Yonsei-Konkuk-Sogang Mini-workshop

Jorinde van de Vis 10/02/2025

Configuration settings and convergence

Loading the configuration settings

- Defaults in src/WallGo/config.py
- **Read in by the** manager
- Individual configuration settings can be overwritten by e.g. manager.config.configGrid.spatialGridSize = 20
- You can also read in a custom configuration file, e.g.

<pre>lef configureManager(self, inOut</pre>	def	639
"""We load the configs from		640
<pre>inOutManager.config.loadConf</pre>		641
<pre>pathlib.Path(self.exampl</pre>		642
)		643
<pre>super().configureManager(in0</pre>		644
		C 4 F

```
Manager: "WallGo.WallGoManager") -> None:
a file for this example."""
igFromFile(
eBaseDirectory / "singletStandardModelZ2Config.ini")
```

utManager)

Configuration settings (these come from the default file) Grid

7	@dataclass
8	<pre>class ConfigGrid:</pre>
9	""" Holds the config of the Grid
10	
11	<pre>spatialGridSize: int = 40</pre>
12	""" Number of grid points in the
13	
14	<pre>momentumGridSize: int = 11</pre>
15	
16	Number of grid points in the mom
17	MUST BE ODD.
18	
19	
20	<pre>ratioPointsWall: float = 0.5</pre>
21	
22	Fraction of points inside the wa
23	<pre>[-wallThickness+wallCenter, wall</pre>
24	and 1.
25	
26	
27	<pre>smoothing: float = 0.1</pre>
28	""" Smoothing factor of the mapp

d3Scales class. """

e spatial direction (M in 2204.13120). """

nentum directions (N in 2204.13120).

all defined by the interval [Thickness+wallCenter]. Should be a number between 0

ing function (the larger the smoother). """

Configuration settings (these come from the default file) Grid

7	@dataclass
8	<pre>class ConfigGrid:</pre>
9	""" Holds the config of the Grid
10	
11	<pre>spatialGridSize: int = 40</pre>
12	""" Number of grid points in the
13	
14	<pre>momentumGridSize: int = 11</pre>
15	
16	Number of grid points in the mom
17	MUST BE ODD.
18	
19	
20	<pre>ratioPointsWall: float = 0.5</pre>
21	
22	Fraction of points inside the wa
23	<pre>[-wallThickness+wallCenter, wall</pre>
24	and 1.
25	
26	
27	<pre>smoothing: float = 0.1</pre>
28	""" Smoothing factor of the mapp

d3Scales class. """

e spatial direction (M in 2204.13120). """

nentum directions (N in 2204.13120).

Number of Chebyshev polynomials. More is better, but comes at a higher computational cost. Additional momentumGridSize points are more "expansive" than spatialGridSize.

all defined by the interval [Thickness+wallCenter]. Should be a number between 0

ing function (the larger the smoother). """

Convergence in number of polynomials

Configuration settings (these come from the default file) Grid

7	@dataclass
8	<pre>class ConfigGrid:</pre>
9	""" Holds the config of the Grid
10	
11	<pre>spatialGridSize: int = 40</pre>
12	""" Number of grid points in the
13	
14	<pre>momentumGridSize: int = 11</pre>
15	
16	Number of grid points in the mom
17	MUST BE ODD.
18	
19	
20	<pre>ratioPointsWall: float = 0.5</pre>
21	
22	Fraction of points inside the wa
23	<pre>[-wallThickness+wallCenter, wall</pre>
24	and 1.
25	
26	
27	<pre>smoothing: float = 0.1</pre>
28	""" Smoothing factor of the mapp

d3Scales class. """

e spatial direction (M in 2204.13120). """

nentum directions (N in 2204.13120).

all defined by the interval [Thickness+wallCenter]. Should be a number between 0

ing function (the larger the smoother). """

Dependence on Grid configuration settings

Figure 5: Dependence of v_w on different values of smoothing (left) and ratioPointsWall (right) in the xSM. We used ratioPointsWall = 0.5 in the left plot, smoothing = 0.1 in the right plot, and meanFreePathScale = $50/T_n$ for both.

Dependence on Grid configuration settings

Figure 5: Dependence of v_w on different values of smoothing (left) and ratioPointsWall (right) in the xSM. We used ratioPointsWall = 0.5 in the left plot, smoothing = 0.1 in the right plot, and meanFreePathScale = $50/T_n$ for both.

Configuration settings (these come from the default file) Equation of motion

```
30
     @dataclass
31
      class ConfigEOM:
         """ Holds the config of the EOM class. """
32
33
         errTol: float = 1e-3
34
         """ The absolute error tolerance for the wall velocity result. """
35
36
37
         pressRelErrTol: float = 0.1
         """ Relative error tolerance for the pressure. """
38
39
40
         maxIterations: int = 20
         """ Maximum number of iterations for the convergence of the pressure. """
41
42
         conserveEnergyMomentum: bool = True
43
         r
44
         Flag to enforce conservation of energy and momentum. Normally, this should be set to
45
         True, but it can help with numerical stability to set it to False. If True, there is
46
         an ambiguity in the separation between :math:`f_{eq}` and :math:`\delta f` when the
47
         out-of-equilibrium particles form a closed system (or nearly closed). This can lead
48
         to a divergence of the iterative loop. In the end, it is better to set this to False
49
         if most of the degrees of freedom are treated as out-of-equilibrium particle. If
50
         most of the dofs are in the background fluid, setting it to True will give better
51
52
         results.
53
         .....
```

54	
55	<pre>wallThicknessBounds: list[float] = field(default_factory=lambda: [0.1, 100.0])</pre>
56	""" Lower and upper bounds on wall thickness (in units of 1/Tnucl). """
57	
58	wallOffsetBounds: list[float] = field(default_factory=lambda: [-10.0, 10.0])
59	""" Lower and upper bounds on wall offset. """
60	
61	<pre>## The following parameters are only used for detonation solutions ##</pre>
62	<pre>vwMaxDeton: float = 0.99</pre>
63	""" Maximal Velocity at which the solver will look to find a detonation solution ""
64	
65	<pre>nbrPointsMinDeton: int = 5</pre>
66	""" Minimal number of points probed to bracket the detonation roots. """
67	
68	<pre>nbrPointsMaxDeton: int = 20</pre>
69	""" Maximal number of points probed to bracket the detonation roots. """
70	
71	<pre>overshootProbDeton: float = 0.05</pre>
72	
73	Desired probability of overshooting a root. Must be between 0 and 1. A smaller valu
74	will lead to more pressure evaluations (and thus a longer time), but is less likely
75	to miss a root.
76	
77	
70	

Configuration settings (these come from the default file) Hydrodynamics

@dataclass
<pre>class ConfigHydrodynamics:</pre>
""" Holds the config of the Hydr
tmin: $float = 0.01$
""" Minimum temperature that is
<pre>tmax: float = 10.0</pre>
""" Maximum temperature that is
<pre>relativeTol: float = 1e-6</pre>
""" Relative tolerance used in H
absoluteTol: float = 1e-10
""" Absolute tolerance used in H

rodynamics class. """

probed in Hydrodynamics (in units of Tnucl). """

probed in Hydrodynamics (in units of Tnucl). """

Hydrodynamics. """

Hydrodynamics. """

Configuration settings (these come from the default file) Thermodynamics

94	@dataclass
95	<pre>class ConfigThermodynamics:</pre>
96	""" Holds the config of the Hyd
97	
98	<pre>tmin: float = 0.8</pre>
99	
100	Minimum temperature used in the
101	minimum temperature obtained in
102	
103	
104	<pre>tmax: float = 1.2</pre>
105	
106	Maximum temperature used in the
107	maximum temperature obtained in
108	
109	
110	<pre>phaseTracerTol: float = 1e-6</pre>
111	
112	Desired accuracy of the phase t
113	
114	
115	<pre>phaseTracerFirstStep: float N</pre>
116	r"""
117	Starting step for phaseTrace. I
118	size in units of the maximum st
119	uses the initial step size algo
120	

rodynamics class. """

phase tracing (in units of the estimate for the the template model).

phase tracing (in units of the estimate for the the template model).

Choosing these numbers closer to one reduces time spent in the initialization phase. The risk of choosing it too close is that the free energy is not known in the relevant temperature range.

racer and the resulting FreeEnergy interpolation.

lone = None

If a float, this gives the starting step cep size :py:data:`dT`. If :py:data:`None` then >rithm of :py:mod:`scipy.integrate.solve_ivp`.

Can be tweaked if the thermodynamics functions seem ill-behaved

Configuration settings (these come from the default file) Boltzmann

122	@dataclass
123	<pre>class ConfigBoltzmannSolver:</pre>
124	""" Holds the config of the Bol
125	
126	<pre>basisM: str = 'Cardinal'</pre>
127	""" The position polynomial bas
128	
129	<pre>basisN: str = 'Chebyshev'</pre>
130	""" The momentum polynomial bas
131	
132	<pre>collisionMultiplier: float = 1.</pre>
133	
134	Factor multiplying the collisio
135	testing or for studying the sol
136	<pre>forget to adjust meanFreePathSc</pre>
137	<pre>(meanFreePathScale should scale</pre>
138	WARNING: THIS CHANGES THE COLLI
139	

tzmannSolver class. """

is type, either 'Cardinal' or 'Chebyshev'. """

is type, either 'Cardinal' or 'Chebyshev'. """

0

on term in the Boltzmann equation. Can be used for lution's sensibility to the collision integrals. Don't cale accordingly if this is different from 1 like 1/collisionMultiplier). SION TERMS WRT TO THEIR PHYSICAL VALUE.

Useful for debugging purposes/testing how strong the dependence on the collision terms is. Should be set to 1 if you want to make a physical prediction! If set to a large value, it will return the LTE result.

Model-dependent settings temperatureVariationScale and fieldValueVariationScale

Inside ExampleInputPoint •

700	WallGo.VeffDerivativeSettings
701	temperatureVariationScale
702),

- Quantities that help to estimate ΔT and $\Delta \phi$ for numerical derivatives
- A reasonable estimate is $T_{\rm crit} T_{\rm nucl}$ and the vacuum expectation value

=10.0, fieldValueVariationScale=[10.0, 10.0]

Model-dependent settings temperatureVariationScale and fieldValueVariationScale

Figure 6: Dependence of v_w on different values of temperatureVariationScale (TVS, left) and fieldValueVariationScale (FVVS, right) for the Standard Model with a light Higgs (cf. section 6.2).

Model-dependent settings temperatureVariationScale and fieldValueVariationScale

Figure 6: Dependence of v_w on different values of temperatureVariationScale (TVS, left) and fieldValueVariationScale (FVVS, right) for the Standard Model with a light Higgs (cf. section 6.2).

Model-dependent settings mean

Inside ExampleInputPoint

WallGo.WallSolve	55	555
# we actual	56	556
bIncludeOff	57	557
meanFreePath	58	558
wallThicknes	59	559
),	60	560
<pre># we actua bIncludeOf meanFreePat wallThickne),</pre>	57 58 59 60	556 558 559 560

particles. This example is for the case of strong interactions.

erSettings(ly do both cases in the common example Equilibrium=True, hScale=100.0, # In units of 1/Tnucl ssGuess=20.0, # In units of 1/Tnucl

MeanFreePathScale: estimates the decay length of the out-of-equilibrium

meanFreePathScale

Quesitons?