
Jorinde van de Vis 08/02/2025

How fast does the ?
Yonsei-Konkuk-Sogang Mini-workshop

￼1

Program

Friday 07/02

• Introduction & motivation
for wall velocity JvdV

• Equilibrium
thermodynamics, example
computation, nucleation,
matrix elements PS

• Example of DRalgo and
WallGoMatrix model files
PS

Saturday 08/02

• WallGo source code JvdV

• Worked out example for
WallGo JvdV & PS: 
Matrix elements 
Example base file 
Collision model 
Model file

• Hands-on session: 
start of implementation of
WallGo model

Monday 10/02

• Discussion of configuration
parameters and
convergence JvdV

• Hands-on session:
implementation of WallGo
model & Q&A

2

The src folder

Computing a wall velocity in WallGo does not require modification of the source code,
but knowledge of the source code can be helpful for choosing the appropriate

configuration settings 
WallGo is typically run from a model file; we will discuss these later

3

API reference

https://wallgo.readthedocs.io/en/latest/_autosummary/WallGo.html

4

https://wallgo.readthedocs.io/en/latest/_autosummary/WallGo.html

manager.py

• Loads the configuration file (default in src/WallGo folder), to be discussed on
Monday

• Performs all initializations in the correct order (e.g. interpolates the freeEnergy,
loads the collisions)

• Verifies the input, e.g.:

• Does the potential have two different phases

• Is the number of grid points chosen correctly (it has to be an odd number)

• Has the function manager.solveWall(wallSolverSettings)which returns the
wall velocity

5

Recall: scalar field equation of motion and EM-conservation

6

∂2ϕi +
∂Veff(⃗ϕ , T)

∂ϕi
+ ∑

a

∂m2
a

∂ϕi ∫ ⃗p

1
2E

δf a(pμ, ξ) = 0

T30 = wγ2
plvpl + T30

out = c1

T33 =
1
2

(∂zϕi)2 − Veff(⃗ϕ , T) + wγ2
plv

2
pl + T33

out = c2

effectivePotential.py

• effectivePotential.py

• ; don’t forget to include the field-independent parts here (e.g.)

• The effective potential is model-dependent, so effectivePotential.py
is an Abstract Base Class: the user defines the effective potential in the
model file

Veff(ϕi, T) T4

7

effectivePotential.py and freeEnergy.py

• effectivePotential.py

• ; don’t forget to include the field-independent parts here (e.g.)

• The effective potential is model-dependent, so effectivePotential.py is
an Abstract Base Class: the user defines the effective potential in the model file

• freeEnergy.py

• Holds the value of the potential at its minima

• Typically is an interpolatableFunction (interpolation is called by the
manager); this is done to reduce the computation time significantly

Veff(ϕi, T) T4

8

Limited temperature range

• Often one of the phases ceases to exist above/below a certain

• freeEnergy keeps track of these minimum and maximum 
temperatures

• The plasma can not exceed these temperatures; this 
sometimes puts a limit on the wall velocity

T

9

Figure: Rubakov, 2015

High T

Low T

Low-T phase
does not exist

thermodynamics.py

• Holds the pressure, enthalpy, energy density and speeds of sound necessary
for the hydrodynamics computations, derived from the freeEnergy

• Extrapolates the equation of state if the temperature is outside of the allowed
range; by mapping onto the “template model”

• This is mere for numerical convenience in 
hydrodynamics; we enforce that the final wall  
velocity does not depend on this extrapolation

10

  

ps =
1
3

a+Tμ − ϵ pb =
1
3

a−Tν

μ = 1 +
1

c2
s,sym

ν = 1 +
1

c2
s,brok

Leitao, Megevand, 2015

https://arxiv.org/abs/1410.3875

equationOfMotion.py

• Solves the scalar field equation of motion, by using a Tanh-Ansatz, and minimizing its action

• Solves energy-momentum conservation to determine the fluid velocity and temperature profiles

• Calls hydrodynamics.findHydroBoundaries(wallVelocity) to determine the boundary conditions for the
EM-conservation equations

• Calls self.boltzmannSolver.getDeltas()to find the out-of-equilibrium contribution for the list of out-of-
equilirbium particles

• Goes through several iterations to conserve to the right solution for each

• Separate functions for deflagrations/hybrids and detonations

• Defl/hybr: varies the wall velocity between vmin (typically 0), vmax (Jouguet velocity or given by limited
temperature range) to find

• Det: looks for starting from Jouguet velocity

vw

P(vw) = 0

P(vw) = 0

11

hydrodynamics.py

• Finds the boundary conditions for the energy-momentum conservation
equations

• Finds the Jouguet velocity (transition between hybrids and detonations)

• Finds the maximum velocity allowed by the limited temperature range

12

hydrodynamicsTemplateModel.py

• Solves hydrodynamics in the template model

• Results are often very close to the results in the full model-dependent
hydrodynamics

• Results from hydrodynamicsTemplateModel.py are only used to find
reasonable initial values in initialization and in hydrodynamics

13

  

ps =
1
3

a+Tμ − ϵ pb =
1
3

a−Tν

μ = 1 +
1

c2
s,sym

ν = 1 +
1

c2
s,brok

Leitao, Megevand, 2015

https://arxiv.org/abs/1410.3875

14

δf a(χ, ρz, ρ∥) =
M

∑
i=2

N

∑
j=2

N−1

∑
k=1

δf a
ijkT̄i(χ)T̄j(ρz)T̃k(ρ∥)

Recall: Boltzmann equation
Restricted 

Chebyshev polynomials
Rescaled

coordinates

∑
i,j,k

{∂ξ χ [𝒫w∂χ −
γw

2
∂χ(m2)(∂pz

ρz)∂ρz] T̄i(χ)T̄j(ρz)T̃k(ρ∥)δf a
ijk + T̄i(χ)𝒞lin

ab [T̄j(ρz)T̃k(ρ∥)] δf b
ijk} = 𝒮a(χ, ρz, ρ∥)

Algebraic equation

(ℒ[α, β, γ; i, j, k]δab + T̄i(χ(α))𝒞ab[β, γ; j, k]) δf b
ijk = 𝒮a[α, β, γ]

Introduce a grid to convert it to a matrix equation

Grid
indices

boltzmann.py

• Solves the Boltzmann equations for all the out-of-equilibrium particles

• Uses pre-computed collision output — loaded in manager:
boltzmannSolver.loadCollisions(self.collisionDirectory)

• Returns the out-of-equilibrium contributions in a BoltzmannResults object

15

grid3Scales.py

• It is not numerically efficient to solve the equation of motion on a linear scale;
we thus rescale the -coordinate to get many points close to the center of the
wall

• We use different rescalings in the tails, and in the bubble wall region

ξ

16

Additional classes

• Helper functions contained in: collisionHelpers.py, helpers.py
mathematicaHelpers.py, utils.py

• WallGo-specific objects/data classes: fields.py, containers.py,
exceptions.py, polynomial.py results.py

17

Folder: src/WallGo/PotentialTools

• Contains functions for the one-loop effective potential without high-
temperature expansion

• Tables for the functions

• Options for how to deal with negative arguments (principal value, absolute
value of the argument, absolute value of analytically continued integral)

JB/F

18

Questions?

19

