
as a rotation of the qubit. This means that data from
three-dimensional space, x̨, can be re-uploaded using
unitaries that rotate the qubit U(x̨). Later processing
units will also be rotations as discussed later on. The
whole structure needs to be trained in the classifica-
tion of patterns.

As we shall see, the performance of the single-qubit

(a) Neural network (b) Quantum classifier

Figure 1: Simplified working schemes of a neural network

and a single-qubit quantum classifier with data re-uploading.

In the neural network, every neuron receives input from all

neurons of the previous layer. In contrast with that, the

single-qubit classifier receives information from the previous

processing unit and the input (introduced classically). It pro-

cesses everything all together and the final output of the

computation is a quantum state encoding several repetitions

of input uploads and processing parameters.

quantum classifier will depend on the number of re-
uploads of classical data. This fact will be explored
in the results section.

2.2 Processing along re-uploading
The single-qubit classifier belongs to the category of
parametrized quantum circuits. The performance of
the circuit is quantified by a figure of merit, some
specific ‰2 to be minimized and defined later. We
need, though, to specify the processing gates present
in the circuit in terms of a classical set of parameters.

Given the simple structure of a single-qubit circuit
presented in Figure 2, the data is introduced in a sim-
ple rotation of the qubit, which is easy to character-
ize. We just need to use arbitrary single-qubit rota-
tions U(„1, „2, „3) œ SU(2). We will write U(„̨) with

„̨ = („1, „2, „3). Then, the structure of the universal
quantum classifier made with a single qubit is

U(„̨, x̨) © U(„̨N )U(x̨) . . . U(„̨1)U(x̨), (1)

which acts as
|ÂÍ = U(„̨, x̨)|0Í. (2)

The final classification of patterns will come from
the results of measurements on |ÂÍ. We may introduce
the concept of processing layer as the combination

L(i) © U(„̨i)U(x̨), (3)

so that the classifier corresponds to

U(„̨, x̨) = L(N) . . . L(1), (4)

where the depth of the circuit is 2N . The more layers
the more representation capabilities the circuit will
have, and the more powerful the classifier will be-
come. Again, this follows from the analogy to neural
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Single qubit classifier: cost function
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• A fidelity cost function:  
• We want to force the quantum state (data state)  to be as near as 

possible to one particular state (label state) on the Bloch sphere.  
• The angular distance between the label state and the data state can be 

measured with the relative fidelity between the two states.  
• Goal is to maximize the average fidelity  

•  where  is the correct label state of the  data 

point. (M = total number of training data) 

|ψ ( ⃗θ, ⃗w , ⃗x )⟩

χ2
f ( ⃗θ, ⃗w ) =

M

∑
μ=1

(1 − ⟨ψ̃s |ψ ( ⃗θ, ⃗w , ⃗xμ)
2 ) | ψ̃s⟩ μ



Single qubit classifier: example
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‰2
f ‰2

wf

Qubits 1 2 1 2 4

Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.50 0.75 – 0.50 0.76 – 0.76 –

2 0.85 0.80 0.73 0.94 0.96 0.96 0.96 0.96

3 0.85 0.81 0.93 0.94 0.97 0.95 0.97 0.96

4 0.90 0.87 0.87 0.94 0.97 0.96 0.97 0.96

5 0.89 0.90 0.93 0.96 0.96 0.96 0.96 0.96

6 0.92 0.92 0.90 0.95 0.96 0.96 0.96 0.96

8 0.93 0.93 0.96 0.97 0.95 0.97 0.95 0.96

10 0.95 0.94 0.96 0.96 0.96 0.96 0.96 0.97

Table 1: Results of the single- and multi-qubit classifiers with data re-uploading for the circle problem. Numbers indicate the

success rate, i.e. number of data points classified correctly over total number of points. Words “Ent.” and “No Ent.” refer

to considering entanglement between qubits or not, respectively. We have used the L-BFGS-B minimization method with the

weighted fidelity and fidelity cost functions. For this problem, both cost functions lead to high success rates. The multi-qubit

classifier increases this success rate but the introduction of entanglement does not a�ect it significantly.

is 50%. We create a train dataset with 200 random
entries. We then validate the single-qubit classifier
against a test dataset with 4000 random points.

The results of this classification are written in Ta-
ble 1. With the weighted fidelity cost function, the
single-qubit classifier achieves more than 90% of suc-
cess with only two layers, that is, 12 parameters. The
results are worse with the fidelity cost function. For
a two-qubit and a four-qubit classifier, two layers are
required to achieve 96% of success rate, that is, 22 pa-
rameters for the two-qubit and 42 for the four-qubit.
The introduction of entanglement does not change the
result in any case. The results show a saturation of
the success rate. Considering more layers or more
qubits does not change this success rate.

The characterization of a closed curved is a hard
problem for an artificial neural network that works
in a linear regime, although enough neurons, i.e. lin-
ear terms, can achieve a good approximation to any
function. On the contrary, the layers of a single-qubit
classifier are rotational gates, which have an intrinsic
non-linear behavior. In a sense, a circle becomes an
easy function to classify as a linear function is for an
artificial neural network. The circle classification is,
in a sense, trivial for a quantum classifier. We need
to run these classifiers with more complex figures or
problems to test their performance.

It is interesting to compare classifiers with di↵erent
number of layers. Figure 6 shows the result of the
classification for a single-qubit classifier of 1, 2, 4 and
8 layers. As with only one layer the best classification
that can be achieved consist on dividing the plane in
half, with two layers the classifier catches the circular
shape. As we consider more layers, the single-qubit
classifier readjust the circle to match the correct ra-
dius.

(a) 1 layer (b) 2 layers

(c) 4 layers (d) 8 layers

Figure 6: Results of the circle classification obtained with a

single-qubit classifier with di�erent number of layers using the

L-BFGS-B minimizer and the weighted fidelity cost function.

With one layer, the best that the classifier can do is to divide

the plane in half. With two layers, it catches the circular

shape which is readjusted as we consider more layers.

6.2 Classification of multiple patterns
We want to show now that the single-qubit classifier
can solve multi-class problems. We divide a 2D plane
into several regions and assign a label to each one.
We propose the following division: three regions cor-
responding to three circular sectors and the interme-
diate space between them. We call this problem the
3-circles problem. This is a hardly non-linear prob-
lem and, consequently, di�cult to solve for a classical
neural network in terms of computational power.
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entries. We then validate the single-qubit classifier
against a test dataset with 4000 random points.
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The introduction of entanglement does not change the
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problem for an artificial neural network that works
in a linear regime, although enough neurons, i.e. lin-
ear terms, can achieve a good approximation to any
function. On the contrary, the layers of a single-qubit
classifier are rotational gates, which have an intrinsic
non-linear behavior. In a sense, a circle becomes an
easy function to classify as a linear function is for an
artificial neural network. The circle classification is,
in a sense, trivial for a quantum classifier. We need
to run these classifiers with more complex figures or
problems to test their performance.

It is interesting to compare classifiers with di↵erent
number of layers. Figure 6 shows the result of the
classification for a single-qubit classifier of 1, 2, 4 and
8 layers. As with only one layer the best classification
that can be achieved consist on dividing the plane in
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With one layer, the best that the classifier can do is to divide

the plane in half. With two layers, it catches the circular

shape which is readjusted as we consider more layers.

6.2 Classification of multiple patterns
We want to show now that the single-qubit classifier
can solve multi-class problems. We divide a 2D plane
into several regions and assign a label to each one.
We propose the following division: three regions cor-
responding to three circular sectors and the interme-
diate space between them. We call this problem the
3-circles problem. This is a hardly non-linear prob-
lem and, consequently, di�cult to solve for a classical
neural network in terms of computational power.
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‰2
f ‰2

wf

Qubits 1 2 1 2 4

Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.73 0.56 – 0.75 0.81 – 0.88 –

2 0.79 0.77 0.78 0.76 0.90 0.83 0.90 0.89

3 0.79 0.76 0.75 0.78 0.88 0.89 0.90 0.89

4 0.84 0.80 0.80 0.86 0.84 0.91 0.90 0.90

5 0.87 0.84 0.81 0.88 0.87 0.89 0.88 0.92

6 0.90 0.88 0.86 0.85 0.88 0.89 0.89 0.90

8 0.89 0.85 0.89 0.89 0.91 0.90 0.88 0.91

10 0.91 0.86 0.90 0.92 0.90 0.91 0.87 0.91

Table 2: Results of the single- and multi-qubit classifiers with data re-uploading for the 3-circles problem. Numbers indicate

the success rate, i.e. number of data points classified correctly over total number of points. Words “Ent.” and “No Ent.”

refer to considering entanglement between qubits or not, respectively. We have used the L-BFGS-B minimization method with

the weighted fidelity and fidelity cost functions. Weighted fidelity cost function presents better results than the fidelity cost

function. The multi-qubit classifier reaches 0.90 success rate with a lower number of layers than the single-qubit classifier.

The introduction of entanglement slightly increases the success rate respect the non-entangled circuit.

Table 2 shows the results for this four-class prob-
lem. For a single-qubit classifier, a maximum of 92%
of success is achieved with 10 layers, i.e. 54 parame-
ters. From these results, it seems that this problem
also saturates around 91% of success. However, the
introduction of more qubits and entanglement makes
possible this result possible with less parameters. For
two qubits with entanglement, 4 layers are necessary
to achieve the same success as with a single-qubit, i.e.
34 parameters. For four qubits without entanglement
4 layers are also required. Notice also that, although
the number of parameters increases significantly with
the number of qubits, some of the e↵ective operations
are performed in parallel.

There is an e↵ect that arises from this more com-
plex classification problem: local minima. Notice that
the success rate can decrease when we add more layers
into our quantum classifier.

As with the previous problem, it is interesting to
compare the performance in terms of sucess rate of
classifiers with di↵erent number of layers. Figure 7
shows the results for a two-qubit classifier with no en-
tanglement for 1, 3, 4 and 10 layers. Even with only
one layer, the classifier identifies the four regions, be-
ing the more complicated to describe the central one.
As we consider more layers, the classifier performs
better and adjust these four regions.

6.3 Classification in multiple dimensions
As explained in Section 2, there is no restriction in
uploading multidimensional data. We can upload up
to three values per rotation since this is the degrees of
freedom of a SU(2) matrix. If the dimension of data is
larger than that, we can just split the data vector into
subsets and upload each one at a time, as described
explicitly in Eq. (6). Therefore, there is no reason to
limit the dimension of data to the number of degrees
of freedom of a qubit. We can in principle upload any

(a) 1 layer (b) 3 layers

(c) 4 layers (d) 10 layers

Figure 7: Results for the 3-circles problem using a single-

qubit classifier trained with the L-BFGS-B minimizer and the

weighted fidelity cost function. With one layer, the classifier

intuits the four regions although the central one is di�cult

to tackle. With more layers, this region is clearer for the

classifier and it tries to adjust the circular regions.

kind of data if we apply enough gates.

Following this idea we will now move to a more
complicated classification using data with 4 coordi-
nates. We use as a problem the four-dimensional
sphere, i.e. classifying data points according to
x2

1 + x2
2 + x2

3 + x2
4 < 2/fi. Similarly with the previous

problems, xi œ [≠1, 1] and the radius has been chosen
such that the volume of the hypersphere is half of the
total volume. This time, we will take 1000 random
points as the training set because the total volume
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Single qubit classifier: example

1907.02085

‰2
f ‰2

wf

Qubits 1 2 1 2 4

Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.87 0.87 – 0.87 0.87 – 0.90 –

2 0.87 0.87 0.87 0.87 0.92 0.91 0.90 0.98

3 0.87 0.87 0.87 0.89 0.89 0.97 – –

4 0.89 0.87 0.87 0.90 0.93 0.97 – –

5 0.89 0.87 0.87 0.90 0.93 0.98 – –

6 0.90 0.87 0.87 0.95 0.93 0.97 – –

8 0.91 0.87 0.87 0.97 0.94 0.97 – –

10 0.90 0.87 0.87 0.96 0.96 0.97 – –

Table 3: Results of the single- and multi-qubit classifiers with data re-uploading for the four-dimensional hypersphere problem.

Numbers indicate the success rate, i.e. the number of data points classified correctly over the total number of points. Words

“Ent.” and “No Ent.” refer to considering entanglement between qubits or not, respectively. We have used the L-BFGS-B

minimization method with the weighted fidelity and fidelity cost functions. The fidelity cost function gets stuck in some local

minima for the multi-qubit classifiers. The results obtained with the weighted fidelity cost function are much better, reaching

the 0.98 with only two layers for the four-qubit classifier. Here, the introduction of entanglement improves significantly the

performance of the multi-qubit classifier.

‰2
f ‰2

wf

Qubits 1 2 1 2 4

Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.34 0.51 – 0.43 0.77 – 0.81 –

2 0.57 0.63 0.59 0.76 0.79 0.82 0.87 0.96

3 0.80 0.68 0.65 0.68 0.94 0.95 0.92 0.94

4 0.84 0.78 0.89 0.79 0.93 0.96 0.93 0.96

5 0.92 0.86 0.82 0.88 0.96 0.96 0.96 0.95

6 0.93 0.91 0.93 0.91 0.93 0.96 0.97 0.96

8 0.90 0.89 0.90 0.92 0.94 0.95 0.95 0.94

10 0.90 0.91 0.92 0.93 0.95 0.96 0.95 0.95

Table 4: Results of the single- and multi-qubit classifiers with data re-uploading for the three-class annulus problem. Numbers

indicate the success rate, i.e. the number of data points classified correctly over the total number of points. Words “Ent.” and

“No Ent.” refer to considering entanglement between qubits or not, respectively. We have used the L-BFGS-B minimization

method with the weighted fidelity and fidelity cost functions. The weighted fidelity cost function presents better success rates

than the fidelity cost function. The multi-qubit classifiers improve the results obtained with the single-qubit classifier but the

using of entanglement does not introduce significant changes.

increases.
Results are shown in Table 3. A single-qubit

achieves 97% of success with eight layers (82 parame-
ters) using the weighted fidelity cost function. Results
are better if we consider more qubits. For two qubits,
the best result is 98% and it only requires three en-
tangled layers (62 parameters). For four qubits, it
achieves 98% success rate with two layers with entan-
glement, i.e. 82 parameters.

6.4 Classification of non-convex figures
As a final benchmark, we propose the classification of
a non-convex pattern. In particular, we classify the
points of an annulus with radii r1 =


0.8 ≠ 2/fi and

r2 =
Ô

0.8. We fix three classes: points inside the
small circle, points in the annulus and points outside
the big circle. So, besides it being a non-convex clas-
sification task, it is also a multi-class problem. A sim-
pler example, with binary classification, can be found

in Appendix B.
The results are shown in Table 4. It achieves 93% of

success with a single-qubit classifier with 10 layers and
a weighted fidelity cost function. With two qubits, it
achieves better results, 94% with three layers. With
four qubits, it reaches a 96% success rate with only
two layers with entanglement.

It is interesting to observe how the single-qubit clas-
sifier attempts to achieve the maximum possible re-
sults as we consider more and more layers. Figure 8
shows this evolution in terms of the number of layers
for a single-qubit classifier trained with the weighted
fidelity cost function. It requires four layers to learn
that there are three concentric patterns and the ad-
dition of more layers adjusts these three regions.

6.5 Comparison with classical classifiers
It is important to check if our proposal is in some
sense able to compete with actual technology of su-
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(a) 1 layer (b) 2 layers (c) 3 layers (d) 4 layers

(e) 5 layers (f) 6 layers (g) 8 layers (h) 10 layers

Figure 8: Results obtained with the single-qubit classifier for the annulus problem, using the weighted fidelity cost function

during the training. The better results are obtained with a 10 layers classifier (93% of success rate). As we consider more

qubits and entanglement, we can increase the success rate up to 96%, as shows Table 4.

pervised machine learning. To do so we have used the
standard machine learning library scikit-learn [22]
and solved the same problems as we have solved with
the quantum classifier. We have included the four
problems presented in the main paper plus five extra
problems analyzed in Appendix B. The aim of this
classical benchmarking is not to make an extended
review of what classical machine learning is capable
to perform. The aim is to compare our simple quan-
tum classifier to simple models such as shallow neural
networks and simple support vector machines.

The technical details of the classical classification
are the following: the neural network has got one hid-
den layer with 100 neurons, a ReLu activation func-
tion and the solver lbfgs by scikit-learn. The sup-
port vector machine is the default sklearn.svm.SVC.
Some changes in the initialization parameters were
tested with no significant di↵erences.

Table 5 compares the best performance of a neural
network, support vector classifier (SVC), the single-
qubit classifier with fidelity cost function and single-
qubit classifier with a weighted fidelity cost function.
In all problems, the performance of the single-qubit
classifier is, at least, comparable with the classical
methods. In some problems, like the 3-circles problem
and the binary annulus problem, the results of the
single-qubit classifier are better than with the classical
methods.

7 Conclusions
We have proposed a single-qubit classifier that can
represent multidimensional complex figures. The core
of this quantum classifier is the data re-uploading.
This formalism allows circumventing the limitations
of the no-cloning theorem to achieve a correct gener-
alization of an artificial neural network with a single
layer. In that sense, we have applied the Universal
Approximation Theorem to prove the universality of
a single-qubit classifier.
The structure of this classifier is the following.

Data and processing parameters are uploaded mul-
tiple times along the circuit by using one-qubit rota-
tions. The processing parameters of these rotations
are di↵erent at each upload and should be optimized
using a classical minimization algorithm. To do so, we
have defined two cost functions: one inspired in the
traditional neural networks cost functions (weighted
fidelity cost function) and the other, simpler, consist-
ing of the computation of the fidelity of the final state
with respect to a target state. These target states
are defined to be maximally orthogonal among them-
selves. Then, the single-qubit classifier finds the opti-
mal rotations to separate the data points into di↵erent
regions of the Bloch sphere, each one corresponding
with a particular class.
The single-qubit classifier can be generalized to a

larger number of qubits. This allows the introduction
of entanglement between these qubits by adding two-
qubit gates between each layer of rotations. We use
a particular entangling ansantz as a proof of concept.
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Single qubit classifier: example

1907.02085Problem
Classical classifiers Quantum classifier

NN SVC ‰2
f ‰2

wf

Circle 0.96 0.97 0.96 0.97

3 circles 0.88 0.66 0.91 0.91

Hypersphere 0.98 0.95 0.91 0.98

Annulus 0.96 0.77 0.93 0.97

Non-Convex 0.99 0.77 0.96 0.98

Binary annulus 0.94 0.79 0.95 0.97

Sphere 0.97 0.95 0.93 0.96

Squares 0.98 0.96 0.99 0.95

Wavy Lines 0.95 0.82 0.93 0.94

Table 5: Comparison between single-qubit quantum classifier and two well-known classical classification techniques: a neural

network (NN) with a single hidden layer composed of 100 neurons and a support vector classifier (SVC), both with the default

parameters as defined in scikit-learn python package. We analyze nine problems: the first four are presented in Section 6

and the remaining five in Appendix B. Results of the single-qubit quantum classifier are obtained with the fidelity and weighted

fidelity cost functions, ‰2
f and ‰2

wf defined in Eq. (7) and Eq. (9) respectively. This table shows the best success rate, being

1 the perfect classification, obtained after running ten times the NN and SVC algorithms and the best results obtained with

single-qubit classifiers up to 10 layers.

The exploration of other possible ansatzes is out of
the scope of this work.

We have benchmarked several quantum classifiers
of this kind, made of a di↵erent number of layers,
qubits and with and without entanglement. The pat-
terns chosen to test these classifiers are the points
inside and outside of a circle (simple example) and
similarly for a four-dimensional hypersphere (multi-
dimensional example); a two dimensional region com-
posed by three circles of di↵erent size (multiple classes
example); and the points outside and inside of an an-
nulus (non-convex example). In all cases, the single-
qubit classifier achieves more than 90% of the success
rate. The introduction of more qubits and entangle-
ment increases this success and reduces the number
of layers required. The weighted fidelity cost function
turns out to be more convenient to achieve better re-
sults than the fidelity cost function. In all problems,
the probability to get stuck in a local minima increases
with the number of layers, an expected result from an
optimization problem involving several parameters.

In summary, we have proposed a quantum classifier
model that seems to be universal by exploiting the
non-linearities of the single-qubit rotational gates and
by re-uploading data several times.
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Self-Supervised Quantum Metric Learning

Figure 1: Normalized PT distribution of accumulated 50 000 images for the signal and
backgrounds.

For the particle clouds, we constrain the number of charged hadrons in each event to a
100 while events with lower number of constituents it padded by zeros. Also, we center the
all particles such that ( (÷b+÷b)

2 , („b+„b)
2 ) is at the center of the (÷ ≠„) plane. After preparing

the input data to the di�erent ML models we split the data into 70 : 30 for training and
testing.

The structure of the CNN model is an input layer and three couples of convolution layers
with sizes of 64, 32 and 16 and a common kernel of dimensions 3◊3. Each convolution layers
pair followed by max-pooling layer with kernel of size 2 and dropout layer with dropout
rate of 20%. The output from the last convolution layer is flattened and followed by a 128
fully connected layer. The output layer has two neurons and soft-max activation.

The
For the hybrid classical-quantum model we use the same convolution encoder in the

CNN model without the final output layer and we add one fully connected layer with 16
neurons and one linear layer with dimension 3. As the quantum gates used in the VQC
consists of asympotatic functions then we normalize the weights of the final linear layer to
the unit vector. The structur of the VQC in the case of only one qubit consists of data
embedding gate and one generic unitary rotation gate which repeated 10 times with one
readout qubit. The measurement form the hybrid model is the overlap of the measured state
with the pure computational states of the qubit. A data set of size 10 K is used to train the
model and 15 K images as a test set. We train the model for 50 epochs with batch of size 10
and Adam optimizer. After traing, as similiar to the classical neural network, we test the
model with new unseen data. In the case of self-supervised learning, the Area Under the
ROC Curve (AUC) is 0.83 which is almost similar to the CNN model. Indeed, one expects
no quantum gain in the case of using only one quabit with classification performance similar
to the classical models.

To exploit the quantum e�ects of the VQC, we increase the depth of the VQC with 4
entangled qubits via the two qubits control rotation Z gate. In this case one can think of
each individual qubit as a neural network layer while the number of the entangled qubits
represents the depth of the network. Both data encoding gates and the unitary rotation
gates are repeated for 6 times. As mentioned above the increasing number of the entangled
qubits enlarge the number of the free tunable parameters and thus improve the expressive
power of the quantum model.
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Figure 2: Model architecture (Up to recommendation).

Figure 3: Multiqubit circuit results. Left Bloch sphere represents training data before train-
ing, middle: represents the training data after training for 50 epochs , right one represents
the test data. Size of the training data is 10 000 while for test data is 15 000. [Do we need
to add the model output score for the CNN here or not ? Do we need to present the last
qubit? The main puprpose is how to train the embedded data. Shall we keep the first two
qubits with fidelity in one row? ]
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Equivariant Quantum Neural Networks

A simple example

• Exhibits             symmetry. 
• We hope that the output of 

the machine learning model 
will be invariant under this 
symmetry.

• How can we enforce this 
behavior in quantum 
machine learning?

3

Equivariance

• Given some function 𝑓(𝑥) , and a  symmetry transformation on the 
input 𝜋 𝑥 , equivariance means the following relation

• That is a transformation of the input correspond to a transformation 
of the output. This sometimes is also called covariance. 

• There are some variations on this concept such as same-
equivariance: 

• And invariance:

2

 exampleℤ2 × ℤ2

• We hope that the output of the machine learning model will be invariant under this 
symmetry. 

Dong


