Yonsei-Konkuk-Sogang Mini-workshop

Jorinde van de Vis 07/02/2025

Program

Friday 07/02

- Introduction & motivation for wall velocity JvdV
- Equilibrium thermodynamics, example computation, nucleation, matrix elements PS
- Example of DRalgo and WallGoMatrix model files PS

- WallGo source code JvdV
- Worked out example for WallGo JvdV & PS: Matrix elements Example base file Collision model Model file
- WallGo model

Saturday 08/02

Hands-on session: start of implementation of

Monday 10/02

- Discussion of configuration parameters and convergence JvdV
- Hands-on session: implementation of WallGo model & Q&A

Program

Friday 07/02

- Introduction & motivation for wall velocity JvdV
- Equilibrium thermodynamics, example computation, nucleation, matrix elements PS
- Example of DRalgo and WallGoMatrix model files PS

- Worked out example for WallGo JvdV & PS: Matrix elements Example base file Collision model Model file
- WallGo model

Saturday 08/02

WallGo source code JvdV

Hands-on session: start of implementation of

Monday 10/02

- Discussion of configuration parameters and convergence JvdV
- Hands-on session: implementation of WallGo model & Q&A

Choose your favorite model and make sure you know its effective potential and nucleation temperature before Saturday

Wall velocity: motivation

 Cosmological phase transition: field with temperature-dependent effective potential transitions from high-temperature vacuum to low-temperature vacuum

Figure: Rubakov, 2015

- Cosmological phase transition: field with temperature-dependent effective potential transitions from high-temperature vacuum to low-temperature vacuum
- The phase transition proceeds via the nucleation of bubbles of the lowtemperature vacuum
- The bubbles expand and collide until they fill the entire universe

- Cosmological phase transition: field with temperature-dependent effective potential transitions from high-temperature vacuum to low-temperature vacuum
- The phase transition proceeds via the nucleation of bubbles of the lowtemperature vacuum
- The bubbles expand and collide until they fill the entire universe
- The bubble wall is the region where the field(s) interpolate between the highand low-temperature vacuum

- The release of vacuum energy provides an outward pressure: the wall accelerates initially
- Plasma particles provide friction by reflections and by gaining mass by entering the bubble
- Heating of the plasma in front of the bubble causes hydrodynamic backreaction

 v_w

- When $|P_{\text{outward}}| = |P_{\text{inward}}|$ the wall reaches a terminal velocity v_w
- This typically happens long before the bubbles collide: $t_{\text{formation}} \ll t_{\text{const}v_w} \ll t_{\text{collision}}$
- If the pressures never balance, the wall keeps accelerating until collision: runaway wall
- Runaway bubbles typically occur in very strong PTs; they are not the focus of this workshop

Why do we want to know the bubble wall velocity?

- First order phase transitions have many interesting possible phenomenological consequences:
 - or alternative scenarios

Generation of the matter-antimatter asymmetry in electroweak baryogenesis

Generation of the matter-antimatter asymmetry

Figures from: Cline, Laurent 2021

Why do we want to know the bubble wall velocity?

- First order phase transitions have many interesting possible phenomenological consequences:
 - or alternative scenarios
 - Generation of the dark matter abundance

Generation of the matter-antimatter asymmetry in electroweak baryogenesis

Dark matter production

Slow bubbles: Filtered dark matter Baker, Kopp, Long 2019, Chway, Jung, Shin 2019, Marfatia, Tseng 2020

Figures from: <u>Baker, Kopp, Long 2019</u>

Dark matter production Fast bubbles: Azatov, Vanvlasselaer, Yin 2021; Baldes, Gouttenoire, Sala 2022

 $\langle \phi \rangle \simeq v_{\phi}$

Figure from: Baldes, Gouttenoire, Sala 2022

Why do we want to know the bubble wall velocity?

- First order phase transitions have many interesting possible phenomenological consequences:
 - or alternative scenarios
 - Generation of the dark matter abundance
 - Formation of a stochastic gravitational wave background

Generation of the matter-antimatter asymmetry in electroweak baryogenesis

GW spectrum from sound waves

Figure from: Gowling, Hindmarsh 2021 **GW** spectrum computed in the sound shell model

(a) Fixed: $\alpha = 0.2$, $r_* = 0.1$, $T_n = 100$ GeV.

Why do we want to know the bubble wall velocity?

- First order phase transitions have many interesting possible phenomenological consequences:
 - or alternative scenarios
 - Generation of the dark matter abundance
 - Formation of a stochastic gravitational wave background
- In all cases, the value of the wall velocity affects the predictions

Generation of the matter-antimatter asymmetry in electroweak baryogenesis

Problems

- The bubble wall velocity is not easy to compute
- The computation is model-dependent

Problems

- The bubble wall velocity Let's just assume $V_W = 1$ assume $V_W = 1$
- The computation is mod

sy to compute

Many papers in the literature

How fast does the

Ekstedt, Gould, Hirvonen, Laurent, Niemi, Schicho, JvdV: 2411.04970

with out-of-equilibrium contributions

Publicly available code for the computation of the wall velocity

Wall velocity: theory

Some assumptions

- $t_{\text{formation}} \ll t_{\text{const}v_w} \ll t_{\text{collision}}$
- The bubbles are much smaller than horizon size, $(R_{\text{bubble}}H \ll 1)$, so we assume Minkowski spacetime
- The theory is weakly-coupled

We can compute the wall velocity when the bubble still expands in isolation

The plasma surrounding the bubble will be at the nucleation temperature

Scalar field equation of motion

Scalar field equation of motion

Friction force Dominant contribution from heavy particles (e.g. top)

 $\frac{1}{2E}\delta f^a(p^\mu,\xi) = 0$ ∂m_a^2

Scalar field equation of motion Balance of forces Balaji, Spannowski, Tamarit 2020; Ai, Garbrecht, Tamarit 2021

$$\int dz \frac{d\phi}{dz} \left(\partial^2 \phi + \frac{\partial V_{\text{eff}}(\phi, T)}{\partial \phi} + \sum_a \frac{\partial m_a^2}{\partial \phi} \int_{\vec{p}} \frac{1}{2E} \delta f^a(p^\mu, \xi) \right) = 0$$

$$z \frac{d\phi}{dz} \frac{\partial V_{\text{eff}}(\phi, T)}{\partial \phi} = \int dz \left(\frac{dV_{\text{eff}}}{dz} - \frac{\partial V_{\text{eff}}}{\partial T} \frac{dT}{dz} \right) = \Delta V_{\text{eff}} - \int dz \frac{\partial V_{\text{eff}}}{\partial T} \frac{dT}{dz}$$

$$\int dz \frac{d\phi}{dz} \left(\partial^2 \phi + \frac{\partial V_{\text{eff}}(\phi, T)}{\partial \phi} + \sum_a \frac{\partial m_a^2}{\partial \phi} \int_{\vec{p}} \frac{1}{2E} \delta f^a(p^\mu, \xi) \right) = 0$$

$$\int dz \frac{d\phi}{dz} \frac{\partial V_{\text{eff}}(\phi, T)}{\partial \phi} = \int dz \left(\frac{dV_{\text{eff}}}{dz} - \frac{\partial V_{\text{eff}}}{\partial T} \frac{dT}{dz} \right) = \Delta V_{\text{eff}} - \int dz \frac{\partial V_{\text{eff}}}{\partial T} \frac{dT}{dz}$$

Scalar field equation of motion Balance of forces Balaji, Spannowski, Tamarit 2020; Ai, Garbrecht, Tamarit 2021

$$\int dz \frac{d\phi}{dz} \left(\partial^2 \phi + \frac{\partial V_{\text{eff}}(\phi, T)}{\partial \phi} + \sum_a \frac{\partial m_a^2}{\partial \phi} \int_{\vec{p}} \frac{1}{2E} \delta f^a(p^\mu, \xi) \right) = 0$$

$$\frac{d\phi}{dz} \frac{\partial V_{\text{eff}}(\phi, T)}{\partial \phi} = \int dz \left(\frac{dV_{\text{eff}}}{dz} - \frac{\partial V_{\text{eff}}}{\partial T} \frac{dT}{dz} \right) = \Delta V_{\text{eff}} - \int dz \frac{\partial V_{\text{eff}}}{\partial T} \frac{dT}{dz}$$

$$\Delta V_{\text{eff}} - \int dz \frac{\partial V_{\text{eff}}}{\partial T} \frac{dT}{dz} + \sum_a \int dz \frac{dm_a^2}{dz} \int_{\vec{p}_{\star}} \frac{1}{2E} \delta f^a(p^\mu, \xi) = 0$$

$$\int dz \frac{d\phi}{dz} \left(\partial^2 \phi + \frac{\partial V_{\text{eff}}(\phi, T)}{\partial \phi} + \sum_a \frac{\partial m_a^2}{\partial \phi} \int_{\vec{p}} \frac{1}{2E} \delta f^a(p^\mu, \xi) \right) = 0$$

$$\int dz \frac{d\phi}{dz} \frac{\partial V_{\text{eff}}(\phi, T)}{\partial \phi} = \int dz \left(\frac{dV_{\text{eff}}}{dz} - \frac{\partial V_{\text{eff}}}{\partial T} \frac{dT}{dz} \right) = \Delta V_{\text{eff}} - \int dz \frac{\partial V_{\text{eff}}}{\partial T} \frac{dT}{dz}$$

$$\Delta V_{\text{eff}} - \int dz \frac{\partial V_{\text{eff}}}{\partial T} \frac{dT}{dz} + \sum_a \int dz \frac{dm_a^2}{dz} \int_{\vec{p}_*} \frac{1}{2E} \delta f^a(p^\mu, \xi) = 0$$

Friction force Dominant contribution from heavy particles (e.g. top)

27

Also for vanishing δf^a , the wall can stop to accelerate!

Ignatius, Kajantie, Kurki-Suonio, Laine 1993; Konstandin, No 2011; Barroso Mancha, Prokopec, Swiezewska 2020; Balaji, Spannowski, Tamarit 2020; Ai, Garbrecht, Tamarit 2021; Ai, Laurent, JvdV 2023; Ai, Laurent, JvdV 2024

- Hydrodynamic effects also provide a backreaction force in local thermal equilibrium ($\delta f^a = 0$)
- This approximation provides an *upper bound* on the wall velocity
- Entropy conservation provides a third hydrodynamic matching condition: the wall velocity can be determined from hydrodynamics only

Scalar field equation of motion

 $\frac{\partial m_a^2}{\partial \phi_i} \int_{\vec{p}} \frac{1}{2E} \delta f^a(p^{\mu}, \xi) = 0$ $\partial V_{\text{eff}}(\phi, I)$

The scalar field equation of motion depends on the temperature profile

Temperature and fluid profile Energy-momentum tensor of the (perfect) fluid and scalar field

$$\partial_{\mu}\phi_{i}\partial_{\nu}\phi_{i} - g_{\mu\nu}\left(\frac{1}{2}\partial_{\sigma}\phi_{i}\partial^{\sigma}\phi_{i}\right)$$

Temperature and fluid profile Energy-momentum conservation for a planar wall, moving in the *z***-direction**

$$T_{\mu\nu} = wu_{\mu}u_{\nu} - pg_{\mu\nu} + \partial_{\mu}\phi_{i}\partial_{\nu}\phi_{i} - g_{\mu\nu}\left(\frac{1}{2}\partial_{\sigma}\phi_{i}\partial^{\sigma}\phi_{i}\right)$$

$$T^{30} = w\gamma_{\text{pl}}^{2}v_{\text{pl}} + T_{\text{out}}^{30} \stackrel{\bullet}{=} c_{1}$$

$$T^{33} = \frac{1}{2}(\partial_{z}\phi_{i})^{2} - V_{\text{eff}}(\overrightarrow{\phi}, T) + w\gamma_{\text{pl}}^{2}v_{\text{pl}}^{2} + T_{\text{out}}^{33} = c_{2}$$
Contribution from outof-equilibrium particles

$$T_{\mu\nu} = wu_{\mu}u_{\nu} - pg_{\mu\nu} + \partial_{\mu}\phi_{i}\partial_{\nu}\phi_{i} - g_{\mu\nu}\left(\frac{1}{2}\partial_{\sigma}\phi_{i}\partial^{\sigma}\phi_{i}\right)$$

$$T^{30} = w\gamma_{\text{pl}}^{2}v_{\text{pl}} + T_{\text{out}}^{30} \stackrel{\bullet}{=} c_{1}$$

$$T^{33} = \frac{1}{2}(\partial_{z}\phi_{i})^{2} - V_{\text{eff}}(\overrightarrow{\phi}, T) + w\gamma_{\text{pl}}^{2}v_{\text{pl}}^{2} + T_{\text{out}}^{33} = c_{2}$$
Contribution from out-
of-equilibrium particles

Temperature and fluid profile Energy-momentum conservation for a planar wall, moving in the *z***-direction**

$$T_{\mu\nu} = wu_{\mu}u_{\nu} - pg_{\mu\nu} + \partial_{\mu}\phi_{i}\partial_{\nu}\phi_{i} - g_{\mu\nu}\left(\frac{1}{2}\partial_{\sigma}\phi_{i}\partial^{\sigma}\phi_{i}\right)$$

$$T^{30} = w\gamma_{\text{pl}}^{2}v_{\text{pl}} + T_{\text{out}}^{30} = c_{1}$$

$$T^{33} = \frac{1}{2}(\partial_{z}\phi_{i})^{2} - V_{\text{eff}}(\overrightarrow{\phi}, T) + w\gamma_{\text{pl}}^{2}v_{\text{pl}}^{2} + T_{\text{out}}^{33} = c_{2}$$
Constants obtained from hydrodynamic solution

Boundary conditions from hydrodynamics Bubble wall scale: scalar field of motion (and Boltzmann equations)

Units and scale are arbitrary

Boundary conditions from hydrodynamics On hydrodynamic scales, the wall corresponds to a discontinuity in T, v

 $\partial \phi = 0$

 \mathcal{V}, \mathcal{W}

Boundary conditions from hydrodynamics

- state given by $p_{\text{HT}} = -V_{\text{eff}}(v_{\text{HT}}, T)$ and $p_{\text{LT}} = -V_{\text{eff}}(v_{\text{LT}}, T)$
- Three types of solutions

• Spherically symmetric solutions to $\partial_{\mu}T^{\mu\nu} = 0$ for $\partial_{\mu}\phi_i = 0$ and equation of

Hydrodynamic backreaction

- hybrid solution always increase with v_{w}
- For detonations the hydrodynamic backreaction decreases with v_w

Due to the hydrodynamic backreaction, the pressure of the deflagration and

Boundary conditions from hydrodynamics

- state given by $p_{\rm HT} = -V_{\rm eff}(v_{\rm HT}, T)$ and $p_{\rm TT} = -V_{\rm eff}(v_{\rm TT}, T)$
- Three types of solutions
- Fixing the nucleation temperature and v_w determines $T_+, T_-, v_+, v_- \rightarrow c_1, c_2$

• Spherically symmetric solutions to $\partial_{\mu}T^{\mu\nu} = 0$ for $\partial_{\mu}\phi_i = 0$ and equation of

Obtaining ϕ_i , v, T and v_w

- Let us assume for now that we know δf_a
- We can solve ϕ_i, v, T for a given v_w
- From this we determine the pressure on the wall *P*. $P(v_w) = 0$ gives us the wall velocity

Obtaining ϕ_i , v, T and v_w

- Often (also in WallGo) the ϕ_i are approximated as $\phi_i(z) = v_{\text{HT},i} + \frac{v_{\text{LT},i} v_{\text{HT},i}}{2} \left[1 \tanh\left(\frac{z}{L_i} + \delta_i\right) \right]$
- The ϕ_i are now not exact solutions of their equations of motion
- The L_i, δ_i can be obtained by taking moments of the equation of motion or by minimizing the action (WallGo)

The out-of-equilibrium contribution

- Until now we assumed that we already knew the out-of-equilibrium condition
- In practice we solve for ϕ_i, v, T first, and compute δf^a assuming that background solution
- We plug the solution of δf^a into the equations for ϕ_i, v, T until it converges

The out-of-equilibrium contribution Boltzmann equation

$$\nabla_{\vec{p}} f^a(\vec{p},\xi) = - \mathscr{C}_a[\vec{f}]$$

Collision term: Nine-dimensional integral over distributions of 4 contributing species

The out-of-equilibrium contribution Boltzmann equation

$$\nabla_{\vec{p}} f^a(\vec{p},\xi) = - \mathscr{C}_a[\vec{f}]$$

Collision term: Nine-dimensional integral over distributions of 4 contributing species

The out-of-equilibrium contribution **Boltzmann equation**

$$\nabla_{\vec{p}} f^a(\vec{p},\xi) = - \mathscr{C}_a[\vec{f}]$$

Collision term: Nine-dimensional integral over distributions of 4 contributing species

The Boltzmann equations can be solved by linearizing in the perturbation from equilibrium and using that $\mathscr{C}[f_{eq}] = 0$

Putting the Boltzmann equation in a solvable form Taking moments Prokopec Moore 1995; Dorsch, Huber, Konstandin 2021

$$f = f_{eq}(E + \delta), \qquad \delta = -\left[\mu + \mu_{bg} + \frac{E}{T}(\delta T + \delta T_{bg}) + p_z(v + v_{bg})\right]$$

$$-f_{eq}'\left(\frac{p_z}{E}[\partial_z(\mu+\mu_{bg})+\frac{E}{T}\partial_z(\delta T+\delta T_{bg})+p_z\partial_z(\nu+\nu_{bg})]+\partial_t(\mu+\mu_{bg})+\frac{E}{T}\partial_t(\delta T+\delta T_{bg})+p_z\partial_t(\nu+\nu_{bg})\right)+C(\mu,\delta T,\nu)=-f_{eq}'\frac{\partial_t m^2}{2E}$$

Putting the Boltzmann equation in a solvable form Taking moments Prokopec Moore 1995; Dorsch, Huber, Konstandin 2021

$$-f_{eq}'\left(\frac{p_z}{E}[\partial_z(\mu+\mu_{bg})+\frac{E}{T}\partial_z(\delta T+\delta T_{bg})+p_z\partial_z(\nu+\nu_{bg})]+\partial_t(\mu+\mu_{bg})+\frac{E}{T}\partial_t(\delta T+\delta T_{bg})+p_z\partial_t(\nu+\nu_{bg})\right)+C(\mu,\delta T,\nu)=-f_{eq}'\frac{\partial_t m^2}{2E}$$

Taking moments

$$\int d^3 p/(2\pi)^3$$
, $\int E d^3 p/(2\pi)^3$, $\int p_z d^3 p/(2\pi)^3$

$$c_{2}\partial_{t}(\mu+\mu_{bg}) + c_{3}\partial_{t}(\delta T + \delta T_{bg}) + \frac{c_{3}T}{3}\partial_{z}(v+v_{bg}) + \int \frac{d^{3}p}{(2\pi)^{3}T^{2}}C[f] = \frac{c_{1}}{2T}\partial_{t}m^{2}$$

$$c_{3}\partial_{t}(\mu+\mu_{bg}) + c_{4}\partial_{t}(\delta T + \delta T_{bg}) + \frac{c_{4}T}{3}\partial_{z}(v+v_{bg}) + \int \frac{Ed^{3}p}{(2\pi)^{3}T^{3}}C[f] = \frac{c_{2}}{2T}\partial_{t}m^{2}$$

$$\frac{c_{3}}{3}\partial_{z}(\mu+\mu_{bg}) + \frac{c_{4}}{3}\partial_{t}(\delta T + \delta T_{bg}) + \frac{c_{4}T}{3}\partial_{t}(v+v_{bg}) + \int \frac{p_{z}d^{3}p}{(2\pi)^{3}T^{3}}C[f] = 0$$

$$c_i T^{i+1} \equiv \int E^{i-2} (-f'_{eq}) \frac{d^3 p}{(2\pi)^3}$$

Putting the Boltzmann equation in a solvable form Taking moments Prokopec Moore 1995; Dorsch, Huber, Konstandin 2021

Advantages

- Numerically relatively easily manageable
- Collision terms become very simple; E.g. $\int \frac{d^3 p}{(2\pi)^3 T^2} C[f] = \mu \Gamma_{\mu 1 f} + \delta T \Gamma_{T 1 f}$ for top quarks, with $\Gamma_{u1f} = 0.008997, \qquad \Gamma_{T1f} = 0.01752T$
- Different moments correspond to conservation of particle number, energy and momentum

Disadvantages

- A singularity appears around $v_w = c_s$, see also Laurent, Cline 2022; Dorsch, Konstandin, Perboni, Pinto 2024
- Not clear if three moments is sufficient for convergence
- Mixing between different out-ofequilibrium particles is neglected

$$\left(p^{\mu}\partial_{\mu} + \frac{1}{2}\overrightarrow{\nabla}m_{a}^{2}\cdot\nabla_{\vec{p}}\right)f^{a}(\vec{p},x^{\mu}) = -\mathscr{C}_{a}[\vec{f}]$$

$$f^a(\vec{p},\xi) = f^a_{\text{eq}}(\vec{p},\xi) + \delta f^a(\vec{p},\xi),$$

$$\left(-p_{\mu}\bar{u}^{\mu}_{w}\partial_{\xi}-\frac{1}{2}\partial_{\xi}(m_{a}^{2})\bar{u}^{\mu}_{w}\partial_{p^{\mu}}\right)\delta f^{a}=-\mathscr{C}_{ab}^{\mathrm{lin}}[\delta f^{b}]+\mathscr{S}_{a},\qquad \mathscr{S}_{a}=\left(p_{\mu}\bar{u}^{\mu}_{w}\partial_{\xi}+\frac{1}{2}\partial_{\xi}(m_{a}^{2})\bar{u}^{\mu}_{w}\partial_{p^{\mu}}\right)f_{e}^{a}$$

Mixing between different out-of-eq particles

$$f_{\rm eq}^{a} = \frac{1}{\exp[p_{\mu}u_{\rm pl}^{\mu}(\xi)/T(\xi)] \pm 1} \bigg|_{E_{a} = \vec{p}^{2} + m_{a}^{2}}$$

47

$$\sum_{i,j,k} \left\{ \partial_{\xi} \chi \left[\mathscr{P}_{w} \partial_{\chi} - \frac{\gamma_{w}}{2} \partial_{\chi} (m^{2}) (\partial_{p_{z}} \rho_{z}) \partial_{\rho_{z}} \right] \bar{T}_{i}(\chi) \bar{T}_{j}(\rho_{z}) \tilde{T}_{k}(\rho_{\parallel}) \delta f^{a}_{ijk} + \bar{T}_{i}(\chi) \mathscr{C}^{\mathrm{lin}}_{ab} \left[\bar{T}_{j}(\rho_{z}) \tilde{T}_{k}(\rho_{\parallel}) \right] \delta f^{b}_{ijk} \right\} = \mathscr{S}_{a}(\chi, \rho_{z}, \rho_{\parallel})$$

Algebraic equation

$$\sum_{i,j,k} \left\{ \partial_{\xi} \chi \left[\mathscr{P}_{w} \partial_{\chi} - \frac{\gamma_{w}}{2} \partial_{\chi} (m^{2}) (\partial_{p_{z}} \rho_{z}) \partial_{\rho_{z}} \right] \bar{T}_{i}(\chi) \bar{T}_{j}(\rho_{z}) \right\}$$

Introduce a grid to convert it to a matrix equation

$$\begin{pmatrix} \mathscr{L}[\alpha,\beta,\gamma;i,j,k]\delta_{ab} + \bar{T}_i(\chi) \\ \\ Grid \\ indices \end{pmatrix}$$

Restricted Chebyshev polynomials $\delta f^{a}(\chi,\rho_{z},\rho_{\parallel}) = \sum \sum \delta f^{a}_{ijk} \bar{T}_{i}(\chi) \bar{T}_{j}(\rho_{z}) \tilde{T}_{k}(\rho_{\parallel})$

 $_{z})\tilde{T}_{k}(\rho_{\parallel})\delta f^{a}_{ijk} + \bar{T}_{i}(\chi)\mathscr{C}^{\mathrm{lin}}_{ab} \left[\bar{T}_{j}(\rho_{z})\tilde{T}_{k}(\rho_{\parallel}) \right] \delta f^{b}_{ijk} \right\} = \mathscr{S}_{a}(\chi,\rho_{z},\rho_{\parallel})$

 $\mathscr{C}^{(\alpha)})\mathscr{C}_{ab}[\beta,\gamma;j,k])\,\delta f^b_{iik} = \mathscr{S}_a[\alpha,\beta,\gamma]$

$$\begin{aligned} \mathscr{C}_{ab}^{\text{lin}}[\bar{T}_{j}(\rho_{z})\tilde{T}_{k}(\rho_{\parallel})] &= \frac{1}{4} \sum_{cde} \int_{\vec{p}_{2},\vec{p}_{3},\vec{p}_{4}} \frac{1}{2E_{2}2E_{3}2E_{4}} (2\pi)^{4} \delta^{4}(P_{1}+P_{2}-P_{3}-P_{4}) \times \\ &|M_{ac \to de}(P_{1},P_{2};P_{3},P_{4})|^{2} f^{a} f^{c} f^{d} f^{e} \left(\delta_{ab} F_{a}^{c} + \delta_{cb} F_{c}^{a} - \delta_{db} F_{d}^{e} - \delta_{eb} F_{e}^{d}\right) \bar{T}_{j}(\rho_{z}) \tilde{T}_{k}(\rho_{\parallel}) \\ &\overline{F_{b}^{a} = \frac{e^{E_{a}/T}}{(f^{b})^{2}}} \end{aligned}$$

Four integrations are trivial because of the δ -function

Nine-dimensional integral for $n_p^2(N-1)^4$ components;

Advantages

Controlled convergence in number of polynomials

Disadvantages

Advantages

- Controlled convergence in number of polynomials
- No singularity appearing in the pressure

Disadvantages

- Numerically more intensive than moments •
- Individual moments have no clear physical interpretation

Parameter scan of the xSM

Standard Model with a light Higgs mass

Inert Doublet Model Comparison with Jiang, Huang, Wang 2022

BM	$\bar{m}_{H} \; [ext{GeV}]$	$ar{m}_A,ar{m}_{H^\pm}~[{ m GeV}]$	$\lambda_{\scriptscriptstyle L}$	$T_{\rm c} ~[{\rm GeV}]$	$T_{\rm n}~[{\rm GeV}]$	v_w [49]	$v_w \; [{\tt WallGo}]$
Α	62.66	300	0.0015	118.3	117.1	0.165	0.191 ± 0.024
В	65.00	300	0.0015	118.6	117.5	0.164	0.180 ± 0.025
C	63.00	295	0.0015	119.4	118.4	0.164	0.182 ± 0.024

Questions?