Discrete Fourier Transformation

- Simon's algorithm \longrightarrow Shor's algorithm (factoring numbers) makes use of QFT.
- Discrete Fourier Transformation (DFT): signal processing, quantum theory (position \leftrightarrow momentum).
- Assume a vector f of N complex numbers: $\quad f_{k}, k=0,1, \cdots, N-1$
- DFT is a mapping from N complex \# to N complex \#.

$$
\begin{gathered}
\text { DFT : } f_{k} \longrightarrow \tilde{f}_{j}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{-j k} f_{k} \\
\text { Inverse DFT }: \tilde{f}_{k} \longrightarrow \tilde{f}_{j}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{j k} \tilde{f}_{k} \\
f_{j}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{j k} \tilde{f}_{k}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{j k}\left(\frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} w^{-\ell k} f_{\ell}\right)=\frac{1}{N} \sum_{\ell}^{N-1} \sum_{k=0}^{N-1} w^{(j-\ell t) k} f_{\ell}=\sum_{\ell}^{N-1} f_{\ell} \delta_{j \ell}=f_{j} \\
\text { nhen } j=\ell
\end{gathered}
$$

Discrete Fourier Transformation

- Convolution (circular convolution, periodic convolution, cyclic convolution)

$$
\left(f^{*} g\right)_{i}=\sum_{j=0}^{N-1} f_{i} g_{i-j}, \quad \text { where } g_{-m}=g_{N-m} \text { (periodic condition) }
$$

- DFT turns convolution into point wise vector multiplication.

$$
\begin{gathered}
\text { DFT of } f * g=\tilde{c}_{k}=\tilde{f}_{k} \tilde{g}_{k} \\
\tilde{c}_{k}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{-j k}(f * g)_{j}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{-j k}\left(\sum_{i=0}^{N-1} f_{i} g_{j-i}\right) \\
=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{-j k} \sum_{i=0}^{N-1}\left(\frac{1}{\sqrt{N}} \sum_{\ell} w^{i \ell} \tilde{f}_{\ell}\right)\left(\frac{1}{\sqrt{N}} \sum_{m} w^{(j-i) m} \tilde{g}_{m}\right)=\frac{1}{\sqrt{N}^{3}} \sum_{j, i, \ell, m} \tilde{f}_{\ell} \tilde{g}_{m} \underbrace{}_{\underbrace{-j k}_{\delta_{\ell k}} w^{i \ell} w^{j m}} w^{-i m}=\tilde{f}_{k} \tilde{g}_{k} \\
\frac{1}{N} \sum_{k=0}^{N-1} w^{(j-\ell) k}=\delta_{j \ell} \quad w=\exp \left(\frac{2 \pi i}{N}\right) \quad \text { Inverse DFT : } f_{k} \longrightarrow \tilde{f}_{k} \longrightarrow \tilde{f}_{j}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{-j k} f_{k} \\
\frac{1}{N} \sum_{k=0}^{N-1} w^{j k} \tilde{f}_{k}
\end{gathered}
$$

Fast Fourier Transformation

Quantum Fourier Transformation

- For classical discrete Fourier transformation

$$
y_{k}=\frac{1}{\sqrt{2}^{n}} \sum_{j=0}^{2^{n}-1} w^{j k} x_{j} \quad w=\exp \left(\frac{2 \pi i}{2^{n}}\right) \quad N=2^{n}
$$

- QFT is defined similarly

$$
F:|j\rangle \longrightarrow \frac{1}{\sqrt{2}^{n}} \sum_{k=0}^{2^{n}-1} w^{j k} x_{k}=F|j\rangle
$$

- For arbitrary quantum states, $\quad F: \quad x\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{j=0}^{2^{n}-1} x_{j}|j\rangle \longrightarrow|y\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{k=0}^{2^{n}-1} y_{k}|k\rangle$

$$
F|x\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{j=0}^{2^{n}-1} x_{j} F|j\rangle={\frac{1}{\sqrt{2}^{n}}}^{2} \sum_{j=0}^{2^{n}-1} \frac{1}{\sqrt{2}^{n}} \sum_{k=0}^{2^{n}-1} x_{j} w^{j k}|k\rangle
$$

- For a single quantum state, $\quad F|j\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{j=0}^{2^{n}-1} w^{j k}|k\rangle \quad F\left|j^{\prime}\right\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{j^{\prime}=0}^{2^{n}-1} w^{j^{\prime} k^{\prime}}\left|k^{\prime}\right\rangle$

$$
\left\langle j^{\prime}\right| F^{\dagger} F|j\rangle=\frac{1}{2^{n}} \sum_{k=0}^{2^{n}-1} \sum_{k^{\prime}=0}^{2^{n}-1} w^{-j^{\prime} k^{\prime}} w^{j k}\left\langle k^{\prime} \mid k\right\rangle=\frac{1}{2^{n}} \sum_{k=0}^{2^{n}-1} w^{\left(j-j^{\prime}\right) k}=\delta_{j j^{\prime}}
$$

Quantum Fourier Transformation

$$
\begin{aligned}
& \text { For } \quad j=j_{1} 2^{n-1}+j_{2} 2^{n-2}+\cdots+j_{n} 2^{0}=\sum_{i=1}^{n} j_{i} 2^{n-i} \\
& k=k_{1} 2^{n-1}+k_{2} 2^{n-2}+\cdots+k_{n} 2^{0}=\sum_{i=1}^{n} k_{i} 2^{n-i} \\
& F|j\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{k=0}^{2^{n}-1} w^{j k}|k\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{k=0}^{2^{n}-1} \exp \left(\frac{2 \pi i j}{2^{n}} \sum_{\ell=1}^{n} k_{t} 2^{n-\ell}\right)|k\rangle \\
& =\frac{1}{\sqrt{2}^{n}} \sum_{k=0}^{2^{n}-1} \exp \left(2 \pi i j \sum_{\ell=1}^{n} k_{\ell} 2^{-\ell}\right)|k\rangle \\
& =\frac{1}{\sqrt{2}^{n}} \sum_{k=0}^{2^{n}-1} \exp \left(2 \pi i j k_{1} 2^{-1}\right) \exp \left(2 \pi i j k_{2} 2^{-2}\right) \cdots \exp \left(2 \pi i j k_{n} 2^{-n}\right)|k\rangle \\
& \begin{array}{r}
\frac{1}{\sqrt{2}^{n}} \sum_{k_{1}=0}^{1} \cdots \sum_{k_{n}=0}^{1} \exp \left(2 \pi i j k_{1} 2^{-1}\right) \exp \left(2 \pi i j k_{2} 2^{-2}\right) \cdots \underbrace{\left(2 \pi i j k_{n} 2^{-n}\right.}_{=|0\rangle+\exp \left(2 \pi i j 2^{-n}\right)|1\rangle})\left|k_{1} k_{2} \cdots k_{n}\right\rangle \\
\hline \exp
\end{array}
\end{aligned}
$$

Quantum Fourier Transformation

$$
\begin{align*}
F|j\rangle & =\frac{1}{\sqrt{2}^{n}}\left(|0\rangle+\exp \left(\frac{2 \pi i j}{2}\right)|1\rangle\right)\left(|0\rangle+\exp \left(\frac{2 \pi i j}{2^{2}}\right)|1\rangle\right) \cdots\left(\left.|0\rangle+\exp \left(\frac{2 \pi i j}{2^{n}}\right) \right\rvert\,\right. \\
& =\frac{1}{\sqrt{2}^{n}} \bigotimes_{k=1}^{n}\left(|0\rangle+\exp \left(\frac{2 \pi i j}{2^{k}}\right)|1\rangle\right)
\end{align*}
$$

$$
j_{i}=0,1
$$

- Binary fraction $=$ expression in power of $1 / 2$

In decimal form:

$$
0 . j_{\ell} j_{\ell+1} \cdots j_{m}=\frac{j_{\ell}}{2}+\frac{j_{\ell+1}}{2^{2}}+\cdots+\frac{j_{m}}{2^{m-\ell+1}}
$$

$$
0 \leq j \leq 2^{n}-1
$$

j is not necessarily an integer: $\quad \frac{j}{2^{k}}=j_{1} j_{2} \cdots j_{n-k} \cdot j_{n-k+1} \cdots j_{n}=\sum_{\nu=1}^{n} j_{\nu} 2^{n-\nu-k}$
If $n=8$ and $k=3, \quad j=j_{1} 2^{7}+j_{2} 2^{6}+j_{3} 2^{5}+j_{4} 2^{4}+j_{5} 2^{3}+j_{6} 2^{2}+j_{7} 2^{1}+j_{8} 2^{0}$

$$
\frac{j}{2^{3}}=j_{1} 2^{4}+j_{2} 2^{3}+j_{3} 2^{2}+j_{4} 2^{1}+j_{5} 2^{0}+j_{6} 2^{-1}+j_{j_{7}} 2^{-2}+j_{8} 2^{-3}
$$

Quantum Fourier Transformation

$$
\begin{aligned}
j & =j_{1} 2^{n-1}+j_{2} 2^{n-2}+\cdots+j_{n-3} 2^{3}+j_{n-2} 2^{2}+j_{n-1} 2^{1}+j_{1} 2^{0}=\sum_{\nu=1}^{n} j_{\nu} 2^{n-\nu} \\
\frac{j}{2^{k}} & =\frac{j_{1} 2^{n-1}+j_{2} 2^{n-2}+\cdots+j_{n-3} 2^{3}+j_{n-2} 2^{2}+j_{n-1} 2^{1}+j_{1} 2^{0}}{2^{k}}=\sum_{\nu=1}^{n} \frac{j_{\nu} 2^{n-\nu}}{2^{k}}=\sum_{\nu=1}^{n} j_{\nu} 2^{n-\nu-k} \\
& =j_{1} j_{2} \cdots j_{n-k} \cdot j_{n-k+1} \cdots j_{n}
\end{aligned} \quad \begin{aligned}
\exp \left(2 \pi i \frac{j}{2^{k}}\right)=\exp \left(2 \pi i 0 \cdot j_{n-k-1} \cdots j_{n}\right) & \frac{1}{\sqrt{2}^{n}}\left(|0\rangle+\exp \left(\frac{2 \pi i j}{2}\right)|1\rangle\right)\left(|0\rangle+\exp \left(\frac{2 \pi i j}{2^{2}}\right)|1\rangle\right) \cdots\left(|0\rangle+\exp \left(\frac{2 \pi i j}{2^{n}}\right)|1\rangle\right) \\
& =\frac{1}{\sqrt{2}^{n}} \bigotimes_{k=1}^{n}\left(|0\rangle+\exp \left(\frac{2 \pi i j}{2^{k}}\right)|1\rangle\right)={\frac{1}{\sqrt{2}^{n}}}^{\bigotimes} \bigotimes_{k=1}^{n}\left(|0\rangle+\exp \left(2 \pi i 0 . j_{n-k-1} \cdots j_{n}\right)|1\rangle\right) \\
& =\frac{1}{\sqrt{2}^{n}}\left(|0\rangle+\exp \left(2 \pi i 0 . j_{n}\right)|1\rangle\right)\left(|0\rangle+\exp \left(2 \pi i 0 . j_{n-1} j_{n-2}\right)|1\rangle\right) \\
& \cdots\left(|0\rangle+\exp \left(2 \pi i 0 . j_{1} j_{2} \cdots j_{n}\right)|1\rangle\right)
\end{aligned}
$$

Quantum Circuit for QFT

- $\left|j_{\ell}\right\rangle$ transforms into $\frac{1}{\sqrt{2}}\left[|0\rangle+\exp \left(2 \pi i 0 \cdot j_{\epsilon^{\prime} \cdots j_{n}}\right)|1\rangle\right]$

Controlled by the value of j_{k} th qubit. if $\begin{cases}j_{k}=0, & R_{k}=1 \\ j_{k}=1, & R_{k}\end{cases}$
1st qubit: $|0\rangle+\exp \left(2 \pi i 0 \cdot j_{j^{\prime}} \cdots j_{n}\right)|1\rangle$
Start with $|j\rangle=\left|j_{2}\right\rangle\left|j_{2} j_{3} \cdots j_{n}\right\rangle \xrightarrow{H_{1}} \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{j_{1}}|1\rangle\right)\left|j_{2} j_{3} \cdots j_{n}\right\rangle$

$$
=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i \cdot j_{1}}|1\rangle\right)\left|j_{2} j_{3} \cdots j_{n}\right\rangle
$$

$$
\begin{aligned}
\mathrm{R}_{2} \text { on } \mathrm{q}_{1} \text { with } \mathrm{q}_{2} \text { control } & \frac{1}{\sqrt{2}}\left(|0\rangle+e^{\left.2 \pi i 0 \cdot j_{1} e^{2 \pi i j_{2} j^{2}}|1\rangle\right)\left|j_{2} j_{3} \cdots j_{n}\right\rangle}\right. \\
= & \frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i 0 \cdot j_{j} j_{2}}|1\rangle\right)\left|j_{2} j_{3} \cdots j_{n}\right\rangle
\end{aligned}
$$

Quantum Circuit for QFT

The entire procedure is repeated for all other qubits, $j_{2}, j_{3}, \cdots j_{n}$

$$
\frac{1}{\sqrt{2}^{n}}\left[|0\rangle+e^{2 \pi i 0 \cdot j_{1} \cdots j_{n}}|1\rangle\right]\left[|0\rangle+e^{2 \pi i 0 \cdot j_{2} \cdots j_{n}}|1\rangle\right] \cdots\left[|0\rangle+e^{2 \pi i 0 \cdot j_{n}}|1\rangle\right]
$$

Use SWAP gate or relabel to obtain: $\quad F|j\rangle=\frac{1}{\sqrt{2}^{n}} \bigotimes_{k=1}^{n}\left(|0\rangle+\exp \left(\frac{2 \pi i j}{2^{k}}\right)|1\rangle\right)$

$$
\frac{1}{\sqrt{2}^{n}}\left[|0\rangle+e^{2 \pi i 0 \cdot j_{n}}|1\rangle\right]\left[|0\rangle+e^{2 \pi i 0 \cdot j_{2} \cdots j_{n}}|1\rangle\right] \cdots\left[|0\rangle+e^{2 \pi i 0 \cdot j_{1} \cdots j_{n}}|1\rangle\right]
$$

Quantum Circuit for QFT

- Classical Fourier Transform scales as $\mathcal{O}\left(N^{2}\right)=\mathcal{O}\left(\left(2^{n}\right)^{2}\right)$
- FFT: $\mathcal{O}(N \ln (N))$ for $N=2^{n}$

Quantum Phase Estimation and Finding Eigenvalues

- Good example of phase kickback and use of QFT
- Unitary operator $U: U|u\rangle=e^{i \phi}|u\rangle, \quad 0 \leq \phi<2 \pi$
- How to find eigenvalue? = How to measure the phase?
- How to find ϕ to a given level of precision?
- Find the best n-bit estimate of the phase ϕ

$$
U^{2 j}|u\rangle=\left(e^{i \phi}\right)^{2^{j}}|u\rangle=e^{i \phi 2^{j}}|u\rangle
$$

Quantum Circuit for QPE

Quantum Circuit for QPE

$$
\left|\psi_{0}\right\rangle=|0\rangle^{\otimes n} \otimes|u\rangle
$$

$$
\mathrm{QPE}=H+\text { controlled }-U^{2^{j}}+\mathrm{QFT}^{\dagger}
$$

$$
\left|\Psi_{1}\right\rangle=(H|0\rangle)^{\otimes n} \otimes|u\rangle=\frac{1}{\sqrt{2}^{n}}(|0\rangle+|1\rangle)^{\otimes n} \otimes|u\rangle
$$

$$
\left|\psi_{2}\right\rangle=\prod_{j=0}^{n-1} \mathrm{CU}^{2} \frac{1}{\sqrt{2}^{n}}(|0\rangle+|1\rangle)^{\otimes n} \otimes|u\rangle
$$

Quantum Circuit for QPE

$$
\begin{aligned}
& \left|\psi_{2}\right\rangle=\prod_{j=0}^{n-1} \mathrm{CU}^{2^{j}} \frac{1}{\sqrt{2}^{n}}(|0\rangle+|1\rangle)^{\otimes n} \otimes|u\rangle \\
& \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|u\rangle \xrightarrow{\mathrm{CU}^{2}} \frac{1}{\sqrt{2}}\left(|0\rangle \otimes|u\rangle+U^{2^{j}}|1\rangle \otimes|u\rangle\right) \\
& =\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i \phi 2^{j}}|1\rangle\right) \otimes|u\rangle
\end{aligned}
$$

Quantum Circuit for QPE

$$
\begin{aligned}
& \left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}^{n}}\left(|0\rangle+e^{i \phi 2^{n-1}}|1\rangle\right)\left(|0\rangle+e^{i \phi 2^{n-2}}|1\rangle\right) \cdots\left(|0\rangle+e^{i 2 \phi}|1\rangle\right)\left(|0\rangle+e^{i \phi}|1\rangle\right) \otimes|u\rangle \\
& =\frac{1}{\sqrt{2}^{n}} \sum_{y=0}^{2^{n}-1} \underbrace{e^{i \phi y}}|y\rangle \otimes|u\rangle \quad \begin{array}{l}
\text { Phase kick-back: phase factor } e^{i \phi y} \text { has been } \\
\text { propagated back from the second eigenstate } \\
\text { register to the first control register }
\end{array} \\
& \text { QFT }|a\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{k=0}^{2^{n}-1} e^{2 \pi i a / 2^{n}}|k\rangle \longrightarrow \quad \frac{2 \pi i a}{2^{n}}=i \phi \longrightarrow 2 \pi\left(\frac{a}{2^{n}}+\delta\right) \\
& a=a_{n-1} a_{n-2} \cdots a_{0}
\end{aligned}
$$

- $\frac{2 \pi a}{2^{n}}$ is the best n-bit binary approximation of ϕ.
- $0 \leq|\delta| \leq \frac{1}{2^{n+1}}$ is the associated error.

$$
\begin{aligned}
& \mathrm{QFT}^{-1}|y\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{x=0}^{2^{n}-1} e^{-2 \pi i x y) / 2^{n}}|x\rangle \\
& \left|\psi_{3}\right\rangle=\mathrm{QFT}^{-1}\left|\psi_{2}\right\rangle=\frac{1}{2^{n}} \sum_{x=0}^{2^{n}-1} \sum_{y=0}^{2^{n}-1} e^{2 \pi i(a-x) y / 2^{n}} e^{2 \pi i \delta y}|x\rangle \otimes|u\rangle
\end{aligned}
$$

Quantum Circuit for QPE

$\left|\psi_{3}\right\rangle=\mathrm{QFT}^{-1}\left|\psi_{2}\right\rangle=\frac{1}{2^{n}} \sum_{x=0}^{2^{n}-1} \sum_{y=0}^{2^{n}-1} e^{2 \pi i(a-x) y / 2^{n}} e^{2 \pi i \delta y}|x\rangle \otimes|u\rangle$
Operate only n control register.
(1) If $\delta=0, \quad \frac{1}{2^{n}} \sum_{y=0}^{2^{n}-1} \exp \left(\frac{2 \pi i(a-x) y}{2^{n}}\right)=\delta_{a x} \quad \longrightarrow\left|\psi_{3}\right\rangle=|a\rangle \otimes|u\rangle \quad \longrightarrow \phi=\frac{2 \pi a}{2^{n}}$
(2) If $\delta \neq 0, \quad$ Measuring 1st register and getting the state $|x\rangle=|a\rangle$ is the best n -bit estimate of ϕ. The corresponding probability is $P_{a}=\left|C_{a}\right|^{2} \geq \frac{4}{\pi^{2}} \approx 0.405$

Quantum Circuit for QPE

$$
\begin{gathered}
\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{x=0}^{2^{n}-1} e^{2 \pi i x \phi}|x\rangle \otimes|u\rangle \\
\mathrm{QFT}^{-1}|x\rangle=\frac{1}{\sqrt{2}^{n}} \sum_{y=0}^{2^{n}-1} e^{-2 \pi i x y / 2^{n}}|y\rangle
\end{gathered}
$$

$$
\left|\psi_{3}\right\rangle=\mathrm{QFT}^{-1}\left|\psi_{2}\right\rangle=\frac{1}{2^{n}} \sum_{x=0}^{2^{n-1}} \sum_{y=0}^{2^{n}-1} e^{2 \pi i x\left(\phi-y / 2^{n}\right)}|y\rangle \otimes|u\rangle
$$

Probability of observing $|y\rangle=P(y)=\left|\frac{1}{2^{n}} \sum_{x=0}^{2^{n}-1} e^{2 \pi i x\left(\phi-y-y 2^{n}\right)}\right|^{2}=\frac{1}{2^{2 n}}\left|\frac{1-r^{2^{n}}}{1-r}\right|^{2}, r \equiv \exp \left[2 \pi i\left(\phi-\frac{y}{2^{n}}\right)\right]$
(1) If $\phi=\frac{y}{2^{n}}, \quad\left|\psi_{3}\right\rangle=|y\rangle \otimes|u\rangle \quad P\left(\phi=\frac{y}{2^{n}}\right)=100 \%$
(2) If $\phi \neq \frac{y}{2^{n}}, \quad$ closest $\mathrm{n}-$ bit approximation to $\phi=0 . \nu_{1} \nu_{2} \cdots \nu_{n}=\equiv \nu \quad \phi-\nu \equiv \delta, \quad 0 \leq|\delta| \leq \frac{1}{2^{n+1}}$
$r \equiv \exp \left[2 \pi i\left(\phi-\frac{y}{2^{n}}\right)\right]=\exp (2 \pi i \delta)$
$P(y)=\frac{1}{2^{2 n}}\left|\frac{1-r^{n}}{1-r}\right|^{2}$,
$r^{2^{n}}=[\exp (2 \pi i \delta)]^{2^{2}}=\exp \left(2 \pi i \delta 2^{n}\right)=e^{i \theta}$

Length of minor arc $=$ $\theta=2 \pi \delta 2^{n}$
$\frac{\text { length of minor arc }}{\text { length of cord }}=\frac{2 \pi \delta 2^{n}}{\left|1-r^{2^{n}}\right|} \leq \frac{\text { half circumference }}{\text { diameter }} \leq \frac{\pi R}{2 R}=\frac{\pi}{2} \longrightarrow\left|1-r^{2^{n}}\right| \geq 4 \delta 2^{n}$

Quantum Circuit for QPE

- We will get the correct answer with probability greater than a constant.
- Probability of getting incorrect outcome can be calculated using $|\delta|>\frac{1}{2^{n+1}}$

$$
\begin{aligned}
& \left|1-r^{2^{n}}\right|<2 \quad \frac{\text { length of minor arc }}{\text { length of cord }}=\frac{2 \pi \delta}{|1-r|}<\frac{\pi}{2}, \quad|1-r|>4 \pi \delta \\
& P(y)=\frac{1}{2^{2 n}}\left|\frac{1-r^{2^{n}}}{1-r}\right|^{2} \leq \frac{1}{2^{2 n}}\left(\frac{2}{4 \delta}\right)^{2}=\frac{1}{2^{2 n}(2 \delta)^{2}} \quad \text { If } \delta=\frac{c}{2^{n}}, \quad P(c) \leq \frac{1}{4 c^{2}}
\end{aligned}
$$

- N-bit estimate of phase ϕ is obtained with a high probability.
- Need to repeat the calculation multiple times.
- Increasing n will increase the probability of success (not obvious but true).
- Increasing n (\# of qubits) will improve the precision of the phase estimate.

Quantum Error Correction

- quant-ph/9705052, Stabilizer codes and quantum error correction, Caltech PhD thesis by D. Gottesman

Simple Classical (Bitflip) Error Correction

- Classically error correction is not necessary
- Hardware for one bit is huge on an atomic scale
-State 0 and 1 are so different that the probability of an unwanted flip is tiny.
- Error correction is needed for transmitting signal over long distance where it attenuates and can be corrupted by noise.
- Suppose we send one bit through a channel.
- Use redundancy:

$$
\begin{aligned}
& |0\rangle \longrightarrow|000\rangle \\
& |1\rangle \longrightarrow|111\rangle
\end{aligned} \text { called codewords }
$$

- Apply majority rule: $\{000,001,010,100\} \rightarrow 0$ $\{111,110,101,011\} \rightarrow 1$
- Flip probability is $\mathrm{p}: p^{3}+3(1-p) p^{2}=3 p^{2}-2 p^{3} \leq p$, if $p<1 / 2$

Quantum Error Correction

- QEC is essential and QC requires error correction
- Physical system for a single qubit is small (often on an atomic scale) so any small external interference can disrupt the quantum system
- Measurement destroys quantum information
- Checking for error is problematic.
- Monitoring means measuring which would alter quantum states
- More general types of error can occur
- (ex) phase error: $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \rightarrow \frac{1}{\sqrt{2}}\left(|0\rangle+e^{i \phi}|1\rangle\right)$
- Errors are continuous
- Unlike all or nothing bit flip errors for classical bits, errors ion qubits can grow continuously out of the uncorrupted state.

Bit Flip Error Correction

- If the error rate is low, we hope to correct them by tailing the number of qubits as the classical case.

$\alpha|0\rangle+\beta|1\rangle \longrightarrow \alpha|000\rangle+\beta|111\rangle \quad$ is not a clone of the input state

$$
\begin{aligned}
(\alpha|0\rangle+\beta|1\rangle)^{\otimes 3} & =\alpha^{3}|000\rangle+\alpha^{2} \beta(|001\rangle+|010\rangle+|100\rangle) \\
& +\alpha \beta^{2}(|110\rangle+|101\rangle+|011\rangle)+\beta^{3}|111\rangle
\end{aligned}
$$

Bit Flip Error Correction

- Assume that no more than one qubit is flipped (reasonable approximation if the error rate is small)

$$
\begin{array}{ll}
|\psi\rangle & =\alpha|000\rangle+\beta|111\rangle \\
\left|\psi_{1}\right\rangle & =\alpha|100\rangle+\beta|011\rangle=X_{1}|\psi\rangle \\
\left|\psi_{2}\right\rangle & =\alpha|010\rangle+\beta|101\rangle=X_{2}|\psi\rangle
\end{array} \quad \text { qubit } 1 \text { qubit } 2 \text { flipped } 1 \text { lipped }
$$

\longrightarrow four states are called "syndromes"

- Classically to determine if one of the bits is flipped, we just have to look at them. However quantum mechanically, if we measure $|\psi\rangle$, we get $|000\rangle$ with probability $|\alpha|^{2}$ and $|111\rangle$ with $|\beta|^{2}$ which destroys the coherent superposition.
- Need to couple the codeword qubits to ancilla qubits and measure those, which does not destroy the coherent superposition.

Bit Flip Error Correction

Bit Flip Error Correction

Syndromes	Bit flipped	x	y
$\|\psi\rangle=\alpha\|000\rangle+\beta\|111\rangle$	None	0	0
$\left\|\psi_{1}\right\rangle=\alpha\|100\rangle+\beta\|011\rangle$	1	1	0
$\left\|\psi_{2}\right\rangle=\alpha\|010\rangle+\beta\|101\rangle$	2	1	1
$\left\|\psi_{3}\right\rangle=\alpha\|001\rangle+\beta\|110\rangle$	3	0	1

Bit Flip Error Correction

$X^{x \tilde{y}}$ gate on qubit 1, only if $\mathrm{x}=1$ and $\mathrm{y}=0 \rightarrow$ correcting $\left|\psi_{1}\right\rangle$
$X^{x y}$ gate on qubit 2, only if $\mathrm{x}=1$ and $\mathrm{y}=1 \rightarrow$ correcting $\left|\psi_{2}\right\rangle$
$X^{\tilde{x} y}$ gate on qubit 3, only if $\mathrm{x}=0$ and $\mathrm{y}=0 \rightarrow$ correcting $\left|\psi_{3}\right\rangle$

Bit Flip Error Correction

$$
|\psi\rangle=\alpha|000\rangle+\beta|111\rangle
$$

$X^{x \tilde{y}}$ gate on qubit 1 , only if $\mathrm{x}=1$ and $\mathrm{y}=0 \rightarrow$ correcting $\left|\psi_{1}\right\rangle$
$X^{x y}$ gate on qubit 2 , only if $\mathrm{x}=1$ and $\mathrm{y}=1 \rightarrow$ correcting $\left|\psi_{2}\right\rangle$
$X^{\tilde{y}}$ gate on qubit 3 , only if $\mathrm{x}=0$ and $\mathrm{y}=0 \rightarrow$ correcting $\left|\psi_{3}\right\rangle$

- What if errors in quantum circuits can arise continuously from zero? (Assume the error rate is small)

$$
|\psi\rangle \quad \longrightarrow\left[1+\left(\epsilon_{1} X_{1}+\epsilon_{2} X_{2}+\epsilon_{3} X_{3}\right)\right]|\psi\rangle \quad \epsilon_{i} \in \mathbb{C},\left|\epsilon_{i}\right| \ll 1
$$

Stabilizer Formalism

- Useful method for error correction of arbitrary error.
- Consider two Hermitian operators, $Z_{1} Z_{2}$ and $Z_{2} Z_{3}$

$Z_{i}^{2}=I_{2 \times 2}$	$Z_{1} Z_{2}=Z_{2} Z_{1}$	$\left(Z_{1} Z_{2}\right)^{2}=I_{2 \times 2}$	$\left(Z_{2} Z_{3}\right)^{2}=I_{2 \times 2}$
\longrightarrow	$A^{2}=I_{2 \times 2}$		

$$
\longrightarrow\left[Z_{1} Z_{2}, Z_{2} Z_{3}\right]=0 \quad Z_{1} Z_{3} \text { and } Z_{2} Z_{3} \text { have the same eigenvectors. }
$$

Syndromes	$Z_{1} Z_{2}$	$Z_{2} Z_{3}$	x	y	
$\|\psi\rangle=\alpha\|000\rangle+\beta\|111\rangle$	1	1	0	0	$Z_{1} Z_{2}=(-1)^{x}$
$\left\|\psi_{1}\right\rangle=\alpha\|100\rangle+\beta\|011\rangle=X_{1}\|\psi\rangle$	-1	1	1	0	$Z_{2} Z_{3}=(-1)^{y}$
$\left\|\psi_{2}\right\rangle=\alpha\|010\rangle+\beta\|101\rangle=X_{2}\|\psi\rangle$	-1	-1	1	1	
$\left\|\psi_{3}\right\rangle=\alpha\|001\rangle+\beta\|110\rangle=X_{3}\|\psi\rangle$	1	-1	0	1	

- Syndromes are eigenvectors of $Z_{1} Z_{2}$ and $Z_{2} Z_{3}$.
- Stabilizers are operators whose eigenvalues distinguish the different syndromes.

Properties of Stabilizers and Syndromes

- Syndromes are eigenvectors of $Z_{1} Z_{2}$ and $Z_{2} Z_{3}$.
- Stabilizers are operators whose eigenvalues distinguish the different syndromes.
- Eigenvalues of a stabilizer in a syndrome is +1 or -1 .
- Eigenvalues of all stabilizers are +1 in the uncorrupted syndrome $|\psi\rangle$.
- Operators for the stabilizers are built out of the single qubit operators Z_{i} and X_{i}.
- Syndromes with a single qubit error are obtained by acting on the uncorrupted syndrome with X_{i}, Y_{i} and Z_{i} operators.
- For a general stabilizer A_{α} and a syndrome state $\left|\psi_{\beta}\right\rangle=B_{\beta}|\psi\rangle, A_{\alpha}$ either commutes or anti-commutes with B_{β}.
$-B_{\beta}$ involves a single Pauli's operator (X, Y or Z).
$-A_{\alpha}$ involves a product of Pauli's operators (X's, and Z's b/c $Y=i X Z$).

Properties of Stabilizers and Syndromes

- If $\left[A_{\alpha}, B_{\beta}\right]=0, A_{\alpha}\left|\psi_{\beta}\right\rangle=+1\left|\psi_{\beta}\right\rangle$ and eigenvalue of the stabilizer A_{α} in state $\left|\psi_{\beta}\right\rangle$ is +1 .
$-A_{\alpha}|\psi\rangle=A_{\alpha} B_{\beta}|\psi\rangle=B_{\beta} A_{\alpha}|\psi\rangle=B_{\beta}|\psi\rangle=|\psi\rangle$
- If $\left\{A_{\alpha}, B_{\beta}\right\}=0, A_{\alpha}\left|\psi_{\beta}\right\rangle=-1\left|\psi_{\beta}\right\rangle$
$-A_{\alpha}|\psi\rangle=A_{\alpha} B_{\beta}|\psi\rangle=-B_{\beta} A_{\alpha}|\psi\rangle=-B_{\beta}|\psi\rangle=-|\psi\rangle$
- Syndromes must be eigenvectors of all stabilizers \rightarrow stabilizers must commute each other
- How to determine efficiently if a stabilizer commutes or anti-commutes with the operator which generates a corrupted syndrome out of the uncorrupted syndrome?
- For the case of 3-qubit bit-flip code, stabilizers are $Z_{1} Z_{2}$ and $Z_{2} Z_{3}$.
- Operators which generate the corrupted syndromes from the uncorrupted syndrome: X_{1}, X_{2} and X_{3}.

Properties of Stabilizers and Syndromes

- How to determine efficiently if a stabilizer commutes or anti-commutes with the operator which generates a corrupted syndrome out of the uncorrupted syndrome?
- For the case of 3-qubit bit-flip code, stabilizers are $Z_{1} Z_{2}$ and $Z_{2} Z_{3}$.
- Operators which generate the corrupted syndromes from the uncorrupted syndrome: X_{1}, X_{2} and X_{3}.
$-X_{1}$ commutes with $Z_{2} Z_{3} \longleftrightarrow\left[X_{1}, Z_{2} Z_{3}\right]=0 . \because$ no sites in common $\rightarrow Z_{2} Z_{3}\left|\psi_{1}\right\rangle=+1\left|\psi_{1}\right\rangle$
$-X_{2}$ has one common site with $Z_{2} Z_{3} . \rightarrow X_{2} Z_{2} Z_{3}=-Z_{2} X_{2} Z_{3}=-Z_{2} Z_{3} X_{2}$
$\rightarrow\left\{X_{1}, Z_{2} Z_{3}\right\}=0 \rightarrow Z_{2} Z_{3}\left|\psi_{2}\right\rangle=-\left|\psi_{2}\right\rangle$

Stabilizer Formalism

- In the stabilizer formalism, we need to construct a set of Hermitian operators (stabilizers) which satisfy the following properties
- They square to 1 (so eigenvalues are ± 1).
- They mutually commute (so they have the same eigenvectors).
- The syndromes are eigenstates.
- The uncorrupted syndrome has eigenvalue +1 for all stabilizers.
- The set of ± 1 eigenvalues of the stabilizers uniquely specifies the syndrome.
-Whether the eigenvalue is +1 or -1 is easily determined from the commutation properties of the stabilizer with respect to the operator which generate the corruption in the syndrome.

Stabilizer Formalism: Circuits

- Circuit which will measure the eigenvalues of stabilizers and hence determine which syndromes have occurred.
$U=U^{\dagger}$
$U\left|\psi_{ \pm}\right\rangle= \pm\left|\psi_{ \pm}\right\rangle$
$|\psi\rangle \equiv \alpha_{+}\left|\psi_{+}\right\rangle+\alpha_{-}\left|\psi_{-}\right\rangle$

$\left|\phi_{0}\right\rangle=|0\rangle \otimes|\psi\rangle=\alpha_{+}\left|0 \psi_{+}\right\rangle+\alpha_{-}\left|0 \psi_{-}\right\rangle$
$\left|\phi_{1}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|\psi\rangle=\frac{\alpha_{+}}{\sqrt{2}}\left[\left|0 \psi_{+}\right\rangle+\left|1 \psi_{+}\right\rangle\right]+\frac{\alpha_{-}}{\sqrt{2}}\left[\left|0 \psi_{-}\right\rangle+\left|1 \psi_{-}\right\rangle\right]$
$\left|\phi_{2}\right\rangle=\frac{\alpha_{+}}{\sqrt{2}}\left(\left|0 \psi_{+}\right\rangle+\left|1 \psi_{+}\right\rangle\right)+\frac{\alpha_{-}}{\sqrt{2}}\left(\left|0 \psi_{-}\right\rangle-\left|1 \psi_{-}\right\rangle\right)$
$\left|\phi_{3}\right\rangle=\alpha_{+}\left|0 \psi_{+}\right\rangle+\alpha_{-}\left|1 \psi_{-}\right\rangle$

Stabilizer Formalism: Circuits

- If a measurement of the upper qubit gives $|0\rangle$ (with probability $\left|\alpha_{+}\right|^{2}$), the lower qubit will be in state $\left|\psi_{+}\right\rangle$.
- If a measurement of the upper qubit gives $|1\rangle$ (with probability $\left|\alpha_{-}\right|^{2}$), the lower qubit will be in state $\left|\psi_{-}\right\rangle$.
- \therefore control bit tells us which eigenstates of U the target qubit is in.

Bitflip code for 3 qubits

$|\psi\rangle=\alpha|000\rangle+\beta|111\rangle$

Bitflip code for 3 qubits

$|\psi\rangle=\alpha|000\rangle+\beta|111\rangle$

Phase Flip

- With some probability p, the relative phase of $|0\rangle$ and $|1\rangle$ is flipped.

Phase

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \longrightarrow \alpha|0\rangle-\beta|1\rangle
$$

Flip

$$
\binom{\alpha}{\beta} \longrightarrow Z\binom{\alpha}{\beta}=\binom{\alpha}{-\beta} \quad \text { in Z-basis (computational basis) }
$$

Bit Flip $\quad|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \longrightarrow \alpha|1\rangle+\beta|0\rangle \quad X|0\rangle=|1\rangle$

$$
\binom{\alpha}{\beta} \longrightarrow X\binom{\alpha}{\beta}=\binom{\beta}{\alpha} \quad X|1\rangle=|0\rangle
$$

- Phase flip error model can be turned into the bit-flip error model by transforming to the \pm basis (X basis).

Transformation is Hadamard:

$$
\begin{array}{ll}
H|0\rangle=|+\rangle & H|+\rangle=|0\rangle \\
H|1\rangle=|-\rangle & H|-\rangle=|1\rangle
\end{array}
$$

Phase Flip

- In the X-basis, roles of X and Z are interchanged.

Bit-flip	$\begin{aligned} & X\|0\rangle=\|1\rangle \\ & X\|1\rangle=\|0\rangle \end{aligned}$	$\begin{aligned} & Z\|+\rangle=\|-\rangle \\ & Z\|-\rangle=\|+\rangle \end{aligned}$	Phase-flip
Phase-flip	$Z\|0\rangle=\|0\rangle$	$X\|+\rangle=1+\rangle$	Bit-flip
	$Z\|1\rangle=-\|1\rangle$	$X\|-\rangle=-\|-\rangle$	
In computational basis (Z-basis)		In X-basis	

- Stabilizers to detect phase errors involve X-operations as opposed to those used to detect bit-flip errors which involve Z-operators.

Circuit to encode 3-qubit bit-flip code acting on a linear combination of $|0\rangle$ and $|1\rangle$

Encoding circuit for the
3-qubit phase flip

